summaryrefslogtreecommitdiff
path: root/src/intel/vulkan/genX_pipeline.c
blob: 3fd1333e1e66a6218cd40f80f576628868080360 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "anv_private.h"

#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"

#include "common/gen_l3_config.h"
#include "common/gen_sample_positions.h"
#include "vk_format_info.h"

static uint32_t
vertex_element_comp_control(enum isl_format format, unsigned comp)
{
   uint8_t bits;
   switch (comp) {
   case 0: bits = isl_format_layouts[format].channels.r.bits; break;
   case 1: bits = isl_format_layouts[format].channels.g.bits; break;
   case 2: bits = isl_format_layouts[format].channels.b.bits; break;
   case 3: bits = isl_format_layouts[format].channels.a.bits; break;
   default: unreachable("Invalid component");
   }

   /*
    * Take in account hardware restrictions when dealing with 64-bit floats.
    *
    * From Broadwell spec, command reference structures, page 586:
    *  "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
    *   64-bit components are stored * in the URB without any conversion. In
    *   this case, vertex elements must be written as 128 or 256 bits, with
    *   VFCOMP_STORE_0 being used to pad the output as required. E.g., if
    *   R64_PASSTHRU is used to copy a 64-bit Red component into the URB,
    *   Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3
    *   set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or
    *   Components 1-3 must be specified as VFCOMP_STORE_0 in order to output
    *   a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires
    *   Component 3 to be specified as VFCOMP_STORE_0 in order to output a
    *   256-bit vertex element."
    */
   if (bits) {
      return VFCOMP_STORE_SRC;
   } else if (comp >= 2 &&
              !isl_format_layouts[format].channels.b.bits &&
              isl_format_layouts[format].channels.r.type == ISL_RAW) {
      /* When emitting 64-bit attributes, we need to write either 128 or 256
       * bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and
       * VFCOMP_STORE_0 to pad the written chunk */
      return VFCOMP_NOSTORE;
   } else if (comp < 3 ||
              isl_format_layouts[format].channels.r.type == ISL_RAW) {
      /* Note we need to pad with value 0, not 1, due hardware restrictions
       * (see comment above) */
      return VFCOMP_STORE_0;
   } else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
            isl_format_layouts[format].channels.r.type == ISL_SINT) {
      assert(comp == 3);
      return VFCOMP_STORE_1_INT;
   } else {
      assert(comp == 3);
      return VFCOMP_STORE_1_FP;
   }
}

static void
emit_vertex_input(struct anv_pipeline *pipeline,
                  const VkPipelineVertexInputStateCreateInfo *info)
{
   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);

   /* Pull inputs_read out of the VS prog data */
   const uint64_t inputs_read = vs_prog_data->inputs_read;
   const uint64_t double_inputs_read = vs_prog_data->double_inputs_read;
   assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
   const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
   const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
   const bool needs_svgs_elem = vs_prog_data->uses_vertexid ||
                                vs_prog_data->uses_instanceid ||
                                vs_prog_data->uses_basevertex ||
                                vs_prog_data->uses_baseinstance;

   uint32_t elem_count = __builtin_popcount(elements) -
      __builtin_popcount(elements_double) / 2;

   const uint32_t total_elems =
      elem_count + needs_svgs_elem + vs_prog_data->uses_drawid;
   if (total_elems == 0)
      return;

   uint32_t *p;

   const uint32_t num_dwords = 1 + total_elems * 2;
   p = anv_batch_emitn(&pipeline->batch, num_dwords,
                       GENX(3DSTATE_VERTEX_ELEMENTS));
   if (!p)
      return;
   memset(p + 1, 0, (num_dwords - 1) * 4);

   for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
      const VkVertexInputAttributeDescription *desc =
         &info->pVertexAttributeDescriptions[i];
      enum isl_format format = anv_get_isl_format(&pipeline->device->info,
                                                  desc->format,
                                                  VK_IMAGE_ASPECT_COLOR_BIT,
                                                  VK_IMAGE_TILING_LINEAR);

      assert(desc->binding < MAX_VBS);

      if ((elements & (1 << desc->location)) == 0)
         continue; /* Binding unused */

      uint32_t slot =
         __builtin_popcount(elements & ((1 << desc->location) - 1)) -
         DIV_ROUND_UP(__builtin_popcount(elements_double &
                                        ((1 << desc->location) -1)), 2);

      struct GENX(VERTEX_ELEMENT_STATE) element = {
         .VertexBufferIndex = desc->binding,
         .Valid = true,
         .SourceElementFormat = format,
         .EdgeFlagEnable = false,
         .SourceElementOffset = desc->offset,
         .Component0Control = vertex_element_comp_control(format, 0),
         .Component1Control = vertex_element_comp_control(format, 1),
         .Component2Control = vertex_element_comp_control(format, 2),
         .Component3Control = vertex_element_comp_control(format, 3),
      };
      GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);

#if GEN_GEN >= 8
      /* On Broadwell and later, we have a separate VF_INSTANCING packet
       * that controls instancing.  On Haswell and prior, that's part of
       * VERTEX_BUFFER_STATE which we emit later.
       */
      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
         vfi.InstancingEnable = pipeline->instancing_enable[desc->binding];
         vfi.VertexElementIndex = slot;
         /* Vulkan so far doesn't have an instance divisor, so
          * this is always 1 (ignored if not instancing). */
         vfi.InstanceDataStepRate = 1;
      }
#endif
   }

   const uint32_t id_slot = elem_count;
   if (needs_svgs_elem) {
      /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
       *    "Within a VERTEX_ELEMENT_STATE structure, if a Component
       *    Control field is set to something other than VFCOMP_STORE_SRC,
       *    no higher-numbered Component Control fields may be set to
       *    VFCOMP_STORE_SRC"
       *
       * This means, that if we have BaseInstance, we need BaseVertex as
       * well.  Just do all or nothing.
       */
      uint32_t base_ctrl = (vs_prog_data->uses_basevertex ||
                            vs_prog_data->uses_baseinstance) ?
                           VFCOMP_STORE_SRC : VFCOMP_STORE_0;

      struct GENX(VERTEX_ELEMENT_STATE) element = {
         .VertexBufferIndex = ANV_SVGS_VB_INDEX,
         .Valid = true,
         .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
         .Component0Control = base_ctrl,
         .Component1Control = base_ctrl,
#if GEN_GEN >= 8
         .Component2Control = VFCOMP_STORE_0,
         .Component3Control = VFCOMP_STORE_0,
#else
         .Component2Control = VFCOMP_STORE_VID,
         .Component3Control = VFCOMP_STORE_IID,
#endif
      };
      GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
   }

#if GEN_GEN >= 8
   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS), sgvs) {
      sgvs.VertexIDEnable              = vs_prog_data->uses_vertexid;
      sgvs.VertexIDComponentNumber     = 2;
      sgvs.VertexIDElementOffset       = id_slot;
      sgvs.InstanceIDEnable            = vs_prog_data->uses_instanceid;
      sgvs.InstanceIDComponentNumber   = 3;
      sgvs.InstanceIDElementOffset     = id_slot;
   }
#endif

   const uint32_t drawid_slot = elem_count + needs_svgs_elem;
   if (vs_prog_data->uses_drawid) {
      struct GENX(VERTEX_ELEMENT_STATE) element = {
         .VertexBufferIndex = ANV_DRAWID_VB_INDEX,
         .Valid = true,
         .SourceElementFormat = ISL_FORMAT_R32_UINT,
         .Component0Control = VFCOMP_STORE_SRC,
         .Component1Control = VFCOMP_STORE_0,
         .Component2Control = VFCOMP_STORE_0,
         .Component3Control = VFCOMP_STORE_0,
      };
      GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
                                      &p[1 + drawid_slot * 2],
                                      &element);

#if GEN_GEN >= 8
      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
         vfi.VertexElementIndex = drawid_slot;
      }
#endif
   }
}

void
genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
                     const struct gen_l3_config *l3_config,
                     VkShaderStageFlags active_stages,
                     const unsigned entry_size[4])
{
   const struct gen_device_info *devinfo = &device->info;
#if GEN_IS_HASWELL
   const unsigned push_constant_kb = devinfo->gt == 3 ? 32 : 16;
#else
   const unsigned push_constant_kb = GEN_GEN >= 8 ? 32 : 16;
#endif

   const unsigned urb_size_kb = gen_get_l3_config_urb_size(devinfo, l3_config);

   unsigned entries[4];
   unsigned start[4];
   gen_get_urb_config(devinfo,
                      1024 * push_constant_kb, 1024 * urb_size_kb,
                      active_stages &
                         VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
                      active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
                      entry_size, entries, start);

