1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
|
/*
* Copyright © 2004 Carl Worth
* Copyright © 2006 Red Hat, Inc.
* Copyright © 2008 Chris Wilson
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is Carl Worth
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
* Chris Wilson <chris@chris-wilson.co.uk>
*/
/* Provide definitions for standalone compilation */
#include "cairoint.h"
#include "cairo-error-private.h"
#include "cairo-freelist-private.h"
#include "cairo-combsort-private.h"
typedef cairo_point_t cairo_bo_point32_t;
typedef struct _cairo_bo_intersect_ordinate {
int32_t ordinate;
enum { EXACT, INEXACT } exactness;
} cairo_bo_intersect_ordinate_t;
typedef struct _cairo_bo_intersect_point {
cairo_bo_intersect_ordinate_t x;
cairo_bo_intersect_ordinate_t y;
} cairo_bo_intersect_point_t;
typedef struct _cairo_bo_edge cairo_bo_edge_t;
typedef struct _cairo_bo_deferred {
cairo_bo_edge_t *right;
int32_t top;
} cairo_bo_deferred_t;
struct _cairo_bo_edge {
cairo_edge_t edge;
cairo_bo_edge_t *prev;
cairo_bo_edge_t *next;
cairo_bo_deferred_t deferred;
};
/* the parent is always given by index/2 */
#define PQ_PARENT_INDEX(i) ((i) >> 1)
#define PQ_FIRST_ENTRY 1
/* left and right children are index * 2 and (index * 2) +1 respectively */
#define PQ_LEFT_CHILD_INDEX(i) ((i) << 1)
typedef enum {
CAIRO_BO_EVENT_TYPE_STOP,
CAIRO_BO_EVENT_TYPE_INTERSECTION,
CAIRO_BO_EVENT_TYPE_START
} cairo_bo_event_type_t;
typedef struct _cairo_bo_event {
cairo_bo_event_type_t type;
cairo_point_t point;
} cairo_bo_event_t;
typedef struct _cairo_bo_start_event {
cairo_bo_event_type_t type;
cairo_point_t point;
cairo_bo_edge_t edge;
} cairo_bo_start_event_t;
typedef struct _cairo_bo_queue_event {
cairo_bo_event_type_t type;
cairo_point_t point;
cairo_bo_edge_t *e1;
cairo_bo_edge_t *e2;
} cairo_bo_queue_event_t;
typedef struct _pqueue {
int size, max_size;
cairo_bo_event_t **elements;
cairo_bo_event_t *elements_embedded[1024];
} pqueue_t;
typedef struct _cairo_bo_event_queue {
cairo_freepool_t pool;
pqueue_t pqueue;
cairo_bo_event_t **start_events;
} cairo_bo_event_queue_t;
typedef struct _cairo_bo_sweep_line {
cairo_bo_edge_t *head;
cairo_bo_edge_t *stopped;
int32_t current_y;
cairo_bo_edge_t *current_edge;
} cairo_bo_sweep_line_t;
static cairo_fixed_t
_line_compute_intersection_x_for_y (const cairo_line_t *line,
cairo_fixed_t y)
{
cairo_fixed_t x, dy;
if (y == line->p1.y)
return line->p1.x;
if (y == line->p2.y)
return line->p2.x;
x = line->p1.x;
dy = line->p2.y - line->p1.y;
if (dy != 0) {
x += _cairo_fixed_mul_div_floor (y - line->p1.y,
line->p2.x - line->p1.x,
dy);
}
return x;
}
static inline int
_cairo_bo_point32_compare (cairo_bo_point32_t const *a,
cairo_bo_point32_t const *b)
{
int cmp;
cmp = a->y - b->y;
if (cmp)
return cmp;
return a->x - b->x;
}
/* Compare the slope of a to the slope of b, returning 1, 0, -1 if the
* slope a is respectively greater than, equal to, or less than the
* slope of b.
*
* For each edge, consider the direction vector formed from:
*
* top -> bottom
*
* which is:
*
* (dx, dy) = (line.p2.x - line.p1.x, line.p2.y - line.p1.y)
*
* We then define the slope of each edge as dx/dy, (which is the
* inverse of the slope typically used in math instruction). We never
* compute a slope directly as the value approaches infinity, but we
* can derive a slope comparison without division as follows, (where
* the ? represents our compare operator).
*
* 1. slope(a) ? slope(b)
* 2. adx/ady ? bdx/bdy
* 3. (adx * bdy) ? (bdx * ady)
*
* Note that from step 2 to step 3 there is no change needed in the
* sign of the result since both ady and bdy are guaranteed to be
* greater than or equal to 0.
*
* When using this slope comparison to sort edges, some care is needed
* when interpreting the results. Since the slope compare operates on
* distance vectors from top to bottom it gives a correct left to
* right sort for edges that have a common top point, (such as two
* edges with start events at the same location). On the other hand,
* the sense of the result will be exactly reversed for two edges that
* have a common stop point.
*/
static inline int
_slope_compare (const cairo_bo_edge_t *a,
const cairo_bo_edge_t *b)
{
/* XXX: We're assuming here that dx and dy will still fit in 32
* bits. That's not true in general as there could be overflow. We
* should prevent that before the tessellation algorithm
* begins.
*/
int32_t adx = a->edge.line.p2.x - a->edge.line.p1.x;
int32_t bdx = b->edge.line.p2.x - b->edge.line.p1.x;
/* Since the dy's are all positive by construction we can fast
* path several common cases.
