1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
/*
* Copyright (c) 1995 Danny Gasparovski.
*
* Please read the file COPYRIGHT for the
* terms and conditions of the copyright.
*/
#include "qemu/osdep.h"
#include <slirp.h>
#include <libslirp.h>
#include "monitor/monitor.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#ifdef DEBUG
int slirp_debug = DBG_CALL|DBG_MISC|DBG_ERROR;
#endif
inline void
insque(void *a, void *b)
{
register struct quehead *element = (struct quehead *) a;
register struct quehead *head = (struct quehead *) b;
element->qh_link = head->qh_link;
head->qh_link = (struct quehead *)element;
element->qh_rlink = (struct quehead *)head;
((struct quehead *)(element->qh_link))->qh_rlink
= (struct quehead *)element;
}
inline void
remque(void *a)
{
register struct quehead *element = (struct quehead *) a;
((struct quehead *)(element->qh_link))->qh_rlink = element->qh_rlink;
((struct quehead *)(element->qh_rlink))->qh_link = element->qh_link;
element->qh_rlink = NULL;
}
int add_exec(struct ex_list **ex_ptr, int do_pty, char *exec,
struct in_addr addr, int port)
{
struct ex_list *tmp_ptr;
/* First, check if the port is "bound" */
for (tmp_ptr = *ex_ptr; tmp_ptr; tmp_ptr = tmp_ptr->ex_next) {
if (port == tmp_ptr->ex_fport &&
addr.s_addr == tmp_ptr->ex_addr.s_addr)
return -1;
}
tmp_ptr = *ex_ptr;
*ex_ptr = g_new(struct ex_list, 1);
(*ex_ptr)->ex_fport = port;
(*ex_ptr)->ex_addr = addr;
(*ex_ptr)->ex_pty = do_pty;
(*ex_ptr)->ex_exec = (do_pty == 3) ? exec : g_strdup(exec);
(*ex_ptr)->ex_next = tmp_ptr;
return 0;
}
#ifdef _WIN32
int
fork_exec(struct socket *so, const char *ex, int do_pty)
{
/* not implemented */
return 0;
}
#else
/*
* XXX This is ugly
* We create and bind a socket, then fork off to another
* process, which connects to this socket, after which we
* exec the wanted program. If something (strange) happens,
* the accept() call could block us forever.
*
* do_pty = 0 Fork/exec inetd style
* do_pty = 1 Fork/exec using slirp.telnetd
* do_ptr = 2 Fork/exec using pty
*/
int
fork_exec(struct socket *so, const char *ex, int do_pty)
{
int s;
struct sockaddr_in addr;
socklen_t addrlen = sizeof(addr);
int opt;
const char *argv[256];
/* don't want to clobber the original */
char *bptr;
const char *curarg;
int c, i, ret;
pid_t pid;
DEBUG_CALL("fork_exec");
DEBUG_ARG("so = %p", so);
DEBUG_ARG("ex = %p", ex);
DEBUG_ARG("do_pty = %x", do_pty);
if (do_pty == 2) {
return 0;
} else {
addr.sin_family = AF_INET;
addr.sin_port = 0;
addr.sin_addr.s_addr = INADDR_ANY;
if ((s = qemu_socket(AF_INET, SOCK_STREAM, 0)) < 0 ||
bind(s, (struct sockaddr *)&addr, addrlen) < 0 ||
listen(s, 1) < 0) {
error_report("Error: inet socket: %s", strerror(errno));
closesocket(s);
return 0;
}
}
pid = fork();
switch(pid) {
case -1:
error_report("Error: fork failed: %s", strerror(errno));
close(s);
return 0;
case 0:
setsid();
/* Set the DISPLAY */
getsockname(s, (struct sockaddr *)&addr, &addrlen);
close(s);
/*
* Connect to the socket
* XXX If any of these fail, we're in trouble!
*/
s = qemu_socket(AF_INET, SOCK_STREAM, 0);
addr.sin_addr = loopback_addr;
do {
ret = connect(s, (struct sockaddr *)&addr, addrlen);
} while (ret < 0 && errno == EINTR);
dup2(s, 0);
dup2(s, 1);
dup2(s, 2);
for (s = getdtablesize() - 1; s >= 3; s--)
close(s);
i = 0;
bptr = g_strdup(ex); /* No need to free() this */
if (do_pty == 1) {
/* Setup "slirp.telnetd -x" */
argv[i++] = "slirp.telnetd";
argv[i++] = "-x";
argv[i++] = bptr;
} else
do {
/* Change the string into argv[] */
curarg = bptr;
while (*bptr != ' ' && *bptr != (char)0)
bptr++;
c = *bptr;
*bptr++ = (char)0;
argv[i++] = g_strdup(curarg);
} while (c);
argv[i] = NULL;
execvp(argv[0], (char **)argv);
/* Ooops, failed, let's tell the user why */
fprintf(stderr, "Error: execvp of %s failed: %s\n",
argv[0], strerror(errno));
close(0); close(1); close(2); /* XXX */
exit(1);
default:
qemu_add_child_watch(pid);
/*
* XXX this could block us...
