summaryrefslogtreecommitdiff
path: root/fs/udf/balloc.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/udf/balloc.c
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'fs/udf/balloc.c')
-rw-r--r--fs/udf/balloc.c959
1 files changed, 959 insertions, 0 deletions
diff --git a/fs/udf/balloc.c b/fs/udf/balloc.c
new file mode 100644
index 000000000000..b9ded26b10a9
--- /dev/null
+++ b/fs/udf/balloc.c
@@ -0,0 +1,959 @@
+/*
+ * balloc.c
+ *
+ * PURPOSE
+ * Block allocation handling routines for the OSTA-UDF(tm) filesystem.
+ *
+ * CONTACTS
+ * E-mail regarding any portion of the Linux UDF file system should be
+ * directed to the development team mailing list (run by majordomo):
+ * linux_udf@hpesjro.fc.hp.com
+ *
+ * COPYRIGHT
+ * This file is distributed under the terms of the GNU General Public
+ * License (GPL). Copies of the GPL can be obtained from:
+ * ftp://prep.ai.mit.edu/pub/gnu/GPL
+ * Each contributing author retains all rights to their own work.
+ *
+ * (C) 1999-2001 Ben Fennema
+ * (C) 1999 Stelias Computing Inc
+ *
+ * HISTORY
+ *
+ * 02/24/99 blf Created.
+ *
+ */
+
+#include "udfdecl.h"
+
+#include <linux/quotaops.h>
+#include <linux/buffer_head.h>
+#include <linux/bitops.h>
+
+#include "udf_i.h"
+#include "udf_sb.h"
+
+#define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr)
+#define udf_set_bit(nr,addr) ext2_set_bit(nr,addr)
+#define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
+#define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
+#define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset)
+
+#define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
+#define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y)
+#define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y))
+#define uintBPL_t uint(BITS_PER_LONG)
+#define uint(x) xuint(x)
+#define xuint(x) __le ## x
+
+extern inline int find_next_one_bit (void * addr, int size, int offset)
+{
+ uintBPL_t * p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG);
+ int result = offset & ~(BITS_PER_LONG-1);
+ unsigned long tmp;
+
+ if (offset >= size)
+ return size;
+ size -= result;
+ offset &= (BITS_PER_LONG-1);
+ if (offset)
+ {
+ tmp = leBPL_to_cpup(p++);
+ tmp &= ~0UL << offset;
+ if (size < BITS_PER_LONG)
+ goto found_first;
+ if (tmp)
+ goto found_middle;
+ size -= BITS_PER_LONG;
+ result += BITS_PER_LONG;
+ }
+ while (size & ~(BITS_PER_LONG-1))
+ {
+ if ((tmp = leBPL_to_cpup(p++)))
+ goto found_middle;
+ result += BITS_PER_LONG;
+ size -= BITS_PER_LONG;
+ }
+ if (!size)
+ return result;
+ tmp = leBPL_to_cpup(p);
+found_first:
+ tmp &= ~0UL >> (BITS_PER_LONG-size);
+found_middle:
+ return result + ffz(~tmp);
+}
+
+#define find_first_one_bit(addr, size)\
+ find_next_one_bit((addr), (size), 0)
+
+static int read_block_bitmap(struct super_block * sb,
+ struct udf_bitmap *bitmap, unsigned int block, unsigned long bitmap_nr)
+{
+ struct buffer_head *bh = NULL;
+ int retval = 0;
+ kernel_lb_addr loc;
+
+ loc.logicalBlockNum = bitmap->s_extPosition;
+ loc.partitionReferenceNum = UDF_SB_PARTITION(sb);
+
+ bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block));
+ if (!bh)
+ {
+ retval = -EIO;
+ }
+ bitmap->s_block_bitmap[bitmap_nr] = bh;
+ return retval;
+}
+
+static int __load_block_bitmap(struct super_block * sb,
+ struct udf_bitmap *bitmap, unsigned int block_group)
+{
+ int retval = 0;
+ int nr_groups = bitmap->s_nr_groups;
+
+ if (block_group >= nr_groups)
+ {