*/
/* First check for vertical lines. */
if (adx == 0)
return -bdx;
if (bdx == 0)
return adx;
/* Then where the two edges point in different directions wrt x. */
if ((adx ^ bdx) < 0)
return adx;
/* Finally we actually need to do the general comparison. */
{
int32_t ady = a->edge.line.p2.y - a->edge.line.p1.y;
int32_t bdy = b->edge.line.p2.y - b->edge.line.p1.y;
cairo_int64_t adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
cairo_int64_t bdx_ady = _cairo_int32x32_64_mul (bdx, ady);
return _cairo_int64_cmp (adx_bdy, bdx_ady);
}
}
/*
* We need to compare the x-coordinates of a pair of lines for a particular y,
* without loss of precision.
*
* The x-coordinate along an edge for a given y is:
* X = A_x + (Y - A_y) * A_dx / A_dy
*
* So the inequality we wish to test is:
* A_x + (Y - A_y) * A_dx / A_dy ∘ B_x + (Y - B_y) * B_dx / B_dy,
* where ∘ is our inequality operator.
*
* By construction, we know that A_dy and B_dy (and (Y - A_y), (Y - B_y)) are
* all positive, so we can rearrange it thus without causing a sign change:
* A_dy * B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx * A_dy
* - (Y - A_y) * A_dx * B_dy
*
* Given the assumption that all the deltas fit within 32 bits, we can compute
* this comparison directly using 128 bit arithmetic. For certain, but common,
* input we can reduce this down to a single 32 bit compare by inspecting the
* deltas.
*
* (And put the burden of the work on developing fast 128 bit ops, which are
* required throughout the tessellator.)
*
* See the similar discussion for _slope_compare().
*/
static int
edges_compare_x_for_y_general (const cairo_bo_edge_t *a,
const cairo_bo_edge_t *b,
int32_t y)
{
/* XXX: We're assuming here that dx and dy will still fit in 32
* bits. That's not true in general as there could be overflow. We
* should prevent that before the tessellation algorithm
* begins.
*/
int32_t dx;
int32_t adx, ady;
int32_t bdx, bdy;
enum {
HAVE_NONE = 0x0,
HAVE_DX = 0x1,
HAVE_ADX = 0x2,
HAVE_DX_ADX = HAVE_DX | HAVE_ADX,
HAVE_BDX = 0x4,
HAVE_DX_BDX = HAVE_DX | HAVE_BDX,
HAVE_ADX_BDX = HAVE_ADX | HAVE_BDX,
HAVE_ALL = HAVE_DX | HAVE_ADX | HAVE_BDX
} have_dx_adx_bdx = HAVE_ALL;
/* don't bother solving for abscissa if the edges' bounding boxes
* can be used to order them. */
{
int32_t amin, amax;
int32_t bmin, bmax;
if (a->edge.line.p1.x < a->edge.line.p2.x) {
amin = a->edge.line.p1.x;
amax = a->edge.line.p2.x;
} else {
amin = a->edge.line.p2.x;
amax = a->edge.line.p1.x;
}
if (b->edge.line.p1.x < b->edge.line.p2.x) {
bmin = b->edge.line.p1.x;
bmax = b->edge.line.p2.x;
} else {
bmin = b->edge.line.p2.x;
bmax = b->edge.line.p1.x;
}
if (amax < bmin) return -1;
if (amin > bmax) return +1;
}
ady = a->edge.line.p2.y - a->edge.line.p1.y;
adx = a->edge.line.p2.x - a->edge.line.p1.x;
if (adx == 0)
have_dx_adx_bdx &= ~HAVE_ADX;
bdy = b->edge.line.p2.y - b->edge.line.p1.y;
bdx = b->edge.line.p2.x - b->edge.line.p1.x;
if (bdx == 0)
have_dx_adx_bdx &= ~HAVE_BDX;
dx = a->edge.line.p1.x - b->edge.line.p1.x;
if (dx == 0)
have_dx_adx_bdx &= ~HAVE_DX;
#define L _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (ady, bdy), dx)
#define A _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (adx, bdy), y - a->edge.line.p1.y)
#define B _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (bdx, ady), y - b->edge.line.p1.y)
switch (have_dx_adx_bdx) {
default:
case HAVE_NONE:
return 0;
case HAVE_DX:
/* A_dy * B_dy * (A_x - B_x) ∘ 0 */
return dx; /* ady * bdy is positive definite */
case HAVE_ADX:
/* 0 ∘ - (Y - A_y) * A_dx * B_dy */
return adx; /* bdy * (y - a->top.y) is positive definite */
case HAVE_BDX:
/* 0 ∘ (Y - B_y) * B_dx * A_dy */
return -bdx; /* ady * (y - b->top.y) is positive definite */
case HAVE_ADX_BDX:
/* 0 ∘ (Y - B_y) * B_dx * A_dy - (Y - A_y) * A_dx * B_dy */
if ((adx ^ bdx) < 0) {
return adx;
} else if (a->edge.line.p1.y == b->edge.line.p1.y) { /* common origin */
cairo_int64_t adx_bdy, bdx_ady;
/* ∴ A_dx * B_dy ∘ B_dx * A_dy */
adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
bdx_ady = _cairo_int32x32_64_mul (bdx, ady);
return _cairo_int64_cmp (adx_bdy, bdx_ady);
} else
return _cairo_int128_cmp (A, B);
case HAVE_DX_ADX:
/* A_dy * (A_x - B_x) ∘ - (Y - A_y) * A_dx */
if ((-adx ^ dx) < 0) {
return dx;
} else {
cairo_int64_t ady_dx, dy_adx;
ady_dx = _cairo_int32x32_64_mul (ady, dx);
dy_adx = _cairo_int32x32_64_mul (a->edge.line.p1.y - y, adx);
return _cairo_int64_cmp (ady_dx, dy_adx);
}
case HAVE_DX_BDX:
/* B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx */
if ((bdx ^ dx) < 0) {
return dx;
} else {
cairo_int64_t bdy_dx, dy_bdx;
bdy_dx = _cairo_int32x32_64_mul (bdy, dx);
dy_bdx = _cairo_int32x32_64_mul (y - b->edge.line.p1.y, bdx);
return _cairo_int64_cmp (bdy_dx, dy_bdx);
}
case HAVE_ALL:
/* XXX try comparing (a->edge.line.p2.x - b->edge.line.p2.x) et al */
return _cairo_int128_cmp (L, _cairo_int128_sub (B, A));
}
#undef B
#undef A
#undef L
}
/*
* We need to compare the x-coordinate of a line for a particular y wrt to a
* given x, without loss of precision.
