summaryrefslogtreecommitdiff
path: root/lib/CodeGen/LiveIntervalAnalysis.cpp
blob: a0e6e20618c80d7c8d724916a76d90cbed70ccff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and computes live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "LiveRangeCalc.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
#include <cmath>
using namespace llvm;

#define DEBUG_TYPE "regalloc"

char LiveIntervals::ID = 0;
char &llvm::LiveIntervalsID = LiveIntervals::ID;
INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
                "Live Interval Analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
                "Live Interval Analysis", false, false)

#ifndef NDEBUG
static cl::opt<bool> EnablePrecomputePhysRegs(
  "precompute-phys-liveness", cl::Hidden,
  cl::desc("Eagerly compute live intervals for all physreg units."));
#else
static bool EnablePrecomputePhysRegs = false;
#endif // NDEBUG

static cl::opt<bool> EnableSubRegLiveness(
  "enable-subreg-liveness", cl::Hidden, cl::init(true),
  cl::desc("Enable subregister liveness tracking."));

namespace llvm {
cl::opt<bool> UseSegmentSetForPhysRegs(
    "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
    cl::desc(
        "Use segment set for the computation of the live ranges of physregs."));
}

void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<AAResultsWrapperPass>();
  AU.addPreserved<AAResultsWrapperPass>();
  AU.addPreserved<LiveVariables>();
  AU.addPreservedID(MachineLoopInfoID);
  AU.addRequiredTransitiveID(MachineDominatorsID);
  AU.addPreservedID(MachineDominatorsID);
  AU.addPreserved<SlotIndexes>();
  AU.addRequiredTransitive<SlotIndexes>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
  DomTree(nullptr), LRCalc(nullptr) {
  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
}

LiveIntervals::~LiveIntervals() {
  delete LRCalc;
}

void LiveIntervals::releaseMemory() {
  // Free the live intervals themselves.
  for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
    delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
  VirtRegIntervals.clear();
  RegMaskSlots.clear();
  RegMaskBits.clear();
  RegMaskBlocks.clear();

  for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
    delete RegUnitRanges[i];
  RegUnitRanges.clear();

  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
  VNInfoAllocator.Reset();
}

/// runOnMachineFunction - calculates LiveIntervals
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
  MF = &fn;
  MRI = &MF->getRegInfo();
  TRI = MF->getSubtarget().getRegisterInfo();
  TII = MF->getSubtarget().getInstrInfo();
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  Indexes = &getAnalysis<SlotIndexes>();
  DomTree = &getAnalysis<MachineDominatorTree>();

  if (EnableSubRegLiveness && MF->getSubtarget().enableSubRegLiveness())
    MRI->enableSubRegLiveness(true);

  if (!LRCalc)
    LRCalc = new LiveRangeCalc();

  // Allocate space for all virtual registers.
  VirtRegIntervals.resize(MRI->getNumVirtRegs());

  computeVirtRegs();
  computeRegMasks();
  computeLiveInRegUnits();

  if (EnablePrecomputePhysRegs) {
    // For stress testing, precompute live ranges of all physical register
    // units, including reserved registers.
    for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
      getRegUnit(i);
  }
  DEBUG(dump());
  return true;
}

/// print - Implement the dump method.
void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
  OS << "********** INTERVALS **********\n";

  // Dump the regunits.
  for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
    if (LiveRange *LR = RegUnitRanges[i])
      OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n';

  // Dump the virtregs.
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    if (hasInterval(Reg))
      OS << getInterval(Reg) << '\n';
  }

  OS << "RegMasks:";
  for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
    OS << ' ' << RegMaskSlots[i];
  OS << '\n';

  printInstrs(OS);
}

void LiveIntervals::printInstrs(raw_ostream &OS) const {
  OS << "********** MACHINEINSTRS **********\n";
  MF->print(OS, Indexes);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void LiveIntervals::dumpInstrs() const {
  printInstrs(dbgs());
}
#endif

LiveInterval* LiveIntervals::createInterval(unsigned reg) {
  float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ?
                  llvm::huge_valf : 0.0F;
  return new LiveInterval(reg, Weight);
}


/// computeVirtRegInterval - Compute the live interval of a virtual register,
/// based on defs and uses.
void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
  assert(LRCalc && "LRCalc not initialized.");
  assert(LI.empty() && "Should only compute empty intervals.");
  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
  LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg));
  computeDeadValues(LI, nullptr);
}

void LiveIntervals::computeVirtRegs() {
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    if (MRI->reg_nodbg_empty(Reg))
      continue;
    createAndComputeVirtRegInterval(Reg);
  }
}

void LiveIntervals::computeRegMasks() {
  RegMaskBlocks.resize(MF->getNumBlockIDs());

  // Find all instructions with regmask operands.
  for (MachineBasicBlock &MBB : *MF) {
    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
    RMB.first = RegMaskSlots.size();

    // Some block starts, such as EH funclets, create masks.
    if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
      RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
      RegMaskBits.push_back(Mask);
    }

    for (MachineInstr &MI : MBB) {
      for (const MachineOperand &MO : MI.operands()) {
        if (!MO.isRegMask())
          continue;
        RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
        RegMaskBits.push_back(MO.getRegMask());
      }
    }

    // Some block ends, such as funclet returns, create masks. Put the mask on
    // the last instruction of the block, because MBB slot index intervals are
    // half-open.
    if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
      assert(!MBB.empty() && "empty return block?");
      RegMaskSlots.push_back(
          Indexes->getInstructionIndex(MBB.back()).getRegSlot());
      RegMaskBits.push_back(Mask);
    }

    // Compute the number of register mask instructions in this block.
    RMB.second = RegMaskSlots.size() - RMB.first;
  }
}

//===----------------------------------------------------------------------===//
//                           Register Unit Liveness
//===----------------------------------------------------------------------===//
//
// Fixed interference typically comes from ABI boundaries: Function arguments
// and return values are passed in fixed registers, and so are exception
// pointers entering landing pads. Certain instructions require values to be
// present in specific registers. That is also represented through fixed
// interference.
//