+ udf_debug("block_group (%d) > nr_groups (%d)\n", block_group, nr_groups);
+ }
+
+ if (bitmap->s_block_bitmap[block_group])
+ return block_group;
+ else
+ {
+ retval = read_block_bitmap(sb, bitmap, block_group, block_group);
+ if (retval < 0)
+ return retval;
+ return block_group;
+ }
+}
+
+static inline int load_block_bitmap(struct super_block * sb,
+ struct udf_bitmap *bitmap, unsigned int block_group)
+{
+ int slot;
+
+ slot = __load_block_bitmap(sb, bitmap, block_group);
+
+ if (slot < 0)
+ return slot;
+
+ if (!bitmap->s_block_bitmap[slot])
+ return -EIO;
+
+ return slot;
+}
+
+static void udf_bitmap_free_blocks(struct super_block * sb,
+ struct inode * inode,
+ struct udf_bitmap *bitmap,
+ kernel_lb_addr bloc, uint32_t offset, uint32_t count)
+{
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ struct buffer_head * bh = NULL;
+ unsigned long block;
+ unsigned long block_group;
+ unsigned long bit;
+ unsigned long i;
+ int bitmap_nr;
+ unsigned long overflow;
+
+ down(&sbi->s_alloc_sem);
+ if (bloc.logicalBlockNum < 0 ||
+ (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
+ {
+ udf_debug("%d < %d || %d + %d > %d\n",
+ bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
+ UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
+ goto error_return;
+ }
+
+ block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3);
+
+do_more:
+ overflow = 0;
+ block_group = block >> (sb->s_blocksize_bits + 3);
+ bit = block % (sb->s_blocksize << 3);
+
+ /*
+ * Check to see if we are freeing blocks across a group boundary.
+ */
+ if (bit + count > (sb->s_blocksize << 3))
+ {
+ overflow = bit + count - (sb->s_blocksize << 3);
+ count -= overflow;
+ }
+ bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
+ if (bitmap_nr < 0)
+ goto error_return;
+
+ bh = bitmap->s_block_bitmap[bitmap_nr];
+ for (i=0; i < count; i++)
+ {
+ if (udf_set_bit(bit + i, bh->b_data))
+ {
+ udf_debug("bit %ld already set\n", bit + i);
+ udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]);
+ }
+ else
+ {
+ if (inode)
+ DQUOT_FREE_BLOCK(inode, 1);
+ if (UDF_SB_LVIDBH(sb))
+ {
+ UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
+ cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+1);
+ }
+ }
+ }
+ mark_buffer_dirty(bh);
+ if (overflow)
+ {
+ block += count;
+ count = overflow;
+ goto do_more;
+ }
+error_return:
+ sb->s_dirt = 1;
+ if (UDF_SB_LVIDBH(sb))
+ mark_buffer_dirty(UDF_SB_LVIDBH(sb));
+ up(&sbi->s_alloc_sem);
+ return;
+}
+
+static int udf_bitmap_prealloc_blocks(struct super_block * sb,
+ struct inode * inode,
+ struct udf_bitmap *bitmap, uint16_t partition, uint32_t first_block,
+ uint32_t block_count)
+{
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ int alloc_count = 0;
+ int bit, block, block_group, group_start;
+ int nr_groups, bitmap_nr;
+ struct buffer_head *bh;
+
+ down(&sbi->s_alloc_sem);
+ if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
+ goto out;
+
+ if (first_block + block_count > UDF_SB_PARTLEN(sb, partition))
+ block_count = UDF_SB_PARTLEN(sb, partition) - first_block;
+
+repeat:
+ nr_groups = (UDF_SB_PARTLEN(sb, partition) +
+ (sizeof(struct spaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8);
+ block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
+ block_group = block >> (sb->s_blocksize_bits + 3);
+ group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
+
+ bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
+ if (bitmap_nr < 0)