*
* The x-coordinate along an edge for a given y is:
* X = A_x + (Y - A_y) * A_dx / A_dy
*
* So the inequality we wish to test is:
* A_x + (Y - A_y) * A_dx / A_dy ∘ X
* where ∘ is our inequality operator.
*
* By construction, we know that A_dy (and (Y - A_y)) are
* all positive, so we can rearrange it thus without causing a sign change:
* (Y - A_y) * A_dx ∘ (X - A_x) * A_dy
*
* Given the assumption that all the deltas fit within 32 bits, we can compute
* this comparison directly using 64 bit arithmetic.
*
* See the similar discussion for _slope_compare() and
* edges_compare_x_for_y_general().
*/
static int
edge_compare_for_y_against_x (const cairo_bo_edge_t *a,
int32_t y,
int32_t x)
{
int32_t adx, ady;
int32_t dx, dy;
cairo_int64_t L, R;
if (x < a->edge.line.p1.x && x < a->edge.line.p2.x)
return 1;
if (x > a->edge.line.p1.x && x > a->edge.line.p2.x)
return -1;
adx = a->edge.line.p2.x - a->edge.line.p1.x;
dx = x - a->edge.line.p1.x;
if (adx == 0)
return -dx;
if (dx == 0 || (adx ^ dx) < 0)
return adx;
dy = y - a->edge.line.p1.y;
ady = a->edge.line.p2.y - a->edge.line.p1.y;
L = _cairo_int32x32_64_mul (dy, adx);
R = _cairo_int32x32_64_mul (dx, ady);
return _cairo_int64_cmp (L, R);
}
static int
edges_compare_x_for_y (const cairo_bo_edge_t *a,
const cairo_bo_edge_t *b,
int32_t y)
{
/* If the sweep-line is currently on an end-point of a line,
* then we know its precise x value (and considering that we often need to
* compare events at end-points, this happens frequently enough to warrant
* special casing).
*/
enum {
HAVE_NEITHER = 0x0,
HAVE_AX = 0x1,
HAVE_BX = 0x2,
HAVE_BOTH = HAVE_AX | HAVE_BX
} have_ax_bx = HAVE_BOTH;
int32_t ax, bx;
if (y == a->edge.line.p1.y)
ax = a->edge.line.p1.x;
else if (y == a->edge.line.p2.y)
ax = a->edge.line.p2.x;
else
have_ax_bx &= ~HAVE_AX;
if (y == b->edge.line.p1.y)
bx = b->edge.line.p1.x;
else if (y == b->edge.line.p2.y)
bx = b->edge.line.p2.x;
else
have_ax_bx &= ~HAVE_BX;
switch (have_ax_bx) {
default:
case HAVE_NEITHER:
return edges_compare_x_for_y_general (a, b, y);
case HAVE_AX:
return -edge_compare_for_y_against_x (b, y, ax);
case HAVE_BX:
return edge_compare_for_y_against_x (a, y, bx);
case HAVE_BOTH:
return ax - bx;
}
}
static inline int
_line_equal (const cairo_line_t *a, const cairo_line_t *b)
{
return a->p1.x == b->p1.x && a->p1.y == b->p1.y &&
a->p2.x == b->p2.x && a->p2.y == b->p2.y;
}
static int
_cairo_bo_sweep_line_compare_edges (cairo_bo_sweep_line_t *sweep_line,
const cairo_bo_edge_t *a,
const cairo_bo_edge_t *b)
{
int cmp;
/* compare the edges if not identical */
if (! _line_equal (&a->edge.line, &b->edge.line)) {
cmp = edges_compare_x_for_y (a, b, sweep_line->current_y);
if (cmp)
return cmp;
/* The two edges intersect exactly at y, so fall back on slope
* comparison. We know that this compare_edges function will be
* called only when starting a new edge, (not when stopping an
* edge), so we don't have to worry about conditionally inverting
* the sense of _slope_compare. */
cmp = _slope_compare (a, b);
if (cmp)
return cmp;
}
/* We've got two collinear edges now. */
return b->edge.bottom - a->edge.bottom;
}
static inline cairo_int64_t
det32_64 (int32_t a, int32_t b,
int32_t c, int32_t d)
{
/* det = a * d - b * c */
return _cairo_int64_sub (_cairo_int32x32_64_mul (a, d),
_cairo_int32x32_64_mul (b, c));
}
static inline cairo_int128_t
det64x32_128 (cairo_int64_t a, int32_t b,
cairo_int64_t c, int32_t d)
{
/* det = a * d - b * c */
return _cairo_int128_sub (_cairo_int64x32_128_mul (a, d),
_cairo_int64x32_128_mul (c, b));
}
/* Compute the intersection of two lines as defined by two edges. The
* result is provided as a coordinate pair of 128-bit integers.
