1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
|
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2002 University of Southern California
* Copyright © 2008 Chris Wilson
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is University of Southern
* California.
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
* Chris Wilson <chris@chris-wilson.co.uk>
*/
#include "cairoint.h"
#include "cairo-error-private.h"
#include "cairo-slope-private.h"
static int
_cairo_pen_vertices_needed (double tolerance,
double radius,
const cairo_matrix_t *matrix);
static void
_cairo_pen_compute_slopes (cairo_pen_t *pen);
cairo_status_t
_cairo_pen_init (cairo_pen_t *pen,
double radius,
double tolerance,
const cairo_matrix_t *ctm)
{
int i;
int reflect;
if (CAIRO_INJECT_FAULT ())
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
VG (VALGRIND_MAKE_MEM_UNDEFINED (pen, sizeof (cairo_pen_t)));
pen->radius = radius;
pen->tolerance = tolerance;
reflect = _cairo_matrix_compute_determinant (ctm) < 0.;
pen->num_vertices = _cairo_pen_vertices_needed (tolerance,
radius,
ctm);
if (pen->num_vertices > ARRAY_LENGTH (pen->vertices_embedded)) {
pen->vertices = _cairo_malloc_ab (pen->num_vertices,
sizeof (cairo_pen_vertex_t));
if (unlikely (pen->vertices == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
} else {
pen->vertices = pen->vertices_embedded;
}
/*
* Compute pen coordinates. To generate the right ellipse, compute points around
* a circle in user space and transform them to device space. To get a consistent
* orientation in device space, flip the pen if the transformation matrix
* is reflecting
*/
for (i=0; i < pen->num_vertices; i++) {
double theta = 2 * M_PI * i / (double) pen->num_vertices;
double dx = radius * cos (reflect ? -theta : theta);
double dy = radius * sin (reflect ? -theta : theta);
cairo_pen_vertex_t *v = &pen->vertices[i];
cairo_matrix_transform_distance (ctm, &dx, &dy);
v->point.x = _cairo_fixed_from_double (dx);
v->point.y = _cairo_fixed_from_double (dy);
}
_cairo_pen_compute_slopes (pen);
return CAIRO_STATUS_SUCCESS;
}
void
_cairo_pen_fini (cairo_pen_t *pen)
{
if (pen->vertices != pen->vertices_embedded)
free (pen->vertices);
VG (VALGRIND_MAKE_MEM_NOACCESS (pen, sizeof (cairo_pen_t)));
}
cairo_status_t
_cairo_pen_init_copy (cairo_pen_t *pen, const cairo_pen_t *other)
{
VG (VALGRIND_MAKE_MEM_UNDEFINED (pen, sizeof (cairo_pen_t)));
*pen = *other;
if (CAIRO_INJECT_FAULT ())
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
pen->vertices = pen->vertices_embedded;
if (pen->num_vertices) {
if (pen->num_vertices > ARRAY_LENGTH (pen->vertices_embedded)) {
pen->vertices = _cairo_malloc_ab (pen->num_vertices,
sizeof (cairo_pen_vertex_t));
if (unlikely (pen->vertices == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
}
memcpy (pen->vertices, other->vertices,
pen->num_vertices * sizeof (cairo_pen_vertex_t));
}
return CAIRO_STATUS_SUCCESS;
}
cairo_status_t
_cairo_pen_add_points (cairo_pen_t *pen, cairo_point_t *point, int num_points)
{
cairo_status_t status;
int num_vertices;
int i;
if (CAIRO_INJECT_FAULT ())
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
num_vertices = pen->num_vertices + num_points;
if (num_vertices > ARRAY_LENGTH (pen->vertices_embedded) ||
pen->vertices != pen->vertices_embedded)
{
cairo_pen_vertex_t *vertices;
if (pen->vertices == pen->vertices_embedded) {
vertices = _cairo_malloc_ab (num_vertices,
sizeof (cairo_pen_vertex_t));
if (unlikely (vertices == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
memcpy (vertices, pen->vertices,
pen->num_vertices * sizeof (cairo_pen_vertex_t));
} else {
vertices = _cairo_realloc_ab (pen->vertices,
num_vertices,
sizeof (cairo_pen_vertex_t));
if (unlikely (vertices == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
}
pen->vertices = vertices;
}
pen->num_vertices = num_vertices;
/* initialize new vertices */
for (i=0; i < num_points; i++)
pen->vertices[pen->num_vertices-num_points+i].point = point[i];
status = _cairo_hull_compute (pen->vertices, &pen->num_vertices);
if (unlikely (status))
return status;
_cairo_pen_compute_slopes (pen);
return CAIRO_STATUS_SUCCESS;
}
/*
The circular pen in user space is transformed into an ellipse in
device space.
We construct the pen by computing points along the circumference
using equally spaced angles.
We show that this approximation to the ellipse has maximum error at the
major axis of the ellipse.
Set
M = major axis length
m = minor axis length
Align 'M' along the X axis and 'm' along the Y axis and draw
an ellipse parameterized by angle 't':
x = M cos t y = m sin t
Perturb t by ± d and compute two new points (x+,y+), (x-,y-).