/// computeRegUnitInterval - Compute the live range of a register unit, based
/// on the uses and defs of aliasing registers.  The range should be empty,
/// or contain only dead phi-defs from ABI blocks.
void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
  assert(LRCalc && "LRCalc not initialized.");
  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());

  // The physregs aliasing Unit are the roots and their super-registers.
  // Create all values as dead defs before extending to uses. Note that roots
  // may share super-registers. That's OK because createDeadDefs() is
  // idempotent. It is very rare for a register unit to have multiple roots, so
  // uniquing super-registers is probably not worthwhile.
  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
    for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
         Supers.isValid(); ++Supers) {
      if (!MRI->reg_empty(*Supers))
        LRCalc->createDeadDefs(LR, *Supers);
    }
  }

  // Now extend LR to reach all uses.
  // Ignore uses of reserved registers. We only track defs of those.
  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
    for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
         Supers.isValid(); ++Supers) {
      unsigned Reg = *Supers;
      if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
        LRCalc->extendToUses(LR, Reg);
    }
  }

  // Flush the segment set to the segment vector.
  if (UseSegmentSetForPhysRegs)
    LR.flushSegmentSet();
}


/// computeLiveInRegUnits - Precompute the live ranges of any register units
/// that are live-in to an ABI block somewhere. Register values can appear
/// without a corresponding def when entering the entry block or a landing pad.
///
void LiveIntervals::computeLiveInRegUnits() {
  RegUnitRanges.resize(TRI->getNumRegUnits());
  DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");

  // Keep track of the live range sets allocated.
  SmallVector<unsigned, 8> NewRanges;

  // Check all basic blocks for live-ins.
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
       MFI != MFE; ++MFI) {
    const MachineBasicBlock *MBB = &*MFI;

    // We only care about ABI blocks: Entry + landing pads.
    if ((MFI != MF->begin() && !MBB->isEHPad()) || MBB->livein_empty())
      continue;

    // Create phi-defs at Begin for all live-in registers.
    SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
    DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
    for (const auto &LI : MBB->liveins()) {
      for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
        unsigned Unit = *Units;
        LiveRange *LR = RegUnitRanges[Unit];
        if (!LR) {
          // Use segment set to speed-up initial computation of the live range.
          LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
          NewRanges.push_back(Unit);
        }
        VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
        (void)VNI;
        DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
      }
    }
    DEBUG(dbgs() << '\n');
  }
  DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");

  // Compute the 'normal' part of the ranges.
  for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) {
    unsigned Unit = NewRanges[i];
    computeRegUnitRange(*RegUnitRanges[Unit], Unit);
  }
}


static void createSegmentsForValues(LiveRange &LR,
      iterator_range<LiveInterval::vni_iterator> VNIs) {
  for (auto VNI : VNIs) {
    if (VNI->isUnused())
      continue;
    SlotIndex Def = VNI->def;
    LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
  }
}

typedef SmallVector<std::pair<SlotIndex, VNInfo*>, 16> ShrinkToUsesWorkList;

static void extendSegmentsToUses(LiveRange &LR, const SlotIndexes &Indexes,
                                 ShrinkToUsesWorkList &WorkList,
                                 const LiveRange &OldRange) {
  // Keep track of the PHIs that are in use.
  SmallPtrSet<VNInfo*, 8> UsedPHIs;
  // Blocks that have already been added to WorkList as live-out.
  SmallPtrSet<MachineBasicBlock*, 16> LiveOut;

  // Extend intervals to reach all uses in WorkList.
  while (!WorkList.empty()) {
    SlotIndex Idx = WorkList.back().first;
    VNInfo *VNI = WorkList.back().second;
    WorkList.pop_back();
    const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Idx.getPrevSlot());
    SlotIndex BlockStart = Indexes.getMBBStartIdx(MBB);

    // Extend the live range for VNI to be live at Idx.
    if (VNInfo *ExtVNI = LR.extendInBlock(BlockStart, Idx)) {
      assert(ExtVNI == VNI && "Unexpected existing value number");
      (void)ExtVNI;
      // Is this a PHIDef we haven't seen before?
      if (!VNI->isPHIDef() || VNI->def != BlockStart ||
          !UsedPHIs.insert(VNI).second)
        continue;
      // The PHI is live, make sure the predecessors are live-out.
      for (auto &Pred : MBB->predecessors()) {
        if (!LiveOut.insert(Pred).second)
          continue;
        SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
        // A predecessor is not required to have a live-out value for a PHI.
        if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
          WorkList.push_back(std::make_pair(Stop, PVNI));
      }
      continue;
    }

    // VNI is live-in to MBB.
    DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
    LR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));

    // Make sure VNI is live-out from the predecessors.
    for (auto &Pred : MBB->predecessors()) {
      if (!LiveOut.insert(Pred).second)
        continue;
      SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
      assert(OldRange.getVNInfoBefore(Stop) == VNI &&
             "Wrong value out of predecessor");
      WorkList.push_back(std::make_pair(Stop, VNI));
    }
  }
}

bool LiveIntervals::shrinkToUses(LiveInterval *li,
                                 SmallVectorImpl<MachineInstr*> *dead) {
  DEBUG(dbgs() << "Shrink: " << *li << '\n');
  assert(TargetRegisterInfo::isVirtualRegister(li->reg)
         && "Can only shrink virtual registers");

  // Shrink subregister live ranges.
  bool NeedsCleanup = false;
  for (LiveInterval::SubRange &S : li->subranges()) {
    shrinkToUses(S, li->reg);
    if (S.empty())
      NeedsCleanup = true;
  }
  if (NeedsCleanup)
    li->removeEmptySubRanges();

  // Find all the values used, including PHI kills.
  ShrinkToUsesWorkList WorkList;