+ goto out;
+ bh = bitmap->s_block_bitmap[bitmap_nr];
+
+ bit = block % (sb->s_blocksize << 3);
+
+ while (bit < (sb->s_blocksize << 3) && block_count > 0)
+ {
+ if (!udf_test_bit(bit, bh->b_data))
+ goto out;
+ else if (DQUOT_PREALLOC_BLOCK(inode, 1))
+ goto out;
+ else if (!udf_clear_bit(bit, bh->b_data))
+ {
+ udf_debug("bit already cleared for block %d\n", bit);
+ DQUOT_FREE_BLOCK(inode, 1);
+ goto out;
+ }
+ block_count --;
+ alloc_count ++;
+ bit ++;
+ block ++;
+ }
+ mark_buffer_dirty(bh);
+ if (block_count > 0)
+ goto repeat;
+out:
+ if (UDF_SB_LVIDBH(sb))
+ {
+ UDF_SB_LVID(sb)->freeSpaceTable[partition] =
+ cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
+ mark_buffer_dirty(UDF_SB_LVIDBH(sb));
+ }
+ sb->s_dirt = 1;
+ up(&sbi->s_alloc_sem);
+ return alloc_count;
+}
+
+static int udf_bitmap_new_block(struct super_block * sb,
+ struct inode * inode,
+ struct udf_bitmap *bitmap, uint16_t partition, uint32_t goal, int *err)
+{
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ int newbit, bit=0, block, block_group, group_start;
+ int end_goal, nr_groups, bitmap_nr, i;
+ struct buffer_head *bh = NULL;
+ char *ptr;
+ int newblock = 0;
+
+ *err = -ENOSPC;
+ down(&sbi->s_alloc_sem);
+
+repeat:
+ if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
+ goal = 0;
+
+ nr_groups = bitmap->s_nr_groups;
+ block = goal + (sizeof(struct spaceBitmapDesc) << 3);
+ block_group = block >> (sb->s_blocksize_bits + 3);
+ group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
+
+ bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
+ if (bitmap_nr < 0)
+ goto error_return;
+ bh = bitmap->s_block_bitmap[bitmap_nr];
+ ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
+
+ if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
+ {
+ bit = block % (sb->s_blocksize << 3);
+
+ if (udf_test_bit(bit, bh->b_data))
+ {
+ goto got_block;
+ }
+ end_goal = (bit + 63) & ~63;
+ bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
+ if (bit < end_goal)
+ goto got_block;
+ ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3));
+ newbit = (ptr - ((char *)bh->b_data)) << 3;
+ if (newbit < sb->s_blocksize << 3)
+ {
+ bit = newbit;
+ goto search_back;
+ }
+ newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit);
+ if (newbit < sb->s_blocksize << 3)
+ {
+ bit = newbit;
+ goto got_block;
+ }
+ }
+
+ for (i=0; i<(nr_groups*2); i++)
+ {
+ block_group ++;
+ if (block_group >= nr_groups)
+ block_group = 0;
+ group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
+
+ bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
+ if (bitmap_nr < 0)
+ goto error_return;
+ bh = bitmap->s_block_bitmap[bitmap_nr];
+ if (i < nr_groups)
+ {
+ ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
+ if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
+ {
+ bit = (ptr - ((char *)bh->b_data)) << 3;
+ break;
+ }
+ }
+ else
+ {
+ bit = udf_find_next_one_bit((char *)bh->b_data, sb->s_blocksize << 3, group_start << 3);
+ if (bit < sb->s_blocksize << 3)
+ break;
+ }
+ }
+ if (i >= (nr_groups*2))
+ {
+ up(&sbi->s_alloc_sem);
+ return newblock;
+ }
+ if (bit < sb->s_blocksize << 3)
+ goto search_back;
+ else
+ bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3);
+ if (bit >= sb->s_blocksize << 3)
+ {
+ up(&sbi->s_alloc_sem);
+ return 0;
+ }
+
+search_back:
+ for (i=0; i<7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--);
+
+got_block:
+
+ /*
+ * Check quota for allocation of this block.