*
* Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection or
* %CAIRO_BO_STATUS_PARALLEL if the two lines are exactly parallel.
*/
static cairo_bool_t
intersect_lines (cairo_bo_edge_t *a,
cairo_bo_edge_t *b,
cairo_bo_intersect_point_t *intersection)
{
cairo_int64_t a_det, b_det;
/* XXX: We're assuming here that dx and dy will still fit in 32
* bits. That's not true in general as there could be overflow. We
* should prevent that before the tessellation algorithm begins.
* What we're doing to mitigate this is to perform clamping in
* cairo_bo_tessellate_polygon().
*/
int32_t dx1 = a->edge.line.p1.x - a->edge.line.p2.x;
int32_t dy1 = a->edge.line.p1.y - a->edge.line.p2.y;
int32_t dx2 = b->edge.line.p1.x - b->edge.line.p2.x;
int32_t dy2 = b->edge.line.p1.y - b->edge.line.p2.y;
cairo_int64_t den_det;
cairo_int64_t R;
cairo_quorem64_t qr;
den_det = det32_64 (dx1, dy1, dx2, dy2);
/* Q: Can we determine that the lines do not intersect (within range)
* much more cheaply than computing the intersection point i.e. by
* avoiding the division?
*
* X = ax + t * adx = bx + s * bdx;
* Y = ay + t * ady = by + s * bdy;
* ∴ t * (ady*bdx - bdy*adx) = bdx * (by - ay) + bdy * (ax - bx)
* => t * L = R
*
* Therefore we can reject any intersection (under the criteria for
* valid intersection events) if:
* L^R < 0 => t < 0, or
* L<R => t > 1
*
* (where top/bottom must at least extend to the line endpoints).
*
* A similar substitution can be performed for s, yielding:
* s * (ady*bdx - bdy*adx) = ady * (ax - bx) - adx * (ay - by)
*/
R = det32_64 (dx2, dy2,
b->edge.line.p1.x - a->edge.line.p1.x,
b->edge.line.p1.y - a->edge.line.p1.y);
if (_cairo_int64_negative (den_det)) {
if (_cairo_int64_ge (den_det, R))
return FALSE;
} else {
if (_cairo_int64_le (den_det, R))
return FALSE;
}
R = det32_64 (dy1, dx1,
a->edge.line.p1.y - b->edge.line.p1.y,
a->edge.line.p1.x - b->edge.line.p1.x);
if (_cairo_int64_negative (den_det)) {
if (_cairo_int64_ge (den_det, R))
return FALSE;
} else {
if (_cairo_int64_le (den_det, R))
return FALSE;
}
/* We now know that the two lines should intersect within range. */
a_det = det32_64 (a->edge.line.p1.x, a->edge.line.p1.y,
a->edge.line.p2.x, a->edge.line.p2.y);
b_det = det32_64 (b->edge.line.p1.x, b->edge.line.p1.y,
b->edge.line.p2.x, b->edge.line.p2.y);
/* x = det (a_det, dx1, b_det, dx2) / den_det */
qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dx1,
b_det, dx2),
den_det);
if (_cairo_int64_eq (qr.rem, den_det))
return FALSE;
#if 0
intersection->x.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
#else
intersection->x.exactness = EXACT;
if (! _cairo_int64_is_zero (qr.rem)) {
if (_cairo_int64_negative (den_det) ^ _cairo_int64_negative (qr.rem))
qr.rem = _cairo_int64_negate (qr.rem);
qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2));
if (_cairo_int64_ge (qr.rem, den_det)) {
qr.quo = _cairo_int64_add (qr.quo,
_cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
} else
intersection->x.exactness = INEXACT;
}
#endif
intersection->x.ordinate = _cairo_int64_to_int32 (qr.quo);
/* y = det (a_det, dy1, b_det, dy2) / den_det */
qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dy1,
b_det, dy2),
den_det);
if (_cairo_int64_eq (qr.rem, den_det))
return FALSE;
#if 0
intersection->y.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
#else
intersection->y.exactness = EXACT;
if (! _cairo_int64_is_zero (qr.rem)) {
if (_cairo_int64_negative (den_det) ^ _cairo_int64_negative (qr.rem))
qr.rem = _cairo_int64_negate (qr.rem);
qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2));
if (_cairo_int64_ge (qr.rem, den_det)) {
qr.quo = _cairo_int64_add (qr.quo,
_cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
} else
intersection->y.exactness = INEXACT;
}
#endif
intersection->y.ordinate = _cairo_int64_to_int32 (qr.quo);
return TRUE;
}
static int
_cairo_bo_intersect_ordinate_32_compare (cairo_bo_intersect_ordinate_t a,
int32_t b)
{
/* First compare the quotient */
if (a.ordinate > b)
return +1;
if (a.ordinate < b)
return -1;
/* With quotient identical, if remainder is 0 then compare equal */
/* Otherwise, the non-zero remainder makes a > b */
return INEXACT == a.exactness;
}
/* Does the given edge contain the given point. The point must already
* be known to be contained within the line determined by the edge,
* (most likely the point results from an intersection of this edge
* with another).
*
* If we had exact arithmetic, then this function would simply be a
* matter of examining whether the y value of the point lies within
* the range of y values of the edge. But since intersection points
* are not exact due to being rounded to the nearest integer within
* the available precision, we must also examine the x value of the
* point.