  // Visit all instructions reading li->reg.
  for (MachineRegisterInfo::reg_instr_iterator
       I = MRI->reg_instr_begin(li->reg), E = MRI->reg_instr_end();
       I != E; ) {
    MachineInstr *UseMI = &*(I++);
    if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
      continue;
    SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
    LiveQueryResult LRQ = li->Query(Idx);
    VNInfo *VNI = LRQ.valueIn();
    if (!VNI) {
      // This shouldn't happen: readsVirtualRegister returns true, but there is
      // no live value. It is likely caused by a target getting <undef> flags
      // wrong.
      DEBUG(dbgs() << Idx << '\t' << *UseMI
                   << "Warning: Instr claims to read non-existent value in "
                    << *li << '\n');
      continue;
    }
    // Special case: An early-clobber tied operand reads and writes the
    // register one slot early.
    if (VNInfo *DefVNI = LRQ.valueDefined())
      Idx = DefVNI->def;

    WorkList.push_back(std::make_pair(Idx, VNI));
  }

  // Create new live ranges with only minimal live segments per def.
  LiveRange NewLR;
  createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
  extendSegmentsToUses(NewLR, *Indexes, WorkList, *li);

  // Move the trimmed segments back.
  li->segments.swap(NewLR.segments);

  // Handle dead values.
  bool CanSeparate = computeDeadValues(*li, dead);
  DEBUG(dbgs() << "Shrunk: " << *li << '\n');
  return CanSeparate;
}

bool LiveIntervals::computeDeadValues(LiveInterval &LI,
                                      SmallVectorImpl<MachineInstr*> *dead) {
  bool MayHaveSplitComponents = false;
  for (auto VNI : LI.valnos) {
    if (VNI->isUnused())
      continue;
    SlotIndex Def = VNI->def;
    LiveRange::iterator I = LI.FindSegmentContaining(Def);
    assert(I != LI.end() && "Missing segment for VNI");

    // Is the register live before? Otherwise we may have to add a read-undef
    // flag for subregister defs.
    unsigned VReg = LI.reg;
    if (MRI->shouldTrackSubRegLiveness(VReg)) {
      if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
        MachineInstr *MI = getInstructionFromIndex(Def);
        MI->setRegisterDefReadUndef(VReg);
      }
    }

    if (I->end != Def.getDeadSlot())
      continue;
    if (VNI->isPHIDef()) {
      // This is a dead PHI. Remove it.
      VNI->markUnused();
      LI.removeSegment(I);
      DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
      MayHaveSplitComponents = true;
    } else {
      // This is a dead def. Make sure the instruction knows.
      MachineInstr *MI = getInstructionFromIndex(Def);
      assert(MI && "No instruction defining live value");
      MI->addRegisterDead(LI.reg, TRI);
      if (dead && MI->allDefsAreDead()) {
        DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
        dead->push_back(MI);
      }
    }
  }
  return MayHaveSplitComponents;
}

void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg)
{
  DEBUG(dbgs() << "Shrink: " << SR << '\n');
  assert(TargetRegisterInfo::isVirtualRegister(Reg)
         && "Can only shrink virtual registers");
  // Find all the values used, including PHI kills.
  ShrinkToUsesWorkList WorkList;

  // Visit all instructions reading Reg.
  SlotIndex LastIdx;
  for (MachineOperand &MO : MRI->reg_operands(Reg)) {
    MachineInstr *UseMI = MO.getParent();
    if (UseMI->isDebugValue())
      continue;
    // Maybe the operand is for a subregister we don't care about.
    unsigned SubReg = MO.getSubReg();
    if (SubReg != 0) {
      LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
      if ((LaneMask & SR.LaneMask) == 0)
        continue;
    }
    // We only need to visit each instruction once.
    SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
    if (Idx == LastIdx)
      continue;
    LastIdx = Idx;

    LiveQueryResult LRQ = SR.Query(Idx);
    VNInfo *VNI = LRQ.valueIn();
    // For Subranges it is possible that only undef values are left in that
    // part of the subregister, so there is no real liverange at the use
    if (!VNI)
      continue;

    // Special case: An early-clobber tied operand reads and writes the
    // register one slot early.
    if (VNInfo *DefVNI = LRQ.valueDefined())
      Idx = DefVNI->def;

    WorkList.push_back(std::make_pair(Idx, VNI));
  }

  // Create a new live ranges with only minimal live segments per def.
  LiveRange NewLR;
  createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
  extendSegmentsToUses(NewLR, *Indexes, WorkList, SR);

  // Move the trimmed ranges back.
  SR.segments.swap(NewLR.segments);

  // Remove dead PHI value numbers
  for (auto VNI : SR.valnos) {
    if (VNI->isUnused())
      continue;
    const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
    assert(Segment != nullptr && "Missing segment for VNI");
    if (Segment->end != VNI->def.getDeadSlot())
      continue;
    if (VNI->isPHIDef()) {
      // This is a dead PHI. Remove it.
      VNI->markUnused();
      SR.removeSegment(*Segment);
      DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
    }
  }

  DEBUG(dbgs() << "Shrunk: " << SR << '\n');
}

void LiveIntervals::extendToIndices(LiveRange &LR,
                                    ArrayRef<SlotIndex> Indices) {
  assert(LRCalc && "LRCalc not initialized.");
  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
    LRCalc->extend(LR, Indices[i]);
}

void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
                               SmallVectorImpl<SlotIndex> *EndPoints) {
  LiveQueryResult LRQ = LR.Query(Kill);
  VNInfo *VNI = LRQ.valueOutOrDead();
  if (!VNI)
    return;

  MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
  SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);

  // If VNI isn't live out from KillMBB, the value is trivially pruned.
  if (LRQ.endPoint() < MBBEnd) {
    LR.removeSegment(Kill, LRQ.endPoint());
    if (EndPoints) EndPoints->push_back(LRQ.endPoint());
    return;
  }

  // VNI is live out of KillMBB.
  LR.removeSegment(Kill, MBBEnd);
  if (EndPoints) EndPoints->push_back(MBBEnd);

  // Find all blocks that are reachable from KillMBB without leaving VNI's live
  // range. It is possible that KillMBB itself is reachable, so start a DFS
  // from each successor.
  typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
  VisitedTy Visited;
  for (MachineBasicBlock::succ_iterator
       SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
       SuccI != SuccE; ++SuccI) {
    for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
         I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
         I != E;) {
      MachineBasicBlock *MBB = *I;