#if GEN_GEN == 7 && !GEN_IS_HASWELL
   /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
    *
    *    "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
    *    needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
    *    3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
    *    3DSTATE_SAMPLER_STATE_POINTER_VS command.  Only one PIPE_CONTROL
    *    needs to be sent before any combination of VS associated 3DSTATE."
    */
   anv_batch_emit(batch, GEN7_PIPE_CONTROL, pc) {
      pc.DepthStallEnable  = true;
      pc.PostSyncOperation = WriteImmediateData;
      pc.Address           = (struct anv_address) { &device->workaround_bo, 0 };
   }
#endif

   for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
      anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
         urb._3DCommandSubOpcode      += i;
         urb.VSURBStartingAddress      = start[i];
         urb.VSURBEntryAllocationSize  = entry_size[i] - 1;
         urb.VSNumberofURBEntries      = entries[i];
      }
   }
}

static inline void
emit_urb_setup(struct anv_pipeline *pipeline)
{
   unsigned entry_size[4];
   for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
      const struct brw_vue_prog_data *prog_data =
         !anv_pipeline_has_stage(pipeline, i) ? NULL :
         (const struct brw_vue_prog_data *) pipeline->shaders[i]->prog_data;

      entry_size[i] = prog_data ? prog_data->urb_entry_size : 1;
   }

   genX(emit_urb_setup)(pipeline->device, &pipeline->batch,
                        pipeline->urb.l3_config,
                        pipeline->active_stages, entry_size);
}

static void
emit_3dstate_sbe(struct anv_pipeline *pipeline)
{
   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);

   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE), sbe);
#if GEN_GEN >= 8
      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ), sbe);
#endif
      return;
   }

   const struct brw_vue_map *fs_input_map =
      &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;

   struct GENX(3DSTATE_SBE) sbe = {
      GENX(3DSTATE_SBE_header),
      .AttributeSwizzleEnable = true,
      .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
      .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs,
      .ConstantInterpolationEnable = wm_prog_data->flat_inputs,
   };

#if GEN_GEN >= 9
   for (unsigned i = 0; i < 32; i++)
      sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
#endif

#if GEN_GEN >= 8
   /* On Broadwell, they broke 3DSTATE_SBE into two packets */
   struct GENX(3DSTATE_SBE_SWIZ) swiz = {
      GENX(3DSTATE_SBE_SWIZ_header),
   };
#else
#  define swiz sbe
#endif

   /* Skip the VUE header and position slots by default */
   unsigned urb_entry_read_offset = 1;
   int max_source_attr = 0;
   for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
      int input_index = wm_prog_data->urb_setup[attr];

      if (input_index < 0)
         continue;

      /* gl_Layer is stored in the VUE header */
      if (attr == VARYING_SLOT_LAYER) {
         urb_entry_read_offset = 0;
         continue;
      }

      if (attr == VARYING_SLOT_PNTC) {
         sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
         continue;
      }

      const int slot = fs_input_map->varying_to_slot[attr];

      if (input_index >= 16)
         continue;

      if (slot == -1) {
         /* This attribute does not exist in the VUE--that means that the
          * vertex shader did not write to it.  It could be that it's a
          * regular varying read by the fragment shader but not written by
          * the vertex shader or it's gl_PrimitiveID. In the first case the
          * value is undefined, in the second it needs to be
          * gl_PrimitiveID.
          */
         swiz.Attribute[input_index].ConstantSource = PRIM_ID;
         swiz.Attribute[input_index].ComponentOverrideX = true;
         swiz.Attribute[input_index].ComponentOverrideY = true;
         swiz.Attribute[input_index].ComponentOverrideZ = true;
         swiz.Attribute[input_index].ComponentOverrideW = true;
      } else {
         /* We have to subtract two slots to accout for the URB entry output
          * read offset in the VS and GS stages.
          */
         assert(slot >= 2);
         const int source_attr = slot - 2 * urb_entry_read_offset;
         max_source_attr = MAX2(max_source_attr, source_attr);
         swiz.Attribute[input_index].SourceAttribute = source_attr;
      }
   }

   sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
   sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);
#if GEN_GEN >= 8
   sbe.ForceVertexURBEntryReadOffset = true;
   sbe.ForceVertexURBEntryReadLength = true;
#endif

   uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
                                        GENX(3DSTATE_SBE_length));
   if (!dw)
      return;
   GENX(3DSTATE_SBE_pack)(&pipeline->batch, dw, &sbe);

#if GEN_GEN >= 8
   dw = anv_batch_emit_dwords(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ_length));
   if (!dw)
      return;
   GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz);
#endif
}

static const uint32_t vk_to_gen_cullmode[] = {
   [VK_CULL_MODE_NONE]                       = CULLMODE_NONE,
   [VK_CULL_MODE_FRONT_BIT]                  = CULLMODE_FRONT,
   [VK_CULL_MODE_BACK_BIT]                   = CULLMODE_BACK,
   [VK_CULL_MODE_FRONT_AND_BACK]             = CULLMODE_BOTH
};

static const uint32_t vk_to_gen_fillmode[] = {
   [VK_POLYGON_MODE_FILL]                    = FILL_MODE_SOLID,
   [VK_POLYGON_MODE_LINE]                    = FILL_MODE_WIREFRAME,
   [VK_POLYGON_MODE_POINT]                   = FILL_MODE_POINT,
};

static const uint32_t vk_to_gen_front_face[] = {
   [VK_FRONT_FACE_COUNTER_CLOCKWISE]         = 1,
   [VK_FRONT_FACE_CLOCKWISE]                 = 0
};

static void
emit_rs_state(struct anv_pipeline *pipeline,
              const VkPipelineRasterizationStateCreateInfo *rs_info,
              const VkPipelineMultisampleStateCreateInfo *ms_info,
              const struct anv_render_pass *pass,
              const struct anv_subpass *subpass)
{
   struct GENX(3DSTATE_SF) sf = {
      GENX(3DSTATE_SF_header),
   };

   sf.ViewportTransformEnable = true;
   sf.StatisticsEnable = true;
   sf.TriangleStripListProvokingVertexSelect = 0;
   sf.LineStripListProvokingVertexSelect = 0;
   sf.TriangleFanProvokingVertexSelect = 1;

   const struct brw_vue_prog_data *last_vue_prog_data =
      anv_pipeline_get_last_vue_prog_data(pipeline);

   if (last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
      sf.PointWidthSource = Vertex;
   } else {
      sf.PointWidthSource = State;
      sf.PointWidth = 1.0;
   }

#if GEN_GEN >= 8
   struct GENX(3DSTATE_RASTER) raster = {
      GENX(3DSTATE_RASTER_header),
   };
#else
#  define raster sf
#endif

   /* For details on 3DSTATE_RASTER multisample state, see the BSpec table
    * "Multisample Modes State".
    */
#if GEN_GEN >= 8
   raster.DXMultisampleRasterizationEnable = true;
   /* NOTE: 3DSTATE_RASTER::ForcedSampleCount affects the BDW and SKL PMA fix
    * computations.  If we ever set this bit to a different value, they will
    * need to be updated accordingly.
    */
   raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
   raster.ForceMultisampling = false;
#else
   raster.MultisampleRasterizationMode =
      (ms_info && ms_info->rasterizationSamples > 1) ?
      MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
#endif

   raster.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
   raster.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
   raster.FrontFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
   raster.BackFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
   raster.ScissorRectangleEnable = true;

#if GEN_GEN >= 9
   /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
   raster.ViewportZFarClipTestEnable = !pipeline->depth_clamp_enable;
   raster.ViewportZNearClipTestEnable = !pipeline->depth_clamp_enable;
#elif GEN_GEN >= 8
   raster.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
#endif

   raster.GlobalDepthOffsetEnableSolid = rs_info->depthBiasEnable;
   raster.GlobalDepthOffsetEnableWireframe = rs_info->depthBiasEnable;
   raster.GlobalDepthOffsetEnablePoint = rs_info->depthBiasEnable;

#if GEN_GEN == 7
   /* Gen7 requires that we provide the depth format in 3DSTATE_SF so that it
    * can get the depth offsets correct.
    */
   if (subpass->depth_stencil_attachment.attachment < pass->attachment_count) {
      VkFormat vk_format =
         pass->attachments[subpass->depth_stencil_attachment.attachment].format;
      assert(vk_format_is_depth_or_stencil(vk_format));
      if (vk_format_aspects(vk_format) & VK_IMAGE_ASPECT_DEPTH_BIT) {
         enum isl_format isl_format =
            anv_get_isl_format(&pipeline->device->info, vk_format,
                               VK_IMAGE_ASPECT_DEPTH_BIT,
                               VK_IMAGE_TILING_OPTIMAL);
         sf.DepthBufferSurfaceFormat =
            isl_format_get_depth_format(isl_format, false);
      }
   }
#endif