*
* The definition of "contains" here is that the given intersection
* point will be seen by the sweep line after the start event for the
* given edge and before the stop event for the edge. See the comments
* in the implementation for more details.
*/
static cairo_bool_t
_cairo_bo_edge_contains_intersect_point (cairo_bo_edge_t *edge,
cairo_bo_intersect_point_t *point)
{
int cmp_top, cmp_bottom;
/* XXX: When running the actual algorithm, we don't actually need to
* compare against edge->top at all here, since any intersection above
* top is eliminated early via a slope comparison. We're leaving these
* here for now only for the sake of the quadratic-time intersection
* finder which needs them.
*/
cmp_top = _cairo_bo_intersect_ordinate_32_compare (point->y,
edge->edge.top);
cmp_bottom = _cairo_bo_intersect_ordinate_32_compare (point->y,
edge->edge.bottom);
if (cmp_top < 0 || cmp_bottom > 0)
{
return FALSE;
}
if (cmp_top > 0 && cmp_bottom < 0)
{
return TRUE;
}
/* At this stage, the point lies on the same y value as either
* edge->top or edge->bottom, so we have to examine the x value in
* order to properly determine containment. */
/* If the y value of the point is the same as the y value of the
* top of the edge, then the x value of the point must be greater
* to be considered as inside the edge. Similarly, if the y value
* of the point is the same as the y value of the bottom of the
* edge, then the x value of the point must be less to be
* considered as inside. */
if (cmp_top == 0) {
cairo_fixed_t top_x;
top_x = _line_compute_intersection_x_for_y (&edge->edge.line,
edge->edge.top);
return _cairo_bo_intersect_ordinate_32_compare (point->x, top_x) > 0;
} else { /* cmp_bottom == 0 */
cairo_fixed_t bot_x;
bot_x = _line_compute_intersection_x_for_y (&edge->edge.line,
edge->edge.bottom);
return _cairo_bo_intersect_ordinate_32_compare (point->x, bot_x) < 0;
}
}
/* Compute the intersection of two edges. The result is provided as a
* coordinate pair of 128-bit integers.
*
* Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection
* that is within both edges, %CAIRO_BO_STATUS_NO_INTERSECTION if the
* intersection of the lines defined by the edges occurs outside of
* one or both edges, and %CAIRO_BO_STATUS_PARALLEL if the two edges
* are exactly parallel.
*
* Note that when determining if a candidate intersection is "inside"
* an edge, we consider both the infinitesimal shortening and the
* infinitesimal tilt rules described by John Hobby. Specifically, if
* the intersection is exactly the same as an edge point, it is
* effectively outside (no intersection is returned). Also, if the
* intersection point has the same
*/
static cairo_bool_t
_cairo_bo_edge_intersect (cairo_bo_edge_t *a,
cairo_bo_edge_t *b,
cairo_bo_point32_t *intersection)
{
cairo_bo_intersect_point_t quorem;
if (! intersect_lines (a, b, &quorem))
return FALSE;
if (! _cairo_bo_edge_contains_intersect_point (a, &quorem))
return FALSE;
if (! _cairo_bo_edge_contains_intersect_point (b, &quorem))
return FALSE;
/* Now that we've correctly compared the intersection point and
* determined that it lies within the edge, then we know that we
* no longer need any more bits of storage for the intersection
* than we do for our edge coordinates. We also no longer need the
* remainder from the division. */
intersection->x = quorem.x.ordinate;
intersection->y = quorem.y.ordinate;
return TRUE;
}
static inline int
cairo_bo_event_compare (const cairo_bo_event_t *a,
const cairo_bo_event_t *b)
{
int cmp;
cmp = _cairo_bo_point32_compare (&a->point, &b->point);
if (cmp)
return cmp;
cmp = a->type - b->type;
if (cmp)
return cmp;
return a - b;
}
static inline void
_pqueue_init (pqueue_t *pq)
{
pq->max_size = ARRAY_LENGTH (pq->elements_embedded);
pq->size = 0;
pq->elements = pq->elements_embedded;
}
static inline void
_pqueue_fini (pqueue_t *pq)
{
if (pq->elements != pq->elements_embedded)
free (pq->elements);
}
static cairo_status_t
_pqueue_grow (pqueue_t *pq)
{
cairo_bo_event_t **new_elements;
pq->max_size *= 2;
if (pq->elements == pq->elements_embedded) {
new_elements = _cairo_malloc_ab (pq->max_size,
sizeof (cairo_bo_event_t *));
if (unlikely (new_elements == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
memcpy (new_elements, pq->elements_embedded,
sizeof (pq->elements_embedded));
} else {
new_elements = _cairo_realloc_ab (pq->elements,
pq->max_size,
sizeof (cairo_bo_event_t *));
if (unlikely (new_elements == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
}
pq->elements = new_elements;
return CAIRO_STATUS_SUCCESS;
}
static inline cairo_status_t
_pqueue_push (pqueue_t *pq, cairo_bo_event_t *event)