+ */
+ if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
+ {
+ up(&sbi->s_alloc_sem);
+ *err = -EDQUOT;
+ return 0;
+ }
+
+ newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
+ (sizeof(struct spaceBitmapDesc) << 3);
+
+ if (!udf_clear_bit(bit, bh->b_data))
+ {
+ udf_debug("bit already cleared for block %d\n", bit);
+ goto repeat;
+ }
+
+ mark_buffer_dirty(bh);
+
+ if (UDF_SB_LVIDBH(sb))
+ {
+ UDF_SB_LVID(sb)->freeSpaceTable[partition] =
+ cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
+ mark_buffer_dirty(UDF_SB_LVIDBH(sb));
+ }
+ sb->s_dirt = 1;
+ up(&sbi->s_alloc_sem);
+ *err = 0;
+ return newblock;
+
+error_return:
+ *err = -EIO;
+ up(&sbi->s_alloc_sem);
+ return 0;
+}
+
+static void udf_table_free_blocks(struct super_block * sb,
+ struct inode * inode,
+ struct inode * table,
+ kernel_lb_addr bloc, uint32_t offset, uint32_t count)
+{
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ uint32_t start, end;
+ uint32_t nextoffset, oextoffset, elen;
+ kernel_lb_addr nbloc, obloc, eloc;
+ struct buffer_head *obh, *nbh;
+ int8_t etype;
+ int i;
+
+ down(&sbi->s_alloc_sem);
+ if (bloc.logicalBlockNum < 0 ||
+ (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
+ {
+ udf_debug("%d < %d || %d + %d > %d\n",
+ bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
+ UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
+ goto error_return;
+ }
+
+ /* We do this up front - There are some error conditions that could occure,
+ but.. oh well */
+ if (inode)
+ DQUOT_FREE_BLOCK(inode, count);
+ if (UDF_SB_LVIDBH(sb))
+ {
+ UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
+ cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+count);
+ mark_buffer_dirty(UDF_SB_LVIDBH(sb));
+ }
+
+ start = bloc.logicalBlockNum + offset;
+ end = bloc.logicalBlockNum + offset + count - 1;
+
+ oextoffset = nextoffset = sizeof(struct unallocSpaceEntry);
+ elen = 0;
+ obloc = nbloc = UDF_I_LOCATION(table);
+
+ obh = nbh = NULL;
+
+ while (count && (etype =
+ udf_next_aext(table, &nbloc, &nextoffset, &eloc, &elen, &nbh, 1)) != -1)
+ {
+ if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) ==
+ start))
+ {
+ if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
+ {
+ count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
+ start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
+ elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
+ }
+ else
+ {
+ elen = (etype << 30) |
+ (elen + (count << sb->s_blocksize_bits));
+ start += count;
+ count = 0;
+ }
+ udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1);
+ }
+ else if (eloc.logicalBlockNum == (end + 1))
+ {
+ if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
+ {
+ count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
+ end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
+ eloc.logicalBlockNum -=
+ ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
+ elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
+ }
+ else
+ {
+ eloc.logicalBlockNum = start;
+ elen = (etype << 30) |
+ (elen + (count << sb->s_blocksize_bits));
+ end -= count;
+ count = 0;
+ }
+ udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1);
+ }
+
+ if (nbh != obh)
+ {
+ i = -1;
+ obloc = nbloc;
+ udf_release_data(obh);
+ atomic_inc(&nbh->b_count);
+ obh = nbh;
+ oextoffset = 0;
+ }
+ else
+ oextoffset = nextoffset;
+ }
+
+ if (count)
+ {
+ /* NOTE: we CANNOT use udf_add_aext here, as it can try to allocate
+ a new block, and since we hold the super block lock already
+ very bad things would happen :)
+
+ We copy the behavior of udf_add_aext, but instead of
+ trying to allocate a new block close to the existing one,
+ we just steal a block from the extent we are trying to add.
+
+ It would be nice if the blocks were close together, but it
+ isn't required.