#if GEN_GEN >= 8
   GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
   GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
#else
#  undef raster
   GENX(3DSTATE_SF_pack)(NULL, &pipeline->gen7.sf, &sf);
#endif
}

static void
emit_ms_state(struct anv_pipeline *pipeline,
              const VkPipelineMultisampleStateCreateInfo *info)
{
   uint32_t samples = 1;
   uint32_t log2_samples = 0;

   /* From the Vulkan 1.0 spec:
    *    If pSampleMask is NULL, it is treated as if the mask has all bits
    *    enabled, i.e. no coverage is removed from fragments.
    *
    * 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
    */
#if GEN_GEN >= 8
   uint32_t sample_mask = 0xffff;
#else
   uint32_t sample_mask = 0xff;
#endif

   if (info) {
      samples = info->rasterizationSamples;
      log2_samples = __builtin_ffs(samples) - 1;
   }

   if (info && info->pSampleMask)
      sample_mask &= info->pSampleMask[0];

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE), ms) {
      ms.NumberofMultisamples       = log2_samples;

#if GEN_GEN >= 8
      /* The PRM says that this bit is valid only for DX9:
       *
       *    SW can choose to set this bit only for DX9 API. DX10/OGL API's
       *    should not have any effect by setting or not setting this bit.
       */
      ms.PixelPositionOffsetEnable  = false;
      ms.PixelLocation              = CENTER;
#else
      ms.PixelLocation              = PIXLOC_CENTER;

      switch (samples) {
      case 1:
         GEN_SAMPLE_POS_1X(ms.Sample);
         break;
      case 2:
         GEN_SAMPLE_POS_2X(ms.Sample);
         break;
      case 4:
         GEN_SAMPLE_POS_4X(ms.Sample);
         break;
      case 8:
         GEN_SAMPLE_POS_8X(ms.Sample);
         break;
      default:
         break;
      }
#endif
   }

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
      sm.SampleMask = sample_mask;
   }
}

static const uint32_t vk_to_gen_logic_op[] = {
   [VK_LOGIC_OP_COPY]                        = LOGICOP_COPY,
   [VK_LOGIC_OP_CLEAR]                       = LOGICOP_CLEAR,
   [VK_LOGIC_OP_AND]                         = LOGICOP_AND,
   [VK_LOGIC_OP_AND_REVERSE]                 = LOGICOP_AND_REVERSE,
   [VK_LOGIC_OP_AND_INVERTED]                = LOGICOP_AND_INVERTED,
   [VK_LOGIC_OP_NO_OP]                       = LOGICOP_NOOP,
   [VK_LOGIC_OP_XOR]                         = LOGICOP_XOR,
   [VK_LOGIC_OP_OR]                          = LOGICOP_OR,
   [VK_LOGIC_OP_NOR]                         = LOGICOP_NOR,
   [VK_LOGIC_OP_EQUIVALENT]                  = LOGICOP_EQUIV,
   [VK_LOGIC_OP_INVERT]                      = LOGICOP_INVERT,
   [VK_LOGIC_OP_OR_REVERSE]                  = LOGICOP_OR_REVERSE,
   [VK_LOGIC_OP_COPY_INVERTED]               = LOGICOP_COPY_INVERTED,
   [VK_LOGIC_OP_OR_INVERTED]                 = LOGICOP_OR_INVERTED,
   [VK_LOGIC_OP_NAND]                        = LOGICOP_NAND,
   [VK_LOGIC_OP_SET]                         = LOGICOP_SET,
};

static const uint32_t vk_to_gen_blend[] = {
   [VK_BLEND_FACTOR_ZERO]                    = BLENDFACTOR_ZERO,
   [VK_BLEND_FACTOR_ONE]                     = BLENDFACTOR_ONE,
   [VK_BLEND_FACTOR_SRC_COLOR]               = BLENDFACTOR_SRC_COLOR,
   [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR]     = BLENDFACTOR_INV_SRC_COLOR,
   [VK_BLEND_FACTOR_DST_COLOR]               = BLENDFACTOR_DST_COLOR,
   [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR]     = BLENDFACTOR_INV_DST_COLOR,
   [VK_BLEND_FACTOR_SRC_ALPHA]               = BLENDFACTOR_SRC_ALPHA,
   [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA]     = BLENDFACTOR_INV_SRC_ALPHA,
   [VK_BLEND_FACTOR_DST_ALPHA]               = BLENDFACTOR_DST_ALPHA,
   [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA]     = BLENDFACTOR_INV_DST_ALPHA,
   [VK_BLEND_FACTOR_CONSTANT_COLOR]          = BLENDFACTOR_CONST_COLOR,
   [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
   [VK_BLEND_FACTOR_CONSTANT_ALPHA]          = BLENDFACTOR_CONST_ALPHA,
   [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
   [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE]      = BLENDFACTOR_SRC_ALPHA_SATURATE,
   [VK_BLEND_FACTOR_SRC1_COLOR]              = BLENDFACTOR_SRC1_COLOR,
   [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR]    = BLENDFACTOR_INV_SRC1_COLOR,
   [VK_BLEND_FACTOR_SRC1_ALPHA]              = BLENDFACTOR_SRC1_ALPHA,
   [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA]    = BLENDFACTOR_INV_SRC1_ALPHA,
};

static const uint32_t vk_to_gen_blend_op[] = {
   [VK_BLEND_OP_ADD]                         = BLENDFUNCTION_ADD,
   [VK_BLEND_OP_SUBTRACT]                    = BLENDFUNCTION_SUBTRACT,
   [VK_BLEND_OP_REVERSE_SUBTRACT]            = BLENDFUNCTION_REVERSE_SUBTRACT,
   [VK_BLEND_OP_MIN]                         = BLENDFUNCTION_MIN,
   [VK_BLEND_OP_MAX]                         = BLENDFUNCTION_MAX,
};

static const uint32_t vk_to_gen_compare_op[] = {
   [VK_COMPARE_OP_NEVER]                        = PREFILTEROPNEVER,
   [VK_COMPARE_OP_LESS]                         = PREFILTEROPLESS,
   [VK_COMPARE_OP_EQUAL]                        = PREFILTEROPEQUAL,
   [VK_COMPARE_OP_LESS_OR_EQUAL]                = PREFILTEROPLEQUAL,
   [VK_COMPARE_OP_GREATER]                      = PREFILTEROPGREATER,
   [VK_COMPARE_OP_NOT_EQUAL]                    = PREFILTEROPNOTEQUAL,
   [VK_COMPARE_OP_GREATER_OR_EQUAL]             = PREFILTEROPGEQUAL,
   [VK_COMPARE_OP_ALWAYS]                       = PREFILTEROPALWAYS,
};

static const uint32_t vk_to_gen_stencil_op[] = {
   [VK_STENCIL_OP_KEEP]                         = STENCILOP_KEEP,
   [VK_STENCIL_OP_ZERO]                         = STENCILOP_ZERO,
   [VK_STENCIL_OP_REPLACE]                      = STENCILOP_REPLACE,
   [VK_STENCIL_OP_INCREMENT_AND_CLAMP]          = STENCILOP_INCRSAT,
   [VK_STENCIL_OP_DECREMENT_AND_CLAMP]          = STENCILOP_DECRSAT,
   [VK_STENCIL_OP_INVERT]                       = STENCILOP_INVERT,
   [VK_STENCIL_OP_INCREMENT_AND_WRAP]           = STENCILOP_INCR,
   [VK_STENCIL_OP_DECREMENT_AND_WRAP]           = STENCILOP_DECR,
};

/* This function sanitizes the VkStencilOpState by looking at the compare ops
 * and trying to determine whether or not a given stencil op can ever actually
 * occur.  Stencil ops which can never occur are set to VK_STENCIL_OP_KEEP.
 * This function returns true if, after sanitation, any of the stencil ops are
 * set to something other than VK_STENCIL_OP_KEEP.
 */
static bool
sanitize_stencil_face(VkStencilOpState *face,
                      VkCompareOp depthCompareOp)
{
   /* If compareOp is ALWAYS then the stencil test will never fail and failOp
    * will never happen.  Set failOp to KEEP in this case.
    */
   if (face->compareOp == VK_COMPARE_OP_ALWAYS)
      face->failOp = VK_STENCIL_OP_KEEP;

   /* If compareOp is NEVER or depthCompareOp is NEVER then one of the depth
    * or stencil tests will fail and passOp will never happen.
    */
   if (face->compareOp == VK_COMPARE_OP_NEVER ||
       depthCompareOp == VK_COMPARE_OP_NEVER)
      face->passOp = VK_STENCIL_OP_KEEP;