{
cairo_bo_event_t **elements;
int i, parent;
if (unlikely (pq->size + 1 == pq->max_size)) {
cairo_status_t status;
status = _pqueue_grow (pq);
if (unlikely (status))
return status;
}
elements = pq->elements;
for (i = ++pq->size;
i != PQ_FIRST_ENTRY &&
cairo_bo_event_compare (event,
elements[parent = PQ_PARENT_INDEX (i)]) < 0;
i = parent)
{
elements[i] = elements[parent];
}
elements[i] = event;
return CAIRO_STATUS_SUCCESS;
}
static inline void
_pqueue_pop (pqueue_t *pq)
{
cairo_bo_event_t **elements = pq->elements;
cairo_bo_event_t *tail;
int child, i;
tail = elements[pq->size--];
if (pq->size == 0) {
elements[PQ_FIRST_ENTRY] = NULL;
return;
}
for (i = PQ_FIRST_ENTRY;
(child = PQ_LEFT_CHILD_INDEX (i)) <= pq->size;
i = child)
{
if (child != pq->size &&
cairo_bo_event_compare (elements[child+1],
elements[child]) < 0)
{
child++;
}
if (cairo_bo_event_compare (elements[child], tail) >= 0)
break;
elements[i] = elements[child];
}
elements[i] = tail;
}
static inline cairo_status_t
_cairo_bo_event_queue_insert (cairo_bo_event_queue_t *queue,
cairo_bo_event_type_t type,
cairo_bo_edge_t *e1,
cairo_bo_edge_t *e2,
const cairo_point_t *point)
{
cairo_bo_queue_event_t *event;
event = _cairo_freepool_alloc (&queue->pool);
if (unlikely (event == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
event->type = type;
event->e1 = e1;
event->e2 = e2;
event->point = *point;
return _pqueue_push (&queue->pqueue, (cairo_bo_event_t *) event);
}
static void
_cairo_bo_event_queue_delete (cairo_bo_event_queue_t *queue,
cairo_bo_event_t *event)
{
_cairo_freepool_free (&queue->pool, event);
}
static cairo_bo_event_t *
_cairo_bo_event_dequeue (cairo_bo_event_queue_t *event_queue)
{
cairo_bo_event_t *event, *cmp;
event = event_queue->pqueue.elements[PQ_FIRST_ENTRY];
cmp = *event_queue->start_events;
if (event == NULL ||
(cmp != NULL && cairo_bo_event_compare (cmp, event) < 0))
{
event = cmp;
event_queue->start_events++;
}
else
{
_pqueue_pop (&event_queue->pqueue);
}
return event;
}
CAIRO_COMBSORT_DECLARE (_cairo_bo_event_queue_sort,
cairo_bo_event_t *,
cairo_bo_event_compare)
static void
_cairo_bo_event_queue_init (cairo_bo_event_queue_t *event_queue,
cairo_bo_event_t **start_events,
int num_events)
{
_cairo_bo_event_queue_sort (start_events, num_events);
start_events[num_events] = NULL;
event_queue->start_events = start_events;
_cairo_freepool_init (&event_queue->pool,
sizeof (cairo_bo_queue_event_t));
_pqueue_init (&event_queue->pqueue);
event_queue->pqueue.elements[PQ_FIRST_ENTRY] = NULL;
}
static cairo_status_t
_cairo_bo_event_queue_insert_stop (cairo_bo_event_queue_t *event_queue,
cairo_bo_edge_t *edge)
{
cairo_bo_point32_t point;
point.y = edge->edge.bottom;
point.x = _line_compute_intersection_x_for_y (&edge->edge.line,
point.y);
return _cairo_bo_event_queue_insert (event_queue,
CAIRO_BO_EVENT_TYPE_STOP,
edge, NULL,
&point);
}
static void
_cairo_bo_event_queue_fini (cairo_bo_event_queue_t *event_queue)
{
_pqueue_fini (&event_queue->pqueue);
_cairo_freepool_fini (&event_queue->pool);
}
static inline cairo_status_t
_cairo_bo_event_queue_insert_if_intersect_below_current_y (cairo_bo_event_queue_t *event_queue,
cairo_bo_edge_t *left,
cairo_bo_edge_t *right)
{
cairo_bo_point32_t intersection;
if (_line_equal (&left->edge.line, &right->edge.line))
return CAIRO_STATUS_SUCCESS;
/* The names "left" and "right" here are correct descriptions of
* the order of the two edges within the active edge list. So if a
* slope comparison also puts left less than right, then we know
* that the intersection of these two segments has already
* occurred before the current sweep line position. */
if (_slope_compare (left, right) <= 0)
return CAIRO_STATUS_SUCCESS;
if (! _cairo_bo_edge_intersect (left, right, &intersection))
return CAIRO_STATUS_SUCCESS;
return _cairo_bo_event_queue_insert (event_queue,
CAIRO_BO_EVENT_TYPE_INTERSECTION,
left, right,
&intersection);
}
static void
_cairo_bo_sweep_line_init (cairo_bo_sweep_line_t *sweep_line)
{
sweep_line->head = NULL;
sweep_line->stopped = NULL;
sweep_line->current_y = INT32_MIN;
sweep_line->current_edge = NULL;
}
static cairo_status_t
_cairo_bo_sweep_line_insert (cairo_bo_sweep_line_t *sweep_line,
cairo_bo_edge_t *edge)
{
if (sweep_line->current_edge != NULL) {
cairo_bo_edge_t *prev, *next;
int cmp;
cmp = _cairo_bo_sweep_line_compare_edges (sweep_line,
sweep_line->current_edge,
edge);
if (cmp < 0) {
prev = sweep_line->current_edge;
next = prev->next;
while (next != NULL &&
_cairo_bo_sweep_line_compare_edges (sweep_line,
next, edge) < 0)
{
prev = next, next = prev->next;
}
prev->next = edge;
edge->prev = prev;
edge->next = next;