+ */
+
+ int adsize;
+ short_ad *sad = NULL;
+ long_ad *lad = NULL;
+ struct allocExtDesc *aed;
+
+ eloc.logicalBlockNum = start;
+ elen = EXT_RECORDED_ALLOCATED |
+ (count << sb->s_blocksize_bits);
+
+ if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
+ adsize = sizeof(short_ad);
+ else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
+ adsize = sizeof(long_ad);
+ else
+ {
+ udf_release_data(obh);
+ udf_release_data(nbh);
+ goto error_return;
+ }
+
+ if (nextoffset + (2 * adsize) > sb->s_blocksize)
+ {
+ char *sptr, *dptr;
+ int loffset;
+
+ udf_release_data(obh);
+ obh = nbh;
+ obloc = nbloc;
+ oextoffset = nextoffset;
+
+ /* Steal a block from the extent being free'd */
+ nbloc.logicalBlockNum = eloc.logicalBlockNum;
+ eloc.logicalBlockNum ++;
+ elen -= sb->s_blocksize;
+
+ if (!(nbh = udf_tread(sb,
+ udf_get_lb_pblock(sb, nbloc, 0))))
+ {
+ udf_release_data(obh);
+ goto error_return;
+ }
+ aed = (struct allocExtDesc *)(nbh->b_data);
+ aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum);
+ if (nextoffset + adsize > sb->s_blocksize)
+ {
+ loffset = nextoffset;
+ aed->lengthAllocDescs = cpu_to_le32(adsize);
+ if (obh)
+ sptr = UDF_I_DATA(inode) + nextoffset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode) - adsize;
+ else
+ sptr = obh->b_data + nextoffset - adsize;
+ dptr = nbh->b_data + sizeof(struct allocExtDesc);
+ memcpy(dptr, sptr, adsize);
+ nextoffset = sizeof(struct allocExtDesc) + adsize;
+ }
+ else
+ {
+ loffset = nextoffset + adsize;
+ aed->lengthAllocDescs = cpu_to_le32(0);
+ sptr = (obh)->b_data + nextoffset;
+ nextoffset = sizeof(struct allocExtDesc);
+
+ if (obh)
+ {
+ aed = (struct allocExtDesc *)(obh)->b_data;
+ aed->lengthAllocDescs =
+ cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
+ }
+ else
+ {
+ UDF_I_LENALLOC(table) += adsize;
+ mark_inode_dirty(table);
+ }
+ }
+ if (UDF_SB_UDFREV(sb) >= 0x0200)
+ udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
+ nbloc.logicalBlockNum, sizeof(tag));
+ else
+ udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
+ nbloc.logicalBlockNum, sizeof(tag));
+ switch (UDF_I_ALLOCTYPE(table))
+ {
+ case ICBTAG_FLAG_AD_SHORT:
+ {
+ sad = (short_ad *)sptr;
+ sad->extLength = cpu_to_le32(
+ EXT_NEXT_EXTENT_ALLOCDECS |
+ sb->s_blocksize);
+ sad->extPosition = cpu_to_le32(nbloc.logicalBlockNum);
+ break;
+ }
+ case ICBTAG_FLAG_AD_LONG:
+ {
+ lad = (long_ad *)sptr;
+ lad->extLength = cpu_to_le32(
+ EXT_NEXT_EXTENT_ALLOCDECS |
+ sb->s_blocksize);
+ lad->extLocation = cpu_to_lelb(nbloc);
+ break;
+ }
+ }
+ if (obh)
+ {
+ udf_update_tag(obh->b_data, loffset);
+ mark_buffer_dirty(obh);
+ }
+ else
+ mark_inode_dirty(table);
+ }
+
+ if (elen) /* It's possible that stealing the block emptied the extent */
+ {
+ udf_write_aext(table, nbloc, &nextoffset, eloc, elen, nbh, 1);
+
+ if (!nbh)
+ {
+ UDF_I_LENALLOC(table) += adsize;
+ mark_inode_dirty(table);
+ }
+ else
+ {
+ aed = (struct allocExtDesc *)nbh->b_data;
+ aed->lengthAllocDescs =
+ cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
+ udf_update_tag(nbh->b_data, nextoffset);
+ mark_buffer_dirty(nbh);
+ }
+ }
+ }
+
+ udf_release_data(nbh);
+ udf_release_data(obh);
+
+error_return:
+ sb->s_dirt = 1;
+ up(&sbi->s_alloc_sem);
+ return;
+}
+
+static int udf_table_prealloc_blocks(struct super_block * sb,
+ struct inode * inode,
+ struct inode *table, uint16_t partition, uint32_t first_block,
+ uint32_t block_count)
+{
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ int alloc_count = 0;
+ uint32_t extoffset, elen, adsize;