   /* If compareOp is NEVER or depthCompareOp is ALWAYS then either the
    * stencil test will fail or the depth test will pass.  In either case,
    * depthFailOp will never happen.
    */
   if (face->compareOp == VK_COMPARE_OP_NEVER ||
       depthCompareOp == VK_COMPARE_OP_ALWAYS)
      face->depthFailOp = VK_STENCIL_OP_KEEP;

   return face->failOp != VK_STENCIL_OP_KEEP ||
          face->depthFailOp != VK_STENCIL_OP_KEEP ||
          face->passOp != VK_STENCIL_OP_KEEP;
}

/* Intel hardware is fairly sensitive to whether or not depth/stencil writes
 * are enabled.  In the presence of discards, it's fairly easy to get into the
 * non-promoted case which means a fairly big performance hit.  From the Iron
 * Lake PRM, Vol 2, pt. 1, section 8.4.3.2, "Early Depth Test Cases":
 *
 *    "Non-promoted depth (N) is active whenever the depth test can be done
 *    early but it cannot determine whether or not to write source depth to
 *    the depth buffer, therefore the depth write must be performed post pixel
 *    shader. This includes cases where the pixel shader can kill pixels,
 *    including via sampler chroma key, as well as cases where the alpha test
 *    function is enabled, which kills pixels based on a programmable alpha
 *    test. In this case, even if the depth test fails, the pixel cannot be
 *    killed if a stencil write is indicated. Whether or not the stencil write
 *    happens depends on whether or not the pixel is killed later. In these
 *    cases if stencil test fails and stencil writes are off, the pixels can
 *    also be killed early. If stencil writes are enabled, the pixels must be
 *    treated as Computed depth (described above)."
 *
 * The same thing as mentioned in the stencil case can happen in the depth
 * case as well if it thinks it writes depth but, thanks to the depth test
 * being GL_EQUAL, the write doesn't actually matter.  A little extra work
 * up-front to try and disable depth and stencil writes can make a big
 * difference.
 *
 * Unfortunately, the way depth and stencil testing is specified, there are
 * many case where, regardless of depth/stencil writes being enabled, nothing
 * actually gets written due to some other bit of state being set.  This
 * function attempts to "sanitize" the depth stencil state and disable writes
 * and sometimes even testing whenever possible.
 */
static void
sanitize_ds_state(VkPipelineDepthStencilStateCreateInfo *state,
                  bool *stencilWriteEnable,
                  VkImageAspectFlags ds_aspects)
{
   *stencilWriteEnable = state->stencilTestEnable;

   /* If the depth test is disabled, we won't be writing anything. */
   if (!state->depthTestEnable)
      state->depthWriteEnable = false;

   /* The Vulkan spec requires that if either depth or stencil is not present,
    * the pipeline is to act as if the test silently passes.
    */
   if (!(ds_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
      state->depthWriteEnable = false;
      state->depthCompareOp = VK_COMPARE_OP_ALWAYS;
   }

   if (!(ds_aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
      *stencilWriteEnable = false;
      state->front.compareOp = VK_COMPARE_OP_ALWAYS;
      state->back.compareOp = VK_COMPARE_OP_ALWAYS;
   }

   /* If the stencil test is enabled and always fails, then we will never get
    * to the depth test so we can just disable the depth test entirely.
    */
   if (state->stencilTestEnable &&
       state->front.compareOp == VK_COMPARE_OP_NEVER &&
       state->back.compareOp == VK_COMPARE_OP_NEVER) {
      state->depthTestEnable = false;
      state->depthWriteEnable = false;
   }

   /* If depthCompareOp is EQUAL then the value we would be writing to the
    * depth buffer is the same as the value that's already there so there's no
    * point in writing it.
    */
   if (state->depthCompareOp == VK_COMPARE_OP_EQUAL)
      state->depthWriteEnable = false;

   /* If the stencil ops are such that we don't actually ever modify the
    * stencil buffer, we should disable writes.
    */
   if (!sanitize_stencil_face(&state->front, state->depthCompareOp) &&
       !sanitize_stencil_face(&state->back, state->depthCompareOp))
      *stencilWriteEnable = false;

   /* If the depth test always passes and we never write out depth, that's the
    * same as if the depth test is disabled entirely.
    */
   if (state->depthCompareOp == VK_COMPARE_OP_ALWAYS &&
       !state->depthWriteEnable)
      state->depthTestEnable = false;

   /* If the stencil test always passes and we never write out stencil, that's
    * the same as if the stencil test is disabled entirely.
    */
   if (state->front.compareOp == VK_COMPARE_OP_ALWAYS &&
       state->back.compareOp == VK_COMPARE_OP_ALWAYS &&
       !*stencilWriteEnable)
      state->stencilTestEnable = false;
}

static void
emit_ds_state(struct anv_pipeline *pipeline,
              const VkPipelineDepthStencilStateCreateInfo *pCreateInfo,
              const struct anv_render_pass *pass,
              const struct anv_subpass *subpass)
{
#if GEN_GEN == 7
#  define depth_stencil_dw pipeline->gen7.depth_stencil_state
#elif GEN_GEN == 8
#  define depth_stencil_dw pipeline->gen8.wm_depth_stencil
#else
#  define depth_stencil_dw pipeline->gen9.wm_depth_stencil
#endif

   if (pCreateInfo == NULL) {
      /* We're going to OR this together with the dynamic state.  We need
       * to make sure it's initialized to something useful.
       */
      pipeline->writes_stencil = false;
      pipeline->stencil_test_enable = false;
      pipeline->writes_depth = false;
      pipeline->depth_test_enable = false;
      memset(depth_stencil_dw, 0, sizeof(depth_stencil_dw));
      return;
   }

   VkImageAspectFlags ds_aspects = 0;
   if (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
      VkFormat depth_stencil_format =
         pass->attachments[subpass->depth_stencil_attachment.attachment].format;
      ds_aspects = vk_format_aspects(depth_stencil_format);
   }

   VkPipelineDepthStencilStateCreateInfo info = *pCreateInfo;
   sanitize_ds_state(&info, &pipeline->writes_stencil, ds_aspects);
   pipeline->stencil_test_enable = info.stencilTestEnable;
   pipeline->writes_depth = info.depthWriteEnable;
   pipeline->depth_test_enable = info.depthTestEnable;

   /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */

#if GEN_GEN <= 7
   struct GENX(DEPTH_STENCIL_STATE) depth_stencil = {
#else
   struct GENX(3DSTATE_WM_DEPTH_STENCIL) depth_stencil = {
#endif
      .DepthTestEnable = info.depthTestEnable,
      .DepthBufferWriteEnable = info.depthWriteEnable,
      .DepthTestFunction = vk_to_gen_compare_op[info.depthCompareOp],
      .DoubleSidedStencilEnable = true,

      .StencilTestEnable = info.stencilTestEnable,
      .StencilFailOp = vk_to_gen_stencil_op[info.front.failOp],
      .StencilPassDepthPassOp = vk_to_gen_stencil_op[info.front.passOp],
      .StencilPassDepthFailOp = vk_to_gen_stencil_op[info.front.depthFailOp],
      .StencilTestFunction = vk_to_gen_compare_op[info.front.compareOp],
      .BackfaceStencilFailOp = vk_to_gen_stencil_op[info.back.failOp],
      .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info.back.passOp],
      .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info.back.depthFailOp],
      .BackfaceStencilTestFunction = vk_to_gen_compare_op[info.back.compareOp],
   };

#if GEN_GEN <= 7
   GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil);
#else
   GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, depth_stencil_dw, &depth_stencil);
#endif
}

static void
emit_cb_state(struct anv_pipeline *pipeline,
              const VkPipelineColorBlendStateCreateInfo *info,
              const VkPipelineMultisampleStateCreateInfo *ms_info)
{
   struct anv_device *device = pipeline->device;

   const uint32_t num_dwords = GENX(BLEND_STATE_length);
   pipeline->blend_state =
      anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);

   struct GENX(BLEND_STATE) blend_state = {
#if GEN_GEN >= 8
      .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
      .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
#else
      /* Make sure it gets zeroed */
      .Entry = { { 0, }, },
#endif
   };

   /* Default everything to disabled */
   for (uint32_t i = 0; i < 8; i++) {
      blend_state.Entry[i].WriteDisableAlpha = true;
      blend_state.Entry[i].WriteDisableRed = true;
      blend_state.Entry[i].WriteDisableGreen = true;
      blend_state.Entry[i].WriteDisableBlue = true;
   }

   uint32_t surface_count = 0;
   struct anv_pipeline_bind_map *map;
   if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
      map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
      surface_count = map->surface_count;
   }

   bool has_writeable_rt = false;
   for (unsigned i = 0; i < surface_count; i++) {
      struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];

      /* All color attachments are at the beginning of the binding table */
      if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
         break;