      // Check if VNI is live in to MBB.
      SlotIndex MBBStart, MBBEnd;
      std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
      LiveQueryResult LRQ = LR.Query(MBBStart);
      if (LRQ.valueIn() != VNI) {
        // This block isn't part of the VNI segment. Prune the search.
        I.skipChildren();
        continue;
      }

      // Prune the search if VNI is killed in MBB.
      if (LRQ.endPoint() < MBBEnd) {
        LR.removeSegment(MBBStart, LRQ.endPoint());
        if (EndPoints) EndPoints->push_back(LRQ.endPoint());
        I.skipChildren();
        continue;
      }

      // VNI is live through MBB.
      LR.removeSegment(MBBStart, MBBEnd);
      if (EndPoints) EndPoints->push_back(MBBEnd);
      ++I;
    }
  }
}

//===----------------------------------------------------------------------===//
// Register allocator hooks.
//

void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
  // Keep track of regunit ranges.
  SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
  // Keep track of subregister ranges.
  SmallVector<std::pair<const LiveInterval::SubRange*,
                        LiveRange::const_iterator>, 4> SRs;

  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    if (MRI->reg_nodbg_empty(Reg))
      continue;
    const LiveInterval &LI = getInterval(Reg);
    if (LI.empty())
      continue;

    // Find the regunit intervals for the assigned register. They may overlap
    // the virtual register live range, cancelling any kills.
    RU.clear();
    for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
         ++Units) {
      const LiveRange &RURange = getRegUnit(*Units);
      if (RURange.empty())
        continue;
      RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
    }

    if (MRI->subRegLivenessEnabled()) {
      SRs.clear();
      for (const LiveInterval::SubRange &SR : LI.subranges()) {
        SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
      }
    }

    // Every instruction that kills Reg corresponds to a segment range end
    // point.
    for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
         ++RI) {
      // A block index indicates an MBB edge.
      if (RI->end.isBlock())
        continue;
      MachineInstr *MI = getInstructionFromIndex(RI->end);
      if (!MI)
        continue;

      // Check if any of the regunits are live beyond the end of RI. That could
      // happen when a physreg is defined as a copy of a virtreg:
      //
      //   %EAX = COPY %vreg5
      //   FOO %vreg5         <--- MI, cancel kill because %EAX is live.
      //   BAR %EAX<kill>
      //
      // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
      for (auto &RUP : RU) {
        const LiveRange &RURange = *RUP.first;
        LiveRange::const_iterator &I = RUP.second;
        if (I == RURange.end())
          continue;
        I = RURange.advanceTo(I, RI->end);
        if (I == RURange.end() || I->start >= RI->end)
          continue;
        // I is overlapping RI.
        goto CancelKill;
      }

      if (MRI->subRegLivenessEnabled()) {
        // When reading a partial undefined value we must not add a kill flag.
        // The regalloc might have used the undef lane for something else.
        // Example:
        //     %vreg1 = ...              ; R32: %vreg1
        //     %vreg2:high16 = ...       ; R64: %vreg2
        //        = read %vreg2<kill>    ; R64: %vreg2
        //        = read %vreg1          ; R32: %vreg1
        // The <kill> flag is correct for %vreg2, but the register allocator may
        // assign R0L to %vreg1, and R0 to %vreg2 because the low 32bits of R0
        // are actually never written by %vreg2. After assignment the <kill>
        // flag at the read instruction is invalid.
        LaneBitmask DefinedLanesMask;
        if (!SRs.empty()) {
          // Compute a mask of lanes that are defined.
          DefinedLanesMask = 0;
          for (auto &SRP : SRs) {
            const LiveInterval::SubRange &SR = *SRP.first;
            LiveRange::const_iterator &I = SRP.second;
            if (I == SR.end())
              continue;
            I = SR.advanceTo(I, RI->end);
            if (I == SR.end() || I->start >= RI->end)
              continue;
            // I is overlapping RI
            DefinedLanesMask |= SR.LaneMask;
          }
        } else
          DefinedLanesMask = ~0u;

        bool IsFullWrite = false;
        for (const MachineOperand &MO : MI->operands()) {
          if (!MO.isReg() || MO.getReg() != Reg)
            continue;
          if (MO.isUse()) {
            // Reading any undefined lanes?
            LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
            if ((UseMask & ~DefinedLanesMask) != 0)
              goto CancelKill;
          } else if (MO.getSubReg() == 0) {
            // Writing to the full register?
            assert(MO.isDef());
            IsFullWrite = true;
          }
        }

        // If an instruction writes to a subregister, a new segment starts in
        // the LiveInterval. But as this is only overriding part of the register
        // adding kill-flags is not correct here after registers have been
        // assigned.
        if (!IsFullWrite) {
          // Next segment has to be adjacent in the subregister write case.
          LiveRange::const_iterator N = std::next(RI);
          if (N != LI.end() && N->start == RI->end)
            goto CancelKill;
        }
      }

      MI->addRegisterKilled(Reg, nullptr);
      continue;
CancelKill:
      MI->clearRegisterKills(Reg, nullptr);
    }
  }
}

MachineBasicBlock*
LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
  // A local live range must be fully contained inside the block, meaning it is
  // defined and killed at instructions, not at block boundaries. It is not
  // live in or or out of any block.
  //
  // It is technically possible to have a PHI-defined live range identical to a
  // single block, but we are going to return false in that case.