* XXX Should set a timer here, and if accept() doesn't
* return after X seconds, declare it a failure
* The only reason this will block forever is if socket()
* of connect() fail in the child process
*/
do {
so->s = accept(s, (struct sockaddr *)&addr, &addrlen);
} while (so->s < 0 && errno == EINTR);
closesocket(s);
socket_set_fast_reuse(so->s);
opt = 1;
qemu_setsockopt(so->s, SOL_SOCKET, SO_OOBINLINE, &opt, sizeof(int));
qemu_set_nonblock(so->s);
/* Append the telnet options now */
if (so->so_m != NULL && do_pty == 1) {
sbappend(so, so->so_m);
so->so_m = NULL;
}
return 1;
}
}
#endif
void slirp_connection_info(Slirp *slirp, Monitor *mon)
{
const char * const tcpstates[] = {
[TCPS_CLOSED] = "CLOSED",
[TCPS_LISTEN] = "LISTEN",
[TCPS_SYN_SENT] = "SYN_SENT",
[TCPS_SYN_RECEIVED] = "SYN_RCVD",
[TCPS_ESTABLISHED] = "ESTABLISHED",
[TCPS_CLOSE_WAIT] = "CLOSE_WAIT",
[TCPS_FIN_WAIT_1] = "FIN_WAIT_1",
[TCPS_CLOSING] = "CLOSING",
[TCPS_LAST_ACK] = "LAST_ACK",
[TCPS_FIN_WAIT_2] = "FIN_WAIT_2",
[TCPS_TIME_WAIT] = "TIME_WAIT",
};
struct in_addr dst_addr;
struct sockaddr_in src;
socklen_t src_len;
uint16_t dst_port;
struct socket *so;
const char *state;
char buf[20];
monitor_printf(mon, " Protocol[State] FD Source Address Port "
"Dest. Address Port RecvQ SendQ\n");
for (so = slirp->tcb.so_next; so != &slirp->tcb; so = so->so_next) {
if (so->so_state & SS_HOSTFWD) {
state = "HOST_FORWARD";
} else if (so->so_tcpcb) {
state = tcpstates[so->so_tcpcb->t_state];
} else {
state = "NONE";
}
if (so->so_state & (SS_HOSTFWD | SS_INCOMING)) {
src_len = sizeof(src);
getsockname(so->s, (struct sockaddr *)&src, &src_len);
dst_addr = so->so_laddr;
dst_port = so->so_lport;
} else {
src.sin_addr = so->so_laddr;
src.sin_port = so->so_lport;
dst_addr = so->so_faddr;
dst_port = so->so_fport;
}
snprintf(buf, sizeof(buf), " TCP[%s]", state);
monitor_printf(mon, "%-19s %3d %15s %5d ", buf, so->s,
src.sin_addr.s_addr ? inet_ntoa(src.sin_addr) : "*",
ntohs(src.sin_port));
monitor_printf(mon, "%15s %5d %5d %5d\n",
inet_ntoa(dst_addr), ntohs(dst_port),
so->so_rcv.sb_cc, so->so_snd.sb_cc);
}
for (so = slirp->udb.so_next; so != &slirp->udb; so = so->so_next) {
if (so->so_state & SS_HOSTFWD) {
snprintf(buf, sizeof(buf), " UDP[HOST_FORWARD]");
src_len = sizeof(src);
getsockname(so->s, (struct sockaddr *)&src, &src_len);
dst_addr = so->so_laddr;
dst_port = so->so_lport;
} else {
snprintf(buf, sizeof(buf), " UDP[%d sec]",
(so->so_expire - curtime) / 1000);
src.sin_addr = so->so_laddr;
src.sin_port = so->so_lport;
dst_addr = so->so_faddr;
dst_port = so->so_fport;
}
monitor_printf(mon, "%-19s %3d %15s %5d ", buf, so->s,
src.sin_addr.s_addr ? inet_ntoa(src.sin_addr) : "*",
ntohs(src.sin_port));
monitor_printf(mon, "%15s %5d %5d %5d\n",
inet_ntoa(dst_addr), ntohs(dst_port),
so->so_rcv.sb_cc, so->so_snd.sb_cc);
}
for (so = slirp->icmp.so_next; so != &slirp->icmp; so = so->so_next) {
snprintf(buf, sizeof(buf), " ICMP[%d sec]",
(so->so_expire - curtime) / 1000);
src.sin_addr = so->so_laddr;
dst_addr = so->so_faddr;
monitor_printf(mon, "%-19s %3d %15s - ", buf, so->s,
src.sin_addr.s_addr ? inet_ntoa(src.sin_addr) : "*");
monitor_printf(mon, "%15s - %5d %5d\n", inet_ntoa(dst_addr),
so->so_rcv.sb_cc, so->so_snd.sb_cc);
}
}
|