if (next != NULL)
next->prev = edge;
} else if (cmp > 0) {
next = sweep_line->current_edge;
prev = next->prev;
while (prev != NULL &&
_cairo_bo_sweep_line_compare_edges (sweep_line,
prev, edge) > 0)
{
next = prev, prev = next->prev;
}
next->prev = edge;
edge->next = next;
edge->prev = prev;
if (prev != NULL)
prev->next = edge;
else
sweep_line->head = edge;
} else {
prev = sweep_line->current_edge;
edge->prev = prev;
edge->next = prev->next;
if (prev->next != NULL)
prev->next->prev = edge;
prev->next = edge;
}
} else {
sweep_line->head = edge;
}
sweep_line->current_edge = edge;
return CAIRO_STATUS_SUCCESS;
}
static void
_cairo_bo_sweep_line_delete (cairo_bo_sweep_line_t *sweep_line,
cairo_bo_edge_t *edge)
{
if (edge->prev != NULL)
edge->prev->next = edge->next;
else
sweep_line->head = edge->next;
if (edge->next != NULL)
edge->next->prev = edge->prev;
if (sweep_line->current_edge == edge)
sweep_line->current_edge = edge->prev ? edge->prev : edge->next;
}
static void
_cairo_bo_sweep_line_swap (cairo_bo_sweep_line_t *sweep_line,
cairo_bo_edge_t *left,
cairo_bo_edge_t *right)
{
if (left->prev != NULL)
left->prev->next = right;
else
sweep_line->head = right;
if (right->next != NULL)
right->next->prev = left;
left->next = right->next;
right->next = left;
right->prev = left->prev;
left->prev = right;
}
static inline cairo_bool_t
edges_colinear (const cairo_bo_edge_t *a, const cairo_bo_edge_t *b)
{
if (_line_equal (&a->edge.line, &b->edge.line))
return TRUE;
if (_slope_compare (a, b))
return FALSE;
/* The choice of y is not truly arbitrary since we must guarantee that it
* is greater than the start of either line.
*/
if (a->edge.line.p1.y == b->edge.line.p1.y) {
return a->edge.line.p1.x == b->edge.line.p1.x;
} else if (a->edge.line.p1.y < b->edge.line.p1.y) {
return edge_compare_for_y_against_x (b,
a->edge.line.p1.y,
a->edge.line.p1.x) == 0;
} else {
return edge_compare_for_y_against_x (a,
b->edge.line.p1.y,
b->edge.line.p1.x) == 0;
}
}
static void
_cairo_bo_edge_end (cairo_bo_edge_t *left,
int32_t bot,
cairo_polygon_t *polygon)
{
cairo_bo_deferred_t *d = &left->deferred;
if (likely (d->top < bot)) {
_cairo_polygon_add_line (polygon,
&left->edge.line,
d->top, bot,
1);
_cairo_polygon_add_line (polygon,
&d->right->edge.line,
d->top, bot,
-1);
}
d->right = NULL;
}
static inline void
_cairo_bo_edge_start_or_continue (cairo_bo_edge_t *left,
cairo_bo_edge_t *right,
int top,
cairo_polygon_t *polygon)
{
if (left->deferred.right == right)
return;
if (left->deferred.right != NULL) {
if (right != NULL && edges_colinear (left->deferred.right, right))
{
/* continuation on right, so just swap edges */
left->deferred.right = right;
return;
}
_cairo_bo_edge_end (left, top, polygon);
}
if (right != NULL && ! edges_colinear (left, right)) {
left->deferred.top = top;
left->deferred.right = right;
}
}
static inline void
_active_edges_to_polygon (cairo_bo_edge_t *left,
int32_t top,
cairo_fill_rule_t fill_rule,
cairo_polygon_t *polygon)
{
cairo_bo_edge_t *right;
if (fill_rule == CAIRO_FILL_RULE_WINDING) {
while (left != NULL) {
int in_out = left->edge.dir;
right = left->next;
if (left->deferred.right == NULL) {
while (right != NULL && right->deferred.right == NULL)
right = right->next;
if (right != NULL && edges_colinear (left, right)) {
/* continuation on left */
left->deferred = right->deferred;
right->deferred.right = NULL;
}
}
right = left->next;
while (right != NULL) {
if (right->deferred.right != NULL)
_cairo_bo_edge_end (right, top, polygon);
in_out += right->edge.dir;
if (in_out == 0) {
cairo_bo_edge_t *next;
cairo_bool_t skip = FALSE;
/* skip co-linear edges */
next = right->next;
if (next != NULL)
skip = edges_colinear (right, next);
if (! skip)
break;
}
right = right->next;
}
_cairo_bo_edge_start_or_continue (left, right, top, polygon);
left = right;
if (left != NULL)
left = left->next;
}
} else {
while (left != NULL) {
int in_out = 0;
right = left->next;
while (right != NULL) {
if (right->deferred.right != NULL)
_cairo_bo_edge_end (right, top, polygon);
if ((in_out++ & 1) == 0) {
cairo_bo_edge_t *next;
cairo_bool_t skip = FALSE;
/* skip co-linear edges */
next = right->next;
if (next != NULL)
skip = edges_colinear (right, next);
if (! skip)
break;
}
right = right->next;
}
_cairo_bo_edge_start_or_continue (left, right, top, polygon);
left = right;
if (left != NULL)
left = left->next;
}
}
}
static cairo_status_t
_cairo_bentley_ottmann_tessellate_bo_edges (cairo_bo_event_t **start_events,
int num_events,
cairo_fill_rule_t fill_rule,
cairo_polygon_t *polygon)
{
cairo_status_t status = CAIRO_STATUS_SUCCESS; /* silence compiler */
cairo_bo_event_queue_t event_queue;