  SlotIndex Start = LI.beginIndex();
  if (Start.isBlock())
    return nullptr;

  SlotIndex Stop = LI.endIndex();
  if (Stop.isBlock())
    return nullptr;

  // getMBBFromIndex doesn't need to search the MBB table when both indexes
  // belong to proper instructions.
  MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
  MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
  return MBB1 == MBB2 ? MBB1 : nullptr;
}

bool
LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
  for (const VNInfo *PHI : LI.valnos) {
    if (PHI->isUnused() || !PHI->isPHIDef())
      continue;
    const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
    // Conservatively return true instead of scanning huge predecessor lists.
    if (PHIMBB->pred_size() > 100)
      return true;
    for (MachineBasicBlock::const_pred_iterator
         PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
      if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
        return true;
  }
  return false;
}

float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
                                    const MachineBlockFrequencyInfo *MBFI,
                                    const MachineInstr &MI) {
  BlockFrequency Freq = MBFI->getBlockFreq(MI.getParent());
  const float Scale = 1.0f / MBFI->getEntryFreq();
  return (isDef + isUse) * (Freq.getFrequency() * Scale);
}

LiveRange::Segment
LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr &startInst) {
  LiveInterval& Interval = createEmptyInterval(reg);
  VNInfo *VN = Interval.getNextValue(
      SlotIndex(getInstructionIndex(startInst).getRegSlot()),
      getVNInfoAllocator());
  LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
                       getMBBEndIdx(startInst.getParent()), VN);
  Interval.addSegment(S);

  return S;
}


//===----------------------------------------------------------------------===//
//                          Register mask functions
//===----------------------------------------------------------------------===//

bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
                                             BitVector &UsableRegs) {
  if (LI.empty())
    return false;
  LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();

  // Use a smaller arrays for local live ranges.
  ArrayRef<SlotIndex> Slots;
  ArrayRef<const uint32_t*> Bits;
  if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
    Slots = getRegMaskSlotsInBlock(MBB->getNumber());
    Bits = getRegMaskBitsInBlock(MBB->getNumber());
  } else {
    Slots = getRegMaskSlots();
    Bits = getRegMaskBits();
  }

  // We are going to enumerate all the register mask slots contained in LI.
  // Start with a binary search of RegMaskSlots to find a starting point.
  ArrayRef<SlotIndex>::iterator SlotI =
    std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();

  // No slots in range, LI begins after the last call.
  if (SlotI == SlotE)
    return false;

  bool Found = false;
  for (;;) {
    assert(*SlotI >= LiveI->start);
    // Loop over all slots overlapping this segment.
    while (*SlotI < LiveI->end) {
      // *SlotI overlaps LI. Collect mask bits.
      if (!Found) {
        // This is the first overlap. Initialize UsableRegs to all ones.
        UsableRegs.clear();
        UsableRegs.resize(TRI->getNumRegs(), true);
        Found = true;
      }
      // Remove usable registers clobbered by this mask.
      UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
      if (++SlotI == SlotE)
        return Found;
    }
    // *SlotI is beyond the current LI segment.
    LiveI = LI.advanceTo(LiveI, *SlotI);
    if (LiveI == LiveE)
      return Found;
    // Advance SlotI until it overlaps.
    while (*SlotI < LiveI->start)
      if (++SlotI == SlotE)
        return Found;
  }
}

//===----------------------------------------------------------------------===//
//                         IntervalUpdate class.
//===----------------------------------------------------------------------===//

// HMEditor is a toolkit used by handleMove to trim or extend live intervals.
class LiveIntervals::HMEditor {
private:
  LiveIntervals& LIS;
  const MachineRegisterInfo& MRI;
  const TargetRegisterInfo& TRI;
  SlotIndex OldIdx;
  SlotIndex NewIdx;
  SmallPtrSet<LiveRange*, 8> Updated;
  bool UpdateFlags;

public:
  HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
           const TargetRegisterInfo& TRI,
           SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
    : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
      UpdateFlags(UpdateFlags) {}

  // FIXME: UpdateFlags is a workaround that creates live intervals for all
  // physregs, even those that aren't needed for regalloc, in order to update
  // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
  // flags, and postRA passes will use a live register utility instead.
  LiveRange *getRegUnitLI(unsigned Unit) {
    if (UpdateFlags)
      return &LIS.getRegUnit(Unit);
    return LIS.getCachedRegUnit(Unit);
  }

  /// Update all live ranges touched by MI, assuming a move from OldIdx to
  /// NewIdx.
  void updateAllRanges(MachineInstr *MI) {
    DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
    bool hasRegMask = false;
    for (MachineOperand &MO : MI->operands()) {
      if (MO.isRegMask())
        hasRegMask = true;
      if (!MO.isReg())
        continue;
      if (MO.isUse()) {
        if (!MO.readsReg())
          continue;
        // Aggressively clear all kill flags.
        // They are reinserted by VirtRegRewriter.
        MO.setIsKill(false);
      }

      unsigned Reg = MO.getReg();
      if (!Reg)
        continue;
      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
        LiveInterval &LI = LIS.getInterval(Reg);
        if (LI.hasSubRanges()) {
          unsigned SubReg = MO.getSubReg();
          LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
          for (LiveInterval::SubRange &S : LI.subranges()) {
            if ((S.LaneMask & LaneMask) == 0)
              continue;
            updateRange(S, Reg, S.LaneMask);
          }
        }
        updateRange(LI, Reg, 0);
        continue;
      }

      // For physregs, only update the regunits that actually have a
      // precomputed live range.
      for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
        if (LiveRange *LR = getRegUnitLI(*Units))
          updateRange(*LR, *Units, 0);
    }
    if (hasRegMask)
      updateRegMaskSlots();
  }

private:
  /// Update a single live range, assuming an instruction has been moved from
  /// OldIdx to NewIdx.
  void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
    if (!Updated.insert(&LR).second)
      return;
    DEBUG({
      dbgs() << "     ";
      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
        dbgs() << PrintReg(Reg);
        if (LaneMask != 0)
          dbgs() << " L" << PrintLaneMask(LaneMask);
      } else {
        dbgs() << PrintRegUnit(Reg, &TRI);
      }
      dbgs() << ":\t" << LR << '\n';
    });
    if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
      handleMoveDown(LR);
    else
      handleMoveUp(LR, Reg, LaneMask);
    DEBUG(dbgs() << "        -->\t" << LR << '\n');
    LR.verify();
  }

  /// Update LR to reflect an instruction has been moved downwards from OldIdx
  /// to NewIdx (OldIdx < NewIdx).
  void handleMoveDown(LiveRange &LR) {
    LiveRange::iterator E = LR.end();
    // Segment going into OldIdx.
    LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());

    // No value live before or after OldIdx? Nothing to do.
    if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
      return;