+ kernel_lb_addr bloc, eloc;
+ struct buffer_head *bh;
+ int8_t etype = -1;
+
+ if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
+ return 0;
+
+ if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
+ adsize = sizeof(short_ad);
+ else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
+ adsize = sizeof(long_ad);
+ else
+ return 0;
+
+ down(&sbi->s_alloc_sem);
+ extoffset = sizeof(struct unallocSpaceEntry);
+ bloc = UDF_I_LOCATION(table);
+
+ bh = NULL;
+ eloc.logicalBlockNum = 0xFFFFFFFF;
+
+ while (first_block != eloc.logicalBlockNum && (etype =
+ udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1)
+ {
+ udf_debug("eloc=%d, elen=%d, first_block=%d\n",
+ eloc.logicalBlockNum, elen, first_block);
+ ; /* empty loop body */
+ }
+
+ if (first_block == eloc.logicalBlockNum)
+ {
+ extoffset -= adsize;
+
+ alloc_count = (elen >> sb->s_blocksize_bits);
+ if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count))
+ alloc_count = 0;
+ else if (alloc_count > block_count)
+ {
+ alloc_count = block_count;
+ eloc.logicalBlockNum += alloc_count;
+ elen -= (alloc_count << sb->s_blocksize_bits);
+ udf_write_aext(table, bloc, &extoffset, eloc, (etype << 30) | elen, bh, 1);
+ }
+ else
+ udf_delete_aext(table, bloc, extoffset, eloc, (etype << 30) | elen, bh);
+ }
+ else
+ alloc_count = 0;
+
+ udf_release_data(bh);
+
+ if (alloc_count && UDF_SB_LVIDBH(sb))
+ {
+ UDF_SB_LVID(sb)->freeSpaceTable[partition] =
+ cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
+ mark_buffer_dirty(UDF_SB_LVIDBH(sb));
+ sb->s_dirt = 1;
+ }
+ up(&sbi->s_alloc_sem);
+ return alloc_count;
+}
+
+static int udf_table_new_block(struct super_block * sb,
+ struct inode * inode,
+ struct inode *table, uint16_t partition, uint32_t goal, int *err)
+{
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
+ uint32_t newblock = 0, adsize;
+ uint32_t extoffset, goal_extoffset, elen, goal_elen = 0;
+ kernel_lb_addr bloc, goal_bloc, eloc, goal_eloc;
+ struct buffer_head *bh, *goal_bh;
+ int8_t etype;
+
+ *err = -ENOSPC;
+
+ if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
+ adsize = sizeof(short_ad);
+ else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
+ adsize = sizeof(long_ad);
+ else
+ return newblock;
+
+ down(&sbi->s_alloc_sem);
+ if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
+ goal = 0;
+
+ /* We search for the closest matching block to goal. If we find a exact hit,
+ we stop. Otherwise we keep going till we run out of extents.
+ We store the buffer_head, bloc, and extoffset of the current closest
+ match and use that when we are done.
+ */
+
+ extoffset = sizeof(struct unallocSpaceEntry);
+ bloc = UDF_I_LOCATION(table);
+
+ goal_bh = bh = NULL;
+
+ while (spread && (etype =
+ udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1)
+ {
+ if (goal >= eloc.logicalBlockNum)
+ {
+ if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits))
+ nspread = 0;
+ else
+ nspread = goal - eloc.logicalBlockNum -
+ (elen >> sb->s_blocksize_bits);
+ }
+ else
+ nspread = eloc.logicalBlockNum - goal;
+
+ if (nspread < spread)
+ {
+ spread = nspread;
+ if (goal_bh != bh)
+ {
+ udf_release_data(goal_bh);
+ goal_bh = bh;
+ atomic_inc(&goal_bh->b_count);
+ }
+ goal_bloc = bloc;
+ goal_extoffset = extoffset - adsize;
+ goal_eloc = eloc;
+ goal_elen = (etype << 30) | elen;
+ }
+ }
+
+ udf_release_data(bh);
+
+ if (spread == 0xFFFFFFFF)
+ {
+ udf_release_data(goal_bh);
+ up(&sbi->s_alloc_sem);
+ return 0;
+ }
+
+ /* Only allocate blocks from the beginning of the extent.