      /* We can have at most 8 attachments */
      assert(i < 8);

      if (info == NULL || binding->index >= info->attachmentCount)
         continue;

      assert(binding->binding == 0);
      const VkPipelineColorBlendAttachmentState *a =
         &info->pAttachments[binding->index];

      blend_state.Entry[i] = (struct GENX(BLEND_STATE_ENTRY)) {
#if GEN_GEN < 8
         .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
         .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
#endif
         .LogicOpEnable = info->logicOpEnable,
         .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
         .ColorBufferBlendEnable = a->blendEnable,
         .ColorClampRange = COLORCLAMP_RTFORMAT,
         .PreBlendColorClampEnable = true,
         .PostBlendColorClampEnable = true,
         .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor],
         .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor],
         .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp],
         .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor],
         .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor],
         .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp],
         .WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT),
         .WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT),
         .WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT),
         .WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT),
      };

      if (a->srcColorBlendFactor != a->srcAlphaBlendFactor ||
          a->dstColorBlendFactor != a->dstAlphaBlendFactor ||
          a->colorBlendOp != a->alphaBlendOp) {
#if GEN_GEN >= 8
         blend_state.IndependentAlphaBlendEnable = true;
#else
         blend_state.Entry[i].IndependentAlphaBlendEnable = true;
#endif
      }

      if (a->colorWriteMask != 0)
         has_writeable_rt = true;

      /* Our hardware applies the blend factor prior to the blend function
       * regardless of what function is used.  Technically, this means the
       * hardware can do MORE than GL or Vulkan specify.  However, it also
       * means that, for MIN and MAX, we have to stomp the blend factor to
       * ONE to make it a no-op.
       */
      if (a->colorBlendOp == VK_BLEND_OP_MIN ||
          a->colorBlendOp == VK_BLEND_OP_MAX) {
         blend_state.Entry[i].SourceBlendFactor = BLENDFACTOR_ONE;
         blend_state.Entry[i].DestinationBlendFactor = BLENDFACTOR_ONE;
      }
      if (a->alphaBlendOp == VK_BLEND_OP_MIN ||
          a->alphaBlendOp == VK_BLEND_OP_MAX) {
         blend_state.Entry[i].SourceAlphaBlendFactor = BLENDFACTOR_ONE;
         blend_state.Entry[i].DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
      }
   }

#if GEN_GEN >= 8
   struct GENX(BLEND_STATE_ENTRY) *bs0 = &blend_state.Entry[0];
   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_BLEND), blend) {
      blend.AlphaToCoverageEnable         = blend_state.AlphaToCoverageEnable;
      blend.HasWriteableRT                = has_writeable_rt;
      blend.ColorBufferBlendEnable        = bs0->ColorBufferBlendEnable;
      blend.SourceAlphaBlendFactor        = bs0->SourceAlphaBlendFactor;
      blend.DestinationAlphaBlendFactor   = bs0->DestinationAlphaBlendFactor;
      blend.SourceBlendFactor             = bs0->SourceBlendFactor;
      blend.DestinationBlendFactor        = bs0->DestinationBlendFactor;
      blend.AlphaTestEnable               = false;
      blend.IndependentAlphaBlendEnable   =
         blend_state.IndependentAlphaBlendEnable;
   }
#else
   (void)has_writeable_rt;
#endif

   GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
   anv_state_flush(device, pipeline->blend_state);

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
      bsp.BlendStatePointer      = pipeline->blend_state.offset;
#if GEN_GEN >= 8
      bsp.BlendStatePointerValid = true;
#endif
   }
}

static void
emit_3dstate_clip(struct anv_pipeline *pipeline,
                  const VkPipelineViewportStateCreateInfo *vp_info,
                  const VkPipelineRasterizationStateCreateInfo *rs_info)
{
   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
   (void) wm_prog_data;
   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP), clip) {
      clip.ClipEnable               = true;
      clip.StatisticsEnable         = true;
      clip.EarlyCullEnable          = true;
      clip.APIMode                  = APIMODE_D3D,
      clip.ViewportXYClipTestEnable = true;

      clip.ClipMode = CLIPMODE_NORMAL;

      clip.TriangleStripListProvokingVertexSelect = 0;
      clip.LineStripListProvokingVertexSelect     = 0;
      clip.TriangleFanProvokingVertexSelect       = 1;

      clip.MinimumPointWidth = 0.125;
      clip.MaximumPointWidth = 255.875;

      const struct brw_vue_prog_data *last =
         anv_pipeline_get_last_vue_prog_data(pipeline);

      /* From the Vulkan 1.0.45 spec:
       *
       *    "If the last active vertex processing stage shader entry point's
       *    interface does not include a variable decorated with
       *    ViewportIndex, then the first viewport is used."
       */
      if (vp_info && (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT)) {
         clip.MaximumVPIndex = vp_info->viewportCount - 1;
      } else {
         clip.MaximumVPIndex = 0;
      }

      /* From the Vulkan 1.0.45 spec:
       *
       *    "If the last active vertex processing stage shader entry point's
       *    interface does not include a variable decorated with Layer, then
       *    the first layer is used."
       */
      clip.ForceZeroRTAIndexEnable =
         !(last->vue_map.slots_valid & VARYING_BIT_LAYER);

#if GEN_GEN == 7
      clip.FrontWinding            = vk_to_gen_front_face[rs_info->frontFace];
      clip.CullMode                = vk_to_gen_cullmode[rs_info->cullMode];
      clip.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
      if (last) {
         clip.UserClipDistanceClipTestEnableBitmask = last->clip_distance_mask;
         clip.UserClipDistanceCullTestEnableBitmask = last->cull_distance_mask;
      }
#else
      clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
         (wm_prog_data->barycentric_interp_modes & 0x38) != 0 : 0;
#endif
   }
}

static void
emit_3dstate_streamout(struct anv_pipeline *pipeline,
                       const VkPipelineRasterizationStateCreateInfo *rs_info)
{
   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), so) {
      so.RenderingDisable = rs_info->rasterizerDiscardEnable;
   }
}

static inline uint32_t
get_sampler_count(const struct anv_shader_bin *bin)
{
   return DIV_ROUND_UP(bin->bind_map.sampler_count, 4);
}

static inline uint32_t
get_binding_table_entry_count(const struct anv_shader_bin *bin)
{
   return DIV_ROUND_UP(bin->bind_map.surface_count, 32);
}

static inline struct anv_address
get_scratch_address(struct anv_pipeline *pipeline,
                    gl_shader_stage stage,
                    const struct anv_shader_bin *bin)
{
   return (struct anv_address) {
      .bo = anv_scratch_pool_alloc(pipeline->device,
                                   &pipeline->device->scratch_pool,
                                   stage, bin->prog_data->total_scratch),
      .offset = 0,
   };
}

static inline uint32_t
get_scratch_space(const struct anv_shader_bin *bin)
{
   return ffs(bin->prog_data->total_scratch / 2048);
}

static inline uint32_t
get_urb_output_offset()
{
   /* Skip the VUE header and position slots */
   return 1;
}

static inline uint32_t
get_urb_output_length(const struct anv_shader_bin *bin)
{
   const struct brw_vue_prog_data *prog_data =
      (const struct brw_vue_prog_data *)bin->prog_data;

   return (prog_data->vue_map.num_slots + 1) / 2 - get_urb_output_offset();
}

static void
emit_3dstate_vs(struct anv_pipeline *pipeline)
{
   const struct gen_device_info *devinfo = &pipeline->device->info;
   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
   const struct anv_shader_bin *vs_bin =
      pipeline->shaders[MESA_SHADER_VERTEX];

   assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX));

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), vs) {
      vs.FunctionEnable       = true;
      vs.StatisticsEnable     = true;
      vs.KernelStartPointer   = vs_bin->kernel.offset;
#if GEN_GEN >= 8
      vs.SIMD8DispatchEnable  =
         vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
#endif

      assert(!vs_prog_data->base.base.use_alt_mode);
      vs.SingleVertexDispatch       = false;
      vs.VectorMaskEnable           = false;
      vs.SamplerCount               = get_sampler_count(vs_bin);
      vs.BindingTableEntryCount     = get_binding_table_entry_count(vs_bin);
      vs.FloatingPointMode          = IEEE754;
      vs.IllegalOpcodeExceptionEnable = false;
      vs.SoftwareExceptionEnable    = false;
      vs.MaximumNumberofThreads     = devinfo->max_vs_threads - 1;
      vs.VertexCacheDisable         = false;

      vs.VertexURBEntryReadLength      = vs_prog_data->base.urb_read_length;
      vs.VertexURBEntryReadOffset      = 0;
      vs.DispatchGRFStartRegisterForURBData =
         vs_prog_data->base.base.dispatch_grf_start_reg;