    LiveRange::iterator OldIdxOut;
    // Do we have a value live-in to OldIdx?
    if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
      // If the live-in value already extends to NewIdx, there is nothing to do.
      if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
        return;
      // Aggressively remove all kill flags from the old kill point.
      // Kill flags shouldn't be used while live intervals exist, they will be
      // reinserted by VirtRegRewriter.
      if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
        for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
          if (MO->isReg() && MO->isUse())
            MO->setIsKill(false);

      // Is there a def before NewIdx which is not OldIdx?
      LiveRange::iterator Next = std::next(OldIdxIn);
      if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
          SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
        // If we are here then OldIdx was just a use but not a def. We only have
        // to ensure liveness extends to NewIdx.
        LiveRange::iterator NewIdxIn =
          LR.advanceTo(Next, NewIdx.getBaseIndex());
        // Extend the segment before NewIdx if necessary.
        if (NewIdxIn == E ||
            !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
          LiveRange::iterator Prev = std::prev(NewIdxIn);
          Prev->end = NewIdx.getRegSlot();
        }
        return;
      }

      // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
      // invalid by overlapping ranges.
      bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
      OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
      // If this was not a kill, then there was no def and we're done.
      if (!isKill)
        return;

      // Did we have a Def at OldIdx?
      OldIdxOut = Next;
      if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
        return;
    } else {
      OldIdxOut = OldIdxIn;
    }

    // If we are here then there is a Definition at OldIdx. OldIdxOut points
    // to the segment starting there.
    assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
           "No def?");
    VNInfo *OldIdxVNI = OldIdxOut->valno;
    assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");

    // If the defined value extends beyond NewIdx, just move the beginning
    // of the segment to NewIdx.
    SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
    if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
      OldIdxVNI->def = NewIdxDef;
      OldIdxOut->start = OldIdxVNI->def;
      return;
    }

    // If we are here then we have a Definition at OldIdx which ends before
    // NewIdx.

    // Is there an existing Def at NewIdx?
    LiveRange::iterator AfterNewIdx
      = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
    bool OldIdxDefIsDead = OldIdxOut->end.isDead();
    if (!OldIdxDefIsDead &&
        SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
      // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
      VNInfo *DefVNI;
      if (OldIdxOut != LR.begin() &&
          !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
                                     OldIdxOut->start)) {
        // There is no gap between OldIdxOut and its predecessor anymore,
        // merge them.
        LiveRange::iterator IPrev = std::prev(OldIdxOut);
        DefVNI = OldIdxVNI;
        IPrev->end = OldIdxOut->end;
      } else {
        // The value is live in to OldIdx
        LiveRange::iterator INext = std::next(OldIdxOut);
        assert(INext != E && "Must have following segment");
        // We merge OldIdxOut and its successor. As we're dealing with subreg
        // reordering, there is always a successor to OldIdxOut in the same BB
        // We don't need INext->valno anymore and will reuse for the new segment
        // we create later.
        DefVNI = OldIdxVNI;
        INext->start = OldIdxOut->end;
        INext->valno->def = INext->start;
      }
      // If NewIdx is behind the last segment, extend that and append a new one.
      if (AfterNewIdx == E) {
        // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
        // one position.
        //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
        // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
        std::copy(std::next(OldIdxOut), E, OldIdxOut);
        // The last segment is undefined now, reuse it for a dead def.
        LiveRange::iterator NewSegment = std::prev(E);
        *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
                                         DefVNI);
        DefVNI->def = NewIdxDef;

        LiveRange::iterator Prev = std::prev(NewSegment);
        Prev->end = NewIdxDef;
      } else {
        // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
        // one position.
        //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
        // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
        std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
        LiveRange::iterator Prev = std::prev(AfterNewIdx);
        // We have two cases:
        if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
          // Case 1: NewIdx is inside a liverange. Split this liverange at
          // NewIdxDef into the segment "Prev" followed by "NewSegment".
          LiveRange::iterator NewSegment = AfterNewIdx;
          *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
          Prev->valno->def = NewIdxDef;

          *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
          DefVNI->def = Prev->start;
        } else {
          // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
          // turn Prev into a segment from NewIdx to AfterNewIdx->start.
          *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
          DefVNI->def = NewIdxDef;
          assert(DefVNI != AfterNewIdx->valno);
        }
      }
      return;
    }

    if (AfterNewIdx != E &&
        SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
      // There is an existing def at NewIdx. The def at OldIdx is coalesced into
      // that value.
      assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
      LR.removeValNo(OldIdxVNI);
    } else {
      // There was no existing def at NewIdx. We need to create a dead def
      // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
      // a new segment at the place where we want to construct the dead def.
      //    |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
      // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
      assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
      std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
      // We can reuse OldIdxVNI now.
      LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
      VNInfo *NewSegmentVNI = OldIdxVNI;
      NewSegmentVNI->def = NewIdxDef;
      *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
                                       NewSegmentVNI);
    }
  }

  /// Update LR to reflect an instruction has been moved upwards from OldIdx
  /// to NewIdx (NewIdx < OldIdx).
  void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
    LiveRange::iterator E = LR.end();
    // Segment going into OldIdx.
    LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());

    // No value live before or after OldIdx? Nothing to do.
    if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
      return;

    LiveRange::iterator OldIdxOut;
    // Do we have a value live-in to OldIdx?
    if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
      // If the live-in value isn't killed here, then we have no Def at
      // OldIdx, moreover the value must be live at NewIdx so there is nothing
      // to do.
      bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
      if (!isKill)
        return;

      // At this point we have to move OldIdxIn->end back to the nearest
      // previous use or (dead-)def but no further than NewIdx.
      SlotIndex DefBeforeOldIdx
        = std::max(OldIdxIn->start.getDeadSlot(),
                   NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
      OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);

      // Did we have a Def at OldIdx? If not we are done now.
      OldIdxOut = std::next(OldIdxIn);
      if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
        return;
    } else {
      OldIdxOut = OldIdxIn;
      OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
    }

    // If we are here then there is a Definition at OldIdx. OldIdxOut points
    // to the segment starting there.
    assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
           "No def?");
    VNInfo *OldIdxVNI = OldIdxOut->valno;
    assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
    bool OldIdxDefIsDead = OldIdxOut->end.isDead();