The distance from the average of these two points to (x,y) represents
the maximum error in approximating the ellipse with a polygon formed
from vertices 2∆ radians apart.
x+ = M cos (t+∆) y+ = m sin (t+∆)
x- = M cos (t-∆) y- = m sin (t-∆)
Now compute the approximation error, E:
Ex = (x - (x+ + x-) / 2)
Ex = (M cos(t) - (Mcos(t+∆) + Mcos(t-∆))/2)
= M (cos(t) - (cos(t)cos(∆) + sin(t)sin(∆) +
cos(t)cos(∆) - sin(t)sin(∆))/2)
= M(cos(t) - cos(t)cos(∆))
= M cos(t) (1 - cos(∆))
Ey = y - (y+ - y-) / 2
= m sin (t) - (m sin(t+∆) + m sin(t-∆)) / 2
= m (sin(t) - (sin(t)cos(∆) + cos(t)sin(∆) +
sin(t)cos(∆) - cos(t)sin(∆))/2)
= m (sin(t) - sin(t)cos(∆))
= m sin(t) (1 - cos(∆))
E² = Ex² + Ey²
= (M cos(t) (1 - cos (∆)))² + (m sin(t) (1-cos(∆)))²
= (1 - cos(∆))² (M² cos²(t) + m² sin²(t))
= (1 - cos(∆))² ((m² + M² - m²) cos² (t) + m² sin²(t))
= (1 - cos(∆))² (M² - m²) cos² (t) + (1 - cos(∆))² m²
Find the extremum by differentiation wrt t and setting that to zero
∂(E²)/∂(t) = (1-cos(∆))² (M² - m²) (-2 cos(t) sin(t))
0 = 2 cos (t) sin (t)
0 = sin (2t)
t = nπ
Which is to say that the maximum and minimum errors occur on the
axes of the ellipse at 0 and π radians:
E²(0) = (1-cos(∆))² (M² - m²) + (1-cos(∆))² m²
= (1-cos(∆))² M²
E²(π) = (1-cos(∆))² m²
maximum error = M (1-cos(∆))
minimum error = m (1-cos(∆))
We must make maximum error ≤ tolerance, so compute the ∆ needed:
tolerance = M (1-cos(∆))
tolerance / M = 1 - cos (∆)
cos(∆) = 1 - tolerance/M
∆ = acos (1 - tolerance / M);
Remembering that ∆ is half of our angle between vertices,
the number of vertices is then
vertices = ceil(2π/2∆).
= ceil(π/∆).
Note that this also equation works for M == m (a circle) as it
doesn't matter where on the circle the error is computed.
*/
static int
_cairo_pen_vertices_needed (double tolerance,
double radius,
const cairo_matrix_t *matrix)
{
/*
* the pen is a circle that gets transformed to an ellipse by matrix.
* compute major axis length for a pen with the specified radius.
* we don't need the minor axis length.
*/
double major_axis = _cairo_matrix_transformed_circle_major_axis (matrix,
radius);
/*
* compute number of vertices needed
*/
int num_vertices;
/* Where tolerance / M is > 1, we use 4 points */
if (tolerance >= major_axis) {
num_vertices = 4;
} else {
double delta = acos (1 - tolerance / major_axis);
num_vertices = ceil (M_PI / delta);
/* number of vertices must be even */
if (num_vertices % 2)
num_vertices++;
/* And we must always have at least 4 vertices. */
if (num_vertices < 4)
num_vertices = 4;
}
return num_vertices;
}
static void
_cairo_pen_compute_slopes (cairo_pen_t *pen)
{
int i, i_prev;
cairo_pen_vertex_t *prev, *v, *next;
for (i=0, i_prev = pen->num_vertices - 1;
i < pen->num_vertices;
i_prev = i++) {
prev = &pen->vertices[i_prev];
v = &pen->vertices[i];
next = &pen->vertices[(i + 1) % pen->num_vertices];
_cairo_slope_init (&v->slope_cw, &prev->point, &v->point);
_cairo_slope_init (&v->slope_ccw, &v->point, &next->point);
}
}
/*
* Find active pen vertex for clockwise edge of stroke at the given slope.
*
* The strictness of the inequalities here is delicate. The issue is
* that the slope_ccw member of one pen vertex will be equivalent to
* the slope_cw member of the next pen vertex in a counterclockwise
* order. However, for this function, we care strongly about which
* vertex is returned.
*
* [I think the "care strongly" above has to do with ensuring that the
* pen's "extra points" from the spline's initial and final slopes are
* properly found when beginning the spline stroking.]
*/
int
_cairo_pen_find_active_cw_vertex_index (const cairo_pen_t *pen,
const cairo_slope_t *slope)
{
int i;
for (i=0; i < pen->num_vertices; i++) {
if ((_cairo_slope_compare (slope, &pen->vertices[i].slope_ccw) < 0) &&
(_cairo_slope_compare (slope, &pen->vertices[i].slope_cw) >= 0))
break;
}
/* If the desired slope cannot be found between any of the pen
* vertices, then we must have a degenerate pen, (such as a pen
* that's been transformed to a line). In that case, we consider
* the first pen vertex as the appropriate clockwise vertex.
*/
if (i == pen->num_vertices)
i = 0;
return i;
}
/* Find active pen vertex for counterclockwise edge of stroke at the given slope.
*
* Note: See the comments for _cairo_pen_find_active_cw_vertex_index
* for some details about the strictness of the inequalities here.
*/
int
_cairo_pen_find_active_ccw_vertex_index (const cairo_pen_t *pen,
const cairo_slope_t *slope)
{
cairo_slope_t slope_reverse;
int i;
slope_reverse = *slope;
slope_reverse.dx = -slope_reverse.dx;
slope_reverse.dy = -slope_reverse.dy;
for (i=pen->num_vertices-1; i >= 0; i--) {
if ((_cairo_slope_compare (&pen->vertices[i].slope_ccw, &slope_reverse) >= 0) &&
(_cairo_slope_compare (&pen->vertices[i].slope_cw, &slope_reverse) < 0))
break;
}
/* If the desired slope cannot be found between any of the pen
* vertices, then we must have a degenerate pen, (such as a pen
* that's been transformed to a line). In that case, we consider
* the last pen vertex as the appropriate counterclockwise vertex.
*/
if (i < 0)
i = pen->num_vertices - 1;
return i;
}
|