#if GEN_GEN >= 8
      vs.VertexURBEntryOutputReadOffset = get_urb_output_offset();
      vs.VertexURBEntryOutputLength     = get_urb_output_length(vs_bin);

      vs.UserClipDistanceClipTestEnableBitmask =
         vs_prog_data->base.clip_distance_mask;
      vs.UserClipDistanceCullTestEnableBitmask =
         vs_prog_data->base.cull_distance_mask;
#endif

      vs.PerThreadScratchSpace   = get_scratch_space(vs_bin);
      vs.ScratchSpaceBasePointer =
         get_scratch_address(pipeline, MESA_SHADER_VERTEX, vs_bin);
   }
}

static void
emit_3dstate_hs_te_ds(struct anv_pipeline *pipeline)
{
   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs);
      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te);
      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds);
      return;
   }

   const struct gen_device_info *devinfo = &pipeline->device->info;
   const struct anv_shader_bin *tcs_bin =
      pipeline->shaders[MESA_SHADER_TESS_CTRL];
   const struct anv_shader_bin *tes_bin =
      pipeline->shaders[MESA_SHADER_TESS_EVAL];

   const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline);
   const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs) {
      hs.FunctionEnable = true;
      hs.StatisticsEnable = true;
      hs.KernelStartPointer = tcs_bin->kernel.offset;

      hs.SamplerCount = get_sampler_count(tcs_bin);
      hs.BindingTableEntryCount = get_binding_table_entry_count(tcs_bin);
      hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
      hs.IncludeVertexHandles = true;
      hs.InstanceCount = tcs_prog_data->instances - 1;

      hs.VertexURBEntryReadLength = 0;
      hs.VertexURBEntryReadOffset = 0;
      hs.DispatchGRFStartRegisterForURBData =
         tcs_prog_data->base.base.dispatch_grf_start_reg;

      hs.PerThreadScratchSpace = get_scratch_space(tcs_bin);
      hs.ScratchSpaceBasePointer =
         get_scratch_address(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
   }

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te) {
      te.Partitioning = tes_prog_data->partitioning;
      te.OutputTopology = tes_prog_data->output_topology;
      te.TEDomain = tes_prog_data->domain;
      te.TEEnable = true;
      te.MaximumTessellationFactorOdd = 63.0;
      te.MaximumTessellationFactorNotOdd = 64.0;
   }

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds) {
      ds.FunctionEnable = true;
      ds.StatisticsEnable = true;
      ds.KernelStartPointer = tes_bin->kernel.offset;

      ds.SamplerCount = get_sampler_count(tes_bin);
      ds.BindingTableEntryCount = get_binding_table_entry_count(tes_bin);
      ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;

      ds.ComputeWCoordinateEnable =
         tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;

      ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length;
      ds.PatchURBEntryReadOffset = 0;
      ds.DispatchGRFStartRegisterForURBData =
         tes_prog_data->base.base.dispatch_grf_start_reg;

#if GEN_GEN >= 8
      ds.VertexURBEntryOutputReadOffset = 1;
      ds.VertexURBEntryOutputLength =
         (tes_prog_data->base.vue_map.num_slots + 1) / 2 - 1;

      ds.DispatchMode =
         tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ?
            DISPATCH_MODE_SIMD8_SINGLE_PATCH :
            DISPATCH_MODE_SIMD4X2;

      ds.UserClipDistanceClipTestEnableBitmask =
         tes_prog_data->base.clip_distance_mask;
      ds.UserClipDistanceCullTestEnableBitmask =
         tes_prog_data->base.cull_distance_mask;
#endif

      ds.PerThreadScratchSpace = get_scratch_space(tes_bin);
      ds.ScratchSpaceBasePointer =
         get_scratch_address(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
   }
}

static void
emit_3dstate_gs(struct anv_pipeline *pipeline)
{
   const struct gen_device_info *devinfo = &pipeline->device->info;
   const struct anv_shader_bin *gs_bin =
      pipeline->shaders[MESA_SHADER_GEOMETRY];

   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs);
      return;
   }

   const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs) {
      gs.FunctionEnable          = true;
      gs.StatisticsEnable        = true;
      gs.KernelStartPointer      = gs_bin->kernel.offset;
      gs.DispatchMode            = gs_prog_data->base.dispatch_mode;

      gs.SingleProgramFlow       = false;
      gs.VectorMaskEnable        = false;
      gs.SamplerCount            = get_sampler_count(gs_bin);
      gs.BindingTableEntryCount  = get_binding_table_entry_count(gs_bin);
      gs.IncludeVertexHandles    = gs_prog_data->base.include_vue_handles;
      gs.IncludePrimitiveID      = gs_prog_data->include_primitive_id;

      if (GEN_GEN == 8) {
         /* Broadwell is weird.  It needs us to divide by 2. */
         gs.MaximumNumberofThreads = devinfo->max_gs_threads / 2 - 1;
      } else {
         gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
      }

      gs.OutputVertexSize        = gs_prog_data->output_vertex_size_hwords * 2 - 1;
      gs.OutputTopology          = gs_prog_data->output_topology;
      gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
      gs.ControlDataFormat       = gs_prog_data->control_data_format;
      gs.ControlDataHeaderSize   = gs_prog_data->control_data_header_size_hwords;
      gs.InstanceControl         = MAX2(gs_prog_data->invocations, 1) - 1;
#if GEN_GEN >= 8 || GEN_IS_HASWELL
      gs.ReorderMode             = TRAILING;
#else
      gs.ReorderEnable           = true;
#endif

#if GEN_GEN >= 8
      gs.ExpectedVertexCount     = gs_prog_data->vertices_in;
      gs.StaticOutput            = gs_prog_data->static_vertex_count >= 0;
      gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ?
                                   gs_prog_data->static_vertex_count : 0;
#endif

      gs.VertexURBEntryReadOffset = 0;
      gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
      gs.DispatchGRFStartRegisterForURBData =
         gs_prog_data->base.base.dispatch_grf_start_reg;

#if GEN_GEN >= 8
      gs.VertexURBEntryOutputReadOffset = get_urb_output_offset();
      gs.VertexURBEntryOutputLength     = get_urb_output_length(gs_bin);

      gs.UserClipDistanceClipTestEnableBitmask =
         gs_prog_data->base.clip_distance_mask;
      gs.UserClipDistanceCullTestEnableBitmask =
         gs_prog_data->base.cull_distance_mask;
#endif

      gs.PerThreadScratchSpace   = get_scratch_space(gs_bin);
      gs.ScratchSpaceBasePointer =
         get_scratch_address(pipeline, MESA_SHADER_GEOMETRY, gs_bin);
   }
}

static inline bool
has_color_buffer_write_enabled(const struct anv_pipeline *pipeline)
{
   const struct anv_shader_bin *shader_bin =
      pipeline->shaders[MESA_SHADER_FRAGMENT];
   if (!shader_bin)
      return false;

   const struct anv_pipeline_bind_map *bind_map = &shader_bin->bind_map;
   for (int i = 0; i < bind_map->surface_count; i++) {
      if (bind_map->surface_to_descriptor[i].set !=
          ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
         continue;
      if (bind_map->surface_to_descriptor[i].index != UINT8_MAX)
         return true;
   }

   return false;
}

static void
emit_3dstate_wm(struct anv_pipeline *pipeline, struct anv_subpass *subpass,
                const VkPipelineMultisampleStateCreateInfo *multisample)
{
   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);

   MAYBE_UNUSED uint32_t samples =
      multisample ? multisample->rasterizationSamples : 1;

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM), wm) {
      wm.StatisticsEnable                    = true;
      wm.LineEndCapAntialiasingRegionWidth   = _05pixels;
      wm.LineAntialiasingRegionWidth         = _10pixels;
      wm.PointRasterizationRule              = RASTRULE_UPPER_RIGHT;

      if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
         if (wm_prog_data->early_fragment_tests) {
            wm.EarlyDepthStencilControl         = EDSC_PREPS;
         } else if (wm_prog_data->has_side_effects) {
            wm.EarlyDepthStencilControl         = EDSC_PSEXEC;
         } else {
            wm.EarlyDepthStencilControl         = EDSC_NORMAL;
         }

         wm.BarycentricInterpolationMode =
            wm_prog_data->barycentric_interp_modes;

#if GEN_GEN < 8
         wm.PixelShaderComputedDepthMode  = wm_prog_data->computed_depth_mode;
         wm.PixelShaderUsesSourceDepth    = wm_prog_data->uses_src_depth;
         wm.PixelShaderUsesSourceW        = wm_prog_data->uses_src_w;
         wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;