    // Is there an existing def at NewIdx?
    SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
    LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
    if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
      assert(NewIdxOut->valno != OldIdxVNI &&
             "Same value defined more than once?");
      // If OldIdx was a dead def remove it.
      if (!OldIdxDefIsDead) {
        // Remove segment starting at NewIdx and move begin of OldIdxOut to
        // NewIdx so it can take its place.
        OldIdxVNI->def = NewIdxDef;
        OldIdxOut->start = NewIdxDef;
        LR.removeValNo(NewIdxOut->valno);
      } else {
        // Simply remove the dead def at OldIdx.
        LR.removeValNo(OldIdxVNI);
      }
    } else {
      // Previously nothing was live after NewIdx, so all we have to do now is
      // move the begin of OldIdxOut to NewIdx.
      if (!OldIdxDefIsDead) {
        // Do we have any intermediate Defs between OldIdx and NewIdx?
        if (OldIdxIn != E &&
            SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
          // OldIdx is not a dead def and NewIdx is before predecessor start.
          LiveRange::iterator NewIdxIn = NewIdxOut;
          assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
          const SlotIndex SplitPos = NewIdxDef;

          // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
          *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
                                          OldIdxIn->valno);
          // OldIdxIn and OldIdxVNI are now undef and can be overridden.
          // We Slide [NewIdxIn, OldIdxIn) down one position.
          //    |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
          // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
          std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
          // NewIdxIn is now considered undef so we can reuse it for the moved
          // value.
          LiveRange::iterator NewSegment = NewIdxIn;
          LiveRange::iterator Next = std::next(NewSegment);
          NewSegment->valno = OldIdxVNI;
          if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
            // There is no gap between NewSegment and its predecessor.
            *NewSegment = LiveRange::Segment(Next->start, SplitPos,
                                             NewSegment->valno);
            NewSegment->valno->def = Next->start;

            *Next = LiveRange::Segment(SplitPos, Next->end, Next->valno);
            Next->valno->def = SplitPos;
          } else {
            // There is a gap between NewSegment and its predecessor
            // Value becomes live in.
            *NewSegment = LiveRange::Segment(SplitPos, Next->start,
                                             NewSegment->valno);
            NewSegment->valno->def = SplitPos;
          }
        } else {
          // Leave the end point of a live def.
          OldIdxOut->start = NewIdxDef;
          OldIdxVNI->def = NewIdxDef;
          if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
            OldIdxIn->end = NewIdx.getRegSlot();
        }
      } else {
        // OldIdxVNI is a dead def. It may have been moved across other values
        // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
        // down one position.
        //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
        // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
        std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
        // OldIdxVNI can be reused now to build a new dead def segment.
        LiveRange::iterator NewSegment = NewIdxOut;
        VNInfo *NewSegmentVNI = OldIdxVNI;
        *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
                                         NewSegmentVNI);
        NewSegmentVNI->def = NewIdxDef;
      }
    }
  }

  void updateRegMaskSlots() {
    SmallVectorImpl<SlotIndex>::iterator RI =
      std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
                       OldIdx);
    assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
           "No RegMask at OldIdx.");
    *RI = NewIdx.getRegSlot();
    assert((RI == LIS.RegMaskSlots.begin() ||
            SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
           "Cannot move regmask instruction above another call");
    assert((std::next(RI) == LIS.RegMaskSlots.end() ||
            SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
           "Cannot move regmask instruction below another call");
  }

  // Return the last use of reg between NewIdx and OldIdx.
  SlotIndex findLastUseBefore(SlotIndex Before, unsigned Reg,
                              LaneBitmask LaneMask) {
    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
      SlotIndex LastUse = Before;
      for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
        unsigned SubReg = MO.getSubReg();
        if (SubReg != 0 && LaneMask != 0
            && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask) == 0)
          continue;

        const MachineInstr &MI = *MO.getParent();
        SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
        if (InstSlot > LastUse && InstSlot < OldIdx)
          LastUse = InstSlot.getRegSlot();
      }
      return LastUse;
    }

    // This is a regunit interval, so scanning the use list could be very
    // expensive. Scan upwards from OldIdx instead.
    assert(Before < OldIdx && "Expected upwards move");
    SlotIndexes *Indexes = LIS.getSlotIndexes();
    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);

    // OldIdx may not correspond to an instruction any longer, so set MII to
    // point to the next instruction after OldIdx, or MBB->end().
    MachineBasicBlock::iterator MII = MBB->end();
    if (MachineInstr *MI = Indexes->getInstructionFromIndex(
                           Indexes->getNextNonNullIndex(OldIdx)))
      if (MI->getParent() == MBB)
        MII = MI;

    MachineBasicBlock::iterator Begin = MBB->begin();
    while (MII != Begin) {
      if ((--MII)->isDebugValue())
        continue;
      SlotIndex Idx = Indexes->getInstructionIndex(*MII);

      // Stop searching when Before is reached.
      if (!SlotIndex::isEarlierInstr(Before, Idx))
        return Before;

      // Check if MII uses Reg.
      for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
        if (MO->isReg() &&
            TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
            TRI.hasRegUnit(MO->getReg(), Reg))
          return Idx.getRegSlot();
    }
    // Didn't reach Before. It must be the first instruction in the block.
    return Before;
  }
};

void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
  assert(!MI.isBundled() && "Can't handle bundled instructions yet.");
  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
  Indexes->removeMachineInstrFromMaps(MI);
  SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
  assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
         OldIndex < getMBBEndIdx(MI.getParent()) &&
         "Cannot handle moves across basic block boundaries.");

  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
  HME.updateAllRanges(&MI);
}

void LiveIntervals::handleMoveIntoBundle(MachineInstr &MI,
                                         MachineInstr &BundleStart,
                                         bool UpdateFlags) {
  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
  SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
  HME.updateAllRanges(&MI);
}

void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
                                        const MachineBasicBlock::iterator End,
                                        const SlotIndex endIdx,
                                        LiveRange &LR, const unsigned Reg,
                                        LaneBitmask LaneMask) {
  LiveInterval::iterator LII = LR.find(endIdx);
  SlotIndex lastUseIdx;
  if (LII != LR.end() && LII->start < endIdx)
    lastUseIdx = LII->end;
  else
    --LII;

  for (MachineBasicBlock::iterator I = End; I != Begin;) {
    --I;
    MachineInstr &MI = *I;
    if (MI.isDebugValue())
      continue;