+ That way, we only delete (empty) extents, never have to insert an
+ extent because of splitting */
+ /* This works, but very poorly.... */
+
+ newblock = goal_eloc.logicalBlockNum;
+ goal_eloc.logicalBlockNum ++;
+ goal_elen -= sb->s_blocksize;
+
+ if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
+ {
+ udf_release_data(goal_bh);
+ up(&sbi->s_alloc_sem);
+ *err = -EDQUOT;
+ return 0;
+ }
+
+ if (goal_elen)
+ udf_write_aext(table, goal_bloc, &goal_extoffset, goal_eloc, goal_elen, goal_bh, 1);
+ else
+ udf_delete_aext(table, goal_bloc, goal_extoffset, goal_eloc, goal_elen, goal_bh);
+ udf_release_data(goal_bh);
+
+ if (UDF_SB_LVIDBH(sb))
+ {
+ UDF_SB_LVID(sb)->freeSpaceTable[partition] =
+ cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
+ mark_buffer_dirty(UDF_SB_LVIDBH(sb));
+ }
+
+ sb->s_dirt = 1;
+ up(&sbi->s_alloc_sem);
+ *err = 0;
+ return newblock;
+}
+
+inline void udf_free_blocks(struct super_block * sb,
+ struct inode * inode,
+ kernel_lb_addr bloc, uint32_t offset, uint32_t count)
+{
+ uint16_t partition = bloc.partitionReferenceNum;
+
+ if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
+ {
+ return udf_bitmap_free_blocks(sb, inode,
+ UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
+ bloc, offset, count);
+ }
+ else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
+ {
+ return udf_table_free_blocks(sb, inode,
+ UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
+ bloc, offset, count);
+ }
+ else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
+ {
+ return udf_bitmap_free_blocks(sb, inode,
+ UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
+ bloc, offset, count);
+ }
+ else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
+ {
+ return udf_table_free_blocks(sb, inode,
+ UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
+ bloc, offset, count);
+ }
+ else
+ return;
+}
+
+inline int udf_prealloc_blocks(struct super_block * sb,
+ struct inode * inode,
+ uint16_t partition, uint32_t first_block, uint32_t block_count)
+{
+ if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
+ {
+ return udf_bitmap_prealloc_blocks(sb, inode,
+ UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
+ partition, first_block, block_count);
+ }
+ else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
+ {
+ return udf_table_prealloc_blocks(sb, inode,
+ UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
+ partition, first_block, block_count);
+ }
+ else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
+ {
+ return udf_bitmap_prealloc_blocks(sb, inode,
+ UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
+ partition, first_block, block_count);
+ }
+ else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
+ {
+ return udf_table_prealloc_blocks(sb, inode,
+ UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
+ partition, first_block, block_count);
+ }
+ else
+ return 0;
+}
+
+inline int udf_new_block(struct super_block * sb,
+ struct inode * inode,
+ uint16_t partition, uint32_t goal, int *err)
+{
+ if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
+ {
+ return udf_bitmap_new_block(sb, inode,
+ UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
+ partition, goal, err);
+ }
+ else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
+ {
+ return udf_table_new_block(sb, inode,
+ UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
+ partition, goal, err);
+ }
+ else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
+ {
+ return udf_bitmap_new_block(sb, inode,
+ UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
+ partition, goal, err);
+ }
+ else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
+ {
+ return udf_table_new_block(sb, inode,
+ UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
+ partition, goal, err);
+ }
+ else
+ {
+ *err = -EIO;
+ return 0;
+ }
+}