         /* If the subpass has a depth or stencil self-dependency, then we
          * need to force the hardware to do the depth/stencil write *after*
          * fragment shader execution.  Otherwise, the writes may hit memory
          * before we get around to fetching from the input attachment and we
          * may get the depth or stencil value from the current draw rather
          * than the previous one.
          */
         wm.PixelShaderKillsPixel         = subpass->has_ds_self_dep ||
                                            wm_prog_data->uses_kill;

         if (wm.PixelShaderComputedDepthMode != PSCDEPTH_OFF ||
             wm_prog_data->has_side_effects ||
             wm.PixelShaderKillsPixel ||
             has_color_buffer_write_enabled(pipeline))
            wm.ThreadDispatchEnable = true;

         if (samples > 1) {
            wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
            if (wm_prog_data->persample_dispatch) {
               wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
            } else {
               wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
            }
         } else {
            wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
            wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
         }
#endif
      }
   }
}

static inline bool
is_dual_src_blend_factor(VkBlendFactor factor)
{
   return factor == VK_BLEND_FACTOR_SRC1_COLOR ||
          factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR ||
          factor == VK_BLEND_FACTOR_SRC1_ALPHA ||
          factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
}

static void
emit_3dstate_ps(struct anv_pipeline *pipeline,
                const VkPipelineColorBlendStateCreateInfo *blend)
{
   MAYBE_UNUSED const struct gen_device_info *devinfo = &pipeline->device->info;
   const struct anv_shader_bin *fs_bin =
      pipeline->shaders[MESA_SHADER_FRAGMENT];

   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
#if GEN_GEN == 7
         /* Even if no fragments are ever dispatched, gen7 hardware hangs if
          * we don't at least set the maximum number of threads.
          */
         ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
#endif
      }
      return;
   }

   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);

#if GEN_GEN < 8
   /* The hardware wedges if you have this bit set but don't turn on any dual
    * source blend factors.
    */
   bool dual_src_blend = false;
   if (wm_prog_data->dual_src_blend && blend) {
      for (uint32_t i = 0; i < blend->attachmentCount; i++) {
         const VkPipelineColorBlendAttachmentState *bstate =
            &blend->pAttachments[i];

         if (bstate->blendEnable &&
             (is_dual_src_blend_factor(bstate->srcColorBlendFactor) ||
              is_dual_src_blend_factor(bstate->dstColorBlendFactor) ||
              is_dual_src_blend_factor(bstate->srcAlphaBlendFactor) ||
              is_dual_src_blend_factor(bstate->dstAlphaBlendFactor))) {
            dual_src_blend = true;
            break;
         }
      }
   }
#endif

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
      ps.KernelStartPointer0        = fs_bin->kernel.offset;
      ps.KernelStartPointer1        = 0;
      ps.KernelStartPointer2        = fs_bin->kernel.offset +
                                      wm_prog_data->prog_offset_2;
      ps._8PixelDispatchEnable      = wm_prog_data->dispatch_8;
      ps._16PixelDispatchEnable     = wm_prog_data->dispatch_16;
      ps._32PixelDispatchEnable     = false;

      ps.SingleProgramFlow          = false;
      ps.VectorMaskEnable           = true;
      ps.SamplerCount               = get_sampler_count(fs_bin);
      ps.BindingTableEntryCount     = get_binding_table_entry_count(fs_bin);
      ps.PushConstantEnable         = wm_prog_data->base.nr_params > 0;
      ps.PositionXYOffsetSelect     = wm_prog_data->uses_pos_offset ?
                                      POSOFFSET_SAMPLE: POSOFFSET_NONE;
#if GEN_GEN < 8
      ps.AttributeEnable            = wm_prog_data->num_varying_inputs > 0;
      ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
      ps.DualSourceBlendEnable      = dual_src_blend;
#endif

#if GEN_IS_HASWELL
      /* Haswell requires the sample mask to be set in this packet as well
       * as in 3DSTATE_SAMPLE_MASK; the values should match.
       */
      ps.SampleMask                 = 0xff;
#endif

#if GEN_GEN >= 9
      ps.MaximumNumberofThreadsPerPSD  = 64 - 1;
#elif GEN_GEN >= 8
      ps.MaximumNumberofThreadsPerPSD  = 64 - 2;
#else
      ps.MaximumNumberofThreads        = devinfo->max_wm_threads - 1;
#endif

      ps.DispatchGRFStartRegisterForConstantSetupData0 =
         wm_prog_data->base.dispatch_grf_start_reg;
      ps.DispatchGRFStartRegisterForConstantSetupData1 = 0;
      ps.DispatchGRFStartRegisterForConstantSetupData2 =
         wm_prog_data->dispatch_grf_start_reg_2;

      ps.PerThreadScratchSpace   = get_scratch_space(fs_bin);
      ps.ScratchSpaceBasePointer =
         get_scratch_address(pipeline, MESA_SHADER_FRAGMENT, fs_bin);
   }
}

#if GEN_GEN >= 8
static void
emit_3dstate_ps_extra(struct anv_pipeline *pipeline,
                      struct anv_subpass *subpass)
{
   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);

   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps);
      return;
   }

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps) {
      ps.PixelShaderValid              = true;
      ps.AttributeEnable               = wm_prog_data->num_varying_inputs > 0;
      ps.oMaskPresenttoRenderTarget    = wm_prog_data->uses_omask;
      ps.PixelShaderIsPerSample        = wm_prog_data->persample_dispatch;
      ps.PixelShaderComputedDepthMode  = wm_prog_data->computed_depth_mode;
      ps.PixelShaderUsesSourceDepth    = wm_prog_data->uses_src_depth;
      ps.PixelShaderUsesSourceW        = wm_prog_data->uses_src_w;

      /* If the subpass has a depth or stencil self-dependency, then we need
       * to force the hardware to do the depth/stencil write *after* fragment
       * shader execution.  Otherwise, the writes may hit memory before we get
       * around to fetching from the input attachment and we may get the depth
       * or stencil value from the current draw rather than the previous one.
       */
      ps.PixelShaderKillsPixel         = subpass->has_ds_self_dep ||
                                         wm_prog_data->uses_kill;

      /* The stricter cross-primitive coherency guarantees that the hardware
       * gives us with the "Accesses UAV" bit set for at least one shader stage
       * and the "UAV coherency required" bit set on the 3DPRIMITIVE command are
       * redundant within the current image, atomic counter and SSBO GL APIs,
       * which all have very loose ordering and coherency requirements and
       * generally rely on the application to insert explicit barriers when a
       * shader invocation is expected to see the memory writes performed by the
       * invocations of some previous primitive.  Regardless of the value of
       * "UAV coherency required", the "Accesses UAV" bits will implicitly cause
       * an in most cases useless DC flush when the lowermost stage with the bit
       * set finishes execution.
       *
       * It would be nice to disable it, but in some cases we can't because on
       * Gen8+ it also has an influence on rasterization via the PS UAV-only
       * signal (which could be set independently from the coherency mechanism
       * in the 3DSTATE_WM command on Gen7), and because in some cases it will
       * determine whether the hardware skips execution of the fragment shader
       * or not via the ThreadDispatchEnable signal.  However if we know that
       * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
       * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
       * difference so we may just disable it here.
       *
       * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
       * take into account KillPixels when no depth or stencil writes are
       * enabled. In order for occlusion queries to work correctly with no
       * attachments, we need to force-enable here.
       */
      if ((wm_prog_data->has_side_effects || wm_prog_data->uses_kill) &&
          !has_color_buffer_write_enabled(pipeline))
         ps.PixelShaderHasUAV = true;

#if GEN_GEN >= 9
      ps.PixelShaderPullsBary    = wm_prog_data->pulls_bary;
      ps.InputCoverageMaskState  = wm_prog_data->uses_sample_mask ?
                                   ICMS_INNER_CONSERVATIVE : ICMS_NONE;
#else
      ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
#endif
   }
}

static void
emit_3dstate_vf_topology(struct anv_pipeline *pipeline)
{
   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
      vft.PrimitiveTopologyType = pipeline->topology;
   }
}
#endif

static void
emit_3dstate_vf_statistics(struct anv_pipeline *pipeline)
{
   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_STATISTICS), vfs) {
      vfs.StatisticsEnable = true;
   }
}

static void
compute_kill_pixel(struct anv_pipeline *pipeline,
                   const VkPipelineMultisampleStateCreateInfo *ms_info,
                   const struct anv_subpass *subpass)
{
   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
      pipeline->kill_pixel = false;
      return;
   }

   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);

   /* This computes the KillPixel portion of the computation for whether or
    * not we want to enable the PMA fix on gen8 or gen9.  It's given by this
    * chunk of the giant formula:
    *
    *    (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
    *     3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
    *     3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
    *     3DSTATE_PS_BLEND::AlphaTestEnable ||
    *     3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
    *
    * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable is always false and so is
    * 3DSTATE_PS_BLEND::AlphaTestEnable since Vulkan doesn't have a concept
    * of an alpha test.
    */
   pipeline->kill_pixel =
      subpass->has_ds_self_dep || wm_prog_data->uses_kill ||
      wm_prog_data->uses_omask ||
      (ms_info && ms_info->alphaToCoverageEnable);
}

static VkResult
genX(graphics_pipeline_create)(
    VkDevice                                    _device,
    struct anv_pipeline_cache *                 cache,
    const VkGraphicsPipelineCreateInfo*         pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkPipeline*                                 pPipeline)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
   struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
   struct anv_pipeline *pipeline;
   VkResult result;