    SlotIndex instrIdx = getInstructionIndex(MI);
    bool isStartValid = getInstructionFromIndex(LII->start);
    bool isEndValid = getInstructionFromIndex(LII->end);

    // FIXME: This doesn't currently handle early-clobber or multiple removed
    // defs inside of the region to repair.
    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
                                    OE = MI.operands_end();
         OI != OE; ++OI) {
      const MachineOperand &MO = *OI;
      if (!MO.isReg() || MO.getReg() != Reg)
        continue;

      unsigned SubReg = MO.getSubReg();
      LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
      if ((Mask & LaneMask) == 0)
        continue;

      if (MO.isDef()) {
        if (!isStartValid) {
          if (LII->end.isDead()) {
            SlotIndex prevStart;
            if (LII != LR.begin())
              prevStart = std::prev(LII)->start;

            // FIXME: This could be more efficient if there was a
            // removeSegment method that returned an iterator.
            LR.removeSegment(*LII, true);
            if (prevStart.isValid())
              LII = LR.find(prevStart);
            else
              LII = LR.begin();
          } else {
            LII->start = instrIdx.getRegSlot();
            LII->valno->def = instrIdx.getRegSlot();
            if (MO.getSubReg() && !MO.isUndef())
              lastUseIdx = instrIdx.getRegSlot();
            else
              lastUseIdx = SlotIndex();
            continue;
          }
        }

        if (!lastUseIdx.isValid()) {
          VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
          LiveRange::Segment S(instrIdx.getRegSlot(),
                               instrIdx.getDeadSlot(), VNI);
          LII = LR.addSegment(S);
        } else if (LII->start != instrIdx.getRegSlot()) {
          VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
          LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
          LII = LR.addSegment(S);
        }

        if (MO.getSubReg() && !MO.isUndef())
          lastUseIdx = instrIdx.getRegSlot();
        else
          lastUseIdx = SlotIndex();
      } else if (MO.isUse()) {
        // FIXME: This should probably be handled outside of this branch,
        // either as part of the def case (for defs inside of the region) or
        // after the loop over the region.
        if (!isEndValid && !LII->end.isBlock())
          LII->end = instrIdx.getRegSlot();
        if (!lastUseIdx.isValid())
          lastUseIdx = instrIdx.getRegSlot();
      }
    }
  }
}

void
LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
                                      MachineBasicBlock::iterator Begin,
                                      MachineBasicBlock::iterator End,
                                      ArrayRef<unsigned> OrigRegs) {
  // Find anchor points, which are at the beginning/end of blocks or at
  // instructions that already have indexes.
  while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin))
    --Begin;
  while (End != MBB->end() && !Indexes->hasIndex(*End))
    ++End;

  SlotIndex endIdx;
  if (End == MBB->end())
    endIdx = getMBBEndIdx(MBB).getPrevSlot();
  else
    endIdx = getInstructionIndex(*End);

  Indexes->repairIndexesInRange(MBB, *Begin, *End);

  for (MachineBasicBlock::iterator I = End; I != Begin;) {
    --I;
    MachineInstr &MI = *I;
    if (MI.isDebugValue())
      continue;
    for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
                                          MOE = MI.operands_end();
         MOI != MOE; ++MOI) {
      if (MOI->isReg() &&
          TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
          !hasInterval(MOI->getReg())) {
        createAndComputeVirtRegInterval(MOI->getReg());
      }
    }
  }

  for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
    unsigned Reg = OrigRegs[i];
    if (!TargetRegisterInfo::isVirtualRegister(Reg))
      continue;

    LiveInterval &LI = getInterval(Reg);
    // FIXME: Should we support undefs that gain defs?
    if (!LI.hasAtLeastOneValue())
      continue;

    for (LiveInterval::SubRange &S : LI.subranges()) {
      repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
    }
    repairOldRegInRange(Begin, End, endIdx, LI, Reg);
  }
}

void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
  for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
    if (LiveRange *LR = getCachedRegUnit(*Units))
      if (VNInfo *VNI = LR->getVNInfoAt(Pos))
        LR->removeValNo(VNI);
  }
}

void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
  VNInfo *VNI = LI.getVNInfoAt(Pos);
  if (VNI == nullptr)
    return;
  LI.removeValNo(VNI);

  // Also remove the value in subranges.
  for (LiveInterval::SubRange &S : LI.subranges()) {
    if (VNInfo *SVNI = S.getVNInfoAt(Pos))
      S.removeValNo(SVNI);
  }
  LI.removeEmptySubRanges();
}

void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
    SmallVectorImpl<LiveInterval*> &SplitLIs) {
  ConnectedVNInfoEqClasses ConEQ(*this);
  unsigned NumComp = ConEQ.Classify(LI);
  if (NumComp <= 1)
    return;
  DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
  unsigned Reg = LI.reg;
  const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
  for (unsigned I = 1; I < NumComp; ++I) {
    unsigned NewVReg = MRI->createVirtualRegister(RegClass);
    LiveInterval &NewLI = createEmptyInterval(NewVReg);
    SplitLIs.push_back(&NewLI);
  }
  ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
}

void LiveIntervals::renameDisconnectedComponents() {
  ConnectedSubRegClasses SubRegClasses(*this, *MRI, *TII);

  // Iterate over all vregs. Note that we query getNumVirtRegs() the newly
  // created vregs end up with higher numbers but do not need to be visited as
  // there can't be any further splitting.
  for (size_t I = 0, E = MRI->getNumVirtRegs(); I < E; ++I) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
    LiveInterval *LI = VirtRegIntervals[Reg];
    if (LI == nullptr || !LI->hasSubRanges())
      continue;

    SubRegClasses.renameComponents(*LI);
  }
}

void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
  assert(LRCalc && "LRCalc not initialized.");
  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
  LRCalc->constructMainRangeFromSubranges(LI);
}