cairo_bo_sweep_line_t sweep_line;
cairo_bo_event_t *event;
cairo_bo_edge_t *left, *right;
cairo_bo_edge_t *e1, *e2;
_cairo_bo_event_queue_init (&event_queue, start_events, num_events);
_cairo_bo_sweep_line_init (&sweep_line);
while ((event = _cairo_bo_event_dequeue (&event_queue))) {
if (event->point.y != sweep_line.current_y) {
for (e1 = sweep_line.stopped; e1; e1 = e1->next) {
if (e1->deferred.right != NULL)
_cairo_bo_edge_end (e1, e1->edge.bottom, polygon);
}
sweep_line.stopped = NULL;
_active_edges_to_polygon (sweep_line.head,
sweep_line.current_y,
fill_rule, polygon);
sweep_line.current_y = event->point.y;
}
switch (event->type) {
case CAIRO_BO_EVENT_TYPE_START:
e1 = &((cairo_bo_start_event_t *) event)->edge;
status = _cairo_bo_sweep_line_insert (&sweep_line, e1);
if (unlikely (status))
goto unwind;
status = _cairo_bo_event_queue_insert_stop (&event_queue, e1);
if (unlikely (status))
goto unwind;
/* check to see if this is a continuation of a stopped edge */
/* XXX change to an infinitesimal lengthening rule */
for (left = sweep_line.stopped; left; left = left->next) {
if (e1->edge.top <= left->edge.bottom &&
edges_colinear (e1, left))
{
e1->deferred = left->deferred;
if (left->prev != NULL)
left->prev = left->next;
else
sweep_line.stopped = left->next;
if (left->next != NULL)
left->next->prev = left->prev;
break;
}
}
left = e1->prev;
right = e1->next;
if (left != NULL) {
status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, left, e1);
if (unlikely (status))
goto unwind;
}
if (right != NULL) {
status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right);
if (unlikely (status))
goto unwind;
}
break;
case CAIRO_BO_EVENT_TYPE_STOP:
e1 = ((cairo_bo_queue_event_t *) event)->e1;
_cairo_bo_event_queue_delete (&event_queue, event);
left = e1->prev;
right = e1->next;
_cairo_bo_sweep_line_delete (&sweep_line, e1);
/* first, check to see if we have a continuation via a fresh edge */
if (e1->deferred.right != NULL) {
e1->next = sweep_line.stopped;
if (sweep_line.stopped != NULL)
sweep_line.stopped->prev = e1;
sweep_line.stopped = e1;
e1->prev = NULL;
}
if (left != NULL && right != NULL) {
status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, left, right);
if (unlikely (status))
goto unwind;
}
break;
case CAIRO_BO_EVENT_TYPE_INTERSECTION:
e1 = ((cairo_bo_queue_event_t *) event)->e1;
e2 = ((cairo_bo_queue_event_t *) event)->e2;
_cairo_bo_event_queue_delete (&event_queue, event);
/* skip this intersection if its edges are not adjacent */
if (e2 != e1->next)
break;
left = e1->prev;
right = e2->next;
_cairo_bo_sweep_line_swap (&sweep_line, e1, e2);
/* after the swap e2 is left of e1 */
if (left != NULL) {
status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, left, e2);
if (unlikely (status))
goto unwind;
}
if (right != NULL) {
status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right);
if (unlikely (status))
goto unwind;
}
break;
}
}
for (e1 = sweep_line.stopped; e1; e1 = e1->next) {
if (e1->deferred.right != NULL)
_cairo_bo_edge_end (e1, e1->edge.bottom, polygon);
}
unwind:
_cairo_bo_event_queue_fini (&event_queue);
return status;
}
cairo_status_t
_cairo_polygon_reduce (cairo_polygon_t *polygon,
cairo_fill_rule_t fill_rule)
{
cairo_status_t status;
cairo_bo_start_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_start_event_t)];
cairo_bo_start_event_t *events;
cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
cairo_bo_event_t **event_ptrs;
int num_limits;
int num_events;
int i;
num_events = polygon->num_edges;
if (unlikely (0 == num_events))
return CAIRO_STATUS_SUCCESS;
events = stack_events;
event_ptrs = stack_event_ptrs;
if (num_events > ARRAY_LENGTH (stack_events)) {
events = _cairo_malloc_ab_plus_c (num_events,
sizeof (cairo_bo_start_event_t) +
sizeof (cairo_bo_event_t *),
sizeof (cairo_bo_event_t *));
if (unlikely (events == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
event_ptrs = (cairo_bo_event_t **) (events + num_events);
}
for (i = 0; i < num_events; i++) {
event_ptrs[i] = (cairo_bo_event_t *) &events[i];
events[i].type = CAIRO_BO_EVENT_TYPE_START;
events[i].point.y = polygon->edges[i].top;
events[i].point.x =
_line_compute_intersection_x_for_y (&polygon->edges[i].line,
events[i].point.y);
events[i].edge.edge = polygon->edges[i];
events[i].edge.deferred.right = NULL;
events[i].edge.prev = NULL;
events[i].edge.next = NULL;
}
num_limits = polygon->num_limits; polygon->num_limits = 0;
polygon->num_edges = 0;
status = _cairo_bentley_ottmann_tessellate_bo_edges (event_ptrs,
num_events,
fill_rule,
polygon);
polygon->num_limits = num_limits;
if (events != stack_events)
free (events);
return status;
}
|