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);

   pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
                         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (pipeline == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   result = anv_pipeline_init(pipeline, device, cache,
                              pCreateInfo, pAllocator);
   if (result != VK_SUCCESS) {
      vk_free2(&device->alloc, pAllocator, pipeline);
      return result;
   }

   assert(pCreateInfo->pVertexInputState);
   emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
   assert(pCreateInfo->pRasterizationState);
   emit_rs_state(pipeline, pCreateInfo->pRasterizationState,
                 pCreateInfo->pMultisampleState, pass, subpass);
   emit_ms_state(pipeline, pCreateInfo->pMultisampleState);
   emit_ds_state(pipeline, pCreateInfo->pDepthStencilState, pass, subpass);
   emit_cb_state(pipeline, pCreateInfo->pColorBlendState,
                           pCreateInfo->pMultisampleState);
   compute_kill_pixel(pipeline, pCreateInfo->pMultisampleState, subpass);

   emit_urb_setup(pipeline);

   emit_3dstate_clip(pipeline, pCreateInfo->pViewportState,
                     pCreateInfo->pRasterizationState);
   emit_3dstate_streamout(pipeline, pCreateInfo->pRasterizationState);

#if 0
   /* From gen7_vs_state.c */

   /**
    * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
    * Geometry > Geometry Shader > State:
    *
    *     "Note: Because of corruption in IVB:GT2, software needs to flush the
    *     whole fixed function pipeline when the GS enable changes value in
    *     the 3DSTATE_GS."
    *
    * The hardware architects have clarified that in this context "flush the
    * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
    * Stall" bit set.
    */
   if (!brw->is_haswell && !brw->is_baytrail)
      gen7_emit_vs_workaround_flush(brw);
#endif

   emit_3dstate_vs(pipeline);
   emit_3dstate_hs_te_ds(pipeline);
   emit_3dstate_gs(pipeline);
   emit_3dstate_sbe(pipeline);
   emit_3dstate_wm(pipeline, subpass, pCreateInfo->pMultisampleState);
   emit_3dstate_ps(pipeline, pCreateInfo->pColorBlendState);
#if GEN_GEN >= 8
   emit_3dstate_ps_extra(pipeline, subpass);
   emit_3dstate_vf_topology(pipeline);
#endif
   emit_3dstate_vf_statistics(pipeline);

   *pPipeline = anv_pipeline_to_handle(pipeline);

   return pipeline->batch.status;
}

static VkResult
compute_pipeline_create(
    VkDevice                                    _device,
    struct anv_pipeline_cache *                 cache,
    const VkComputePipelineCreateInfo*          pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkPipeline*                                 pPipeline)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   const struct anv_physical_device *physical_device =
      &device->instance->physicalDevice;
   const struct gen_device_info *devinfo = &physical_device->info;
   struct anv_pipeline *pipeline;
   VkResult result;

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);

   pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
                         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (pipeline == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   pipeline->device = device;
   pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);

   pipeline->blend_state.map = NULL;

   result = anv_reloc_list_init(&pipeline->batch_relocs,
                                pAllocator ? pAllocator : &device->alloc);
   if (result != VK_SUCCESS) {
      vk_free2(&device->alloc, pAllocator, pipeline);
      return result;
   }
   pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
   pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
   pipeline->batch.relocs = &pipeline->batch_relocs;
   pipeline->batch.status = VK_SUCCESS;

   /* When we free the pipeline, we detect stages based on the NULL status
    * of various prog_data pointers.  Make them NULL by default.
    */
   memset(pipeline->shaders, 0, sizeof(pipeline->shaders));

   pipeline->active_stages = 0;

   pipeline->needs_data_cache = false;

   assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE_BIT);
   ANV_FROM_HANDLE(anv_shader_module, module,  pCreateInfo->stage.module);
   result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo, module,
                                    pCreateInfo->stage.pName,
                                    pCreateInfo->stage.pSpecializationInfo);
   if (result != VK_SUCCESS) {
      vk_free2(&device->alloc, pAllocator, pipeline);
      return result;
   }

   const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);

   anv_pipeline_setup_l3_config(pipeline, cs_prog_data->base.total_shared > 0);

   uint32_t group_size = cs_prog_data->local_size[0] *
      cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
   uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);

   if (remainder > 0)
      pipeline->cs_right_mask = ~0u >> (32 - remainder);
   else
      pipeline->cs_right_mask = ~0u >> (32 - cs_prog_data->simd_size);

   const uint32_t vfe_curbe_allocation =
      ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
            cs_prog_data->push.cross_thread.regs, 2);

   const uint32_t subslices = MAX2(physical_device->subslice_total, 1);

   const struct anv_shader_bin *cs_bin =
      pipeline->shaders[MESA_SHADER_COMPUTE];

   anv_batch_emit(&pipeline->batch, GENX(MEDIA_VFE_STATE), vfe) {
#if GEN_GEN > 7
      vfe.StackSize              = 0;
#else
      vfe.GPGPUMode              = true;
#endif
      vfe.MaximumNumberofThreads =
         devinfo->max_cs_threads * subslices - 1;
      vfe.NumberofURBEntries     = GEN_GEN <= 7 ? 0 : 2;
      vfe.ResetGatewayTimer      = true;
#if GEN_GEN <= 8
      vfe.BypassGatewayControl   = true;
#endif
      vfe.URBEntryAllocationSize = GEN_GEN <= 7 ? 0 : 2;
      vfe.CURBEAllocationSize    = vfe_curbe_allocation;

      vfe.PerThreadScratchSpace = get_scratch_space(cs_bin);
      vfe.ScratchSpaceBasePointer =
         get_scratch_address(pipeline, MESA_SHADER_COMPUTE, cs_bin);
   }

   struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
      .KernelStartPointer     = cs_bin->kernel.offset,

      .SamplerCount           = get_sampler_count(cs_bin),
      .BindingTableEntryCount = get_binding_table_entry_count(cs_bin),
      .BarrierEnable          = cs_prog_data->uses_barrier,
      .SharedLocalMemorySize  =
         encode_slm_size(GEN_GEN, cs_prog_data->base.total_shared),

#if !GEN_IS_HASWELL
      .ConstantURBEntryReadOffset = 0,
#endif
      .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
#if GEN_GEN >= 8 || GEN_IS_HASWELL
      .CrossThreadConstantDataReadLength =
         cs_prog_data->push.cross_thread.regs,
#endif

      .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
   };
   GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL,
                                        pipeline->interface_descriptor_data,
                                        &desc);

   *pPipeline = anv_pipeline_to_handle(pipeline);

   return pipeline->batch.status;
}

VkResult genX(CreateGraphicsPipelines)(
    VkDevice                                    _device,
    VkPipelineCache                             pipelineCache,
    uint32_t                                    count,
    const VkGraphicsPipelineCreateInfo*         pCreateInfos,
    const VkAllocationCallbacks*                pAllocator,
    VkPipeline*                                 pPipelines)
{
   ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);

   VkResult result = VK_SUCCESS;

   unsigned i;
   for (i = 0; i < count; i++) {
      result = genX(graphics_pipeline_create)(_device,
                                              pipeline_cache,
                                              &pCreateInfos[i],
                                              pAllocator, &pPipelines[i]);

      /* Bail out on the first error as it is not obvious what error should be
       * report upon 2 different failures. */
      if (result != VK_SUCCESS)
         break;
   }

   for (; i < count; i++)
      pPipelines[i] = VK_NULL_HANDLE;

   return result;
}

VkResult genX(CreateComputePipelines)(
    VkDevice                                    _device,
    VkPipelineCache                             pipelineCache,
    uint32_t                                    count,
    const VkComputePipelineCreateInfo*          pCreateInfos,
    const VkAllocationCallbacks*                pAllocator,
    VkPipeline*                                 pPipelines)
{
   ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);

   VkResult result = VK_SUCCESS;

   unsigned i;
   for (i = 0; i < count; i++) {
      result = compute_pipeline_create(_device, pipeline_cache,
                                       &pCreateInfos[i],
                                       pAllocator, &pPipelines[i]);

      /* Bail out on the first error as it is not obvious what error should be
       * report upon 2 different failures. */
      if (result != VK_SUCCESS)
         break;
   }

   for (; i < count; i++)
      pPipelines[i] = VK_NULL_HANDLE;

   return result;
}