1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
|
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2002 University of Southern California
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is University of Southern
* California.
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
*/
#define _GNU_SOURCE
#include <stdlib.h>
#include "cairoint.h"
static void
_cairo_matrix_scalar_multiply (cairo_matrix_t *matrix, double scalar);
static void
_cairo_matrix_compute_adjoint (cairo_matrix_t *matrix);
/**
* cairo_matrix_init_identity:
* @matrix: a #cairo_matrix_t
*
* Modifies @matrix to be an identity transformation.
**/
void
cairo_matrix_init_identity (cairo_matrix_t *matrix)
{
cairo_matrix_init (matrix,
1, 0,
0, 1,
0, 0);
}
slim_hidden_def(cairo_matrix_init_identity);
/**
* cairo_matrix_init:
* @matrix: a cairo_matrix_t
* @xx: xx component of the affine transformation
* @yx: yx component of the affine transformation
* @xy: xy component of the affine transformation
* @yy: yy component of the affine transformation
* @x0: X translation component of the affine transformation
* @y0: Y translation component of the affine transformation
*
* Sets @matrix to be the affine transformation given by
* @xx, @yx, @xy, @yy, @x0, @y0. The transformation is given
* by:
* <programlisting>
* x_new = xx * x + xy * y + x0;
* y_new = yx * x + yy * y + y0;
* </programlisting>
**/
void
cairo_matrix_init (cairo_matrix_t *matrix,
double xx, double yx,
double xy, double yy,
double x0, double y0)
{
matrix->xx = xx; matrix->yx = yx;
matrix->xy = xy; matrix->yy = yy;
matrix->x0 = x0; matrix->y0 = y0;
}
slim_hidden_def(cairo_matrix_init);
/**
* _cairo_matrix_get_affine:
* @matrix: a @cairo_matrix_t
* @xx: location to store xx component of matrix
* @yx: location to store yx component of matrix
* @xy: location to store xy component of matrix
* @yy: location to store yy component of matrix
* @x0: location to store x0 (X-translation component) of matrix, or %NULL
* @y0: location to store y0 (Y-translation component) of matrix, or %NULL
*
* Gets the matrix values for the affine tranformation that @matrix represents.
* See cairo_matrix_init().
*
*
* This function is a leftover from the old public API, but is still
* mildly useful as an internal means for getting at the matrix
* members in a positional way. For example, when reassigning to some
* external matrix type, or when renaming members to more meaningful
* names (such as a,b,c,d,e,f) for particular manipulations.
**/
void
_cairo_matrix_get_affine (const cairo_matrix_t *matrix,
double *xx, double *yx,
double *xy, double *yy,
double *x0, double *y0)
{
*xx = matrix->xx;
*yx = matrix->yx;
*xy = matrix->xy;
*yy = matrix->yy;
if (x0)
*x0 = matrix->x0;
if (y0)
*y0 = matrix->y0;
}
/**
* cairo_matrix_init_translate:
* @matrix: a cairo_matrix_t
* @tx: amount to translate in the X direction
* @ty: amount to translate in the Y direction
*
* Initializes @matrix to a transformation that translates by @tx and
* @ty in the X and Y dimensions, respectively.
**/
void
cairo_matrix_init_translate (cairo_matrix_t *matrix,
double tx, double ty)
{
cairo_matrix_init (matrix,
1, 0,
0, 1,
tx, ty);
}
slim_hidden_def(cairo_matrix_init_translate);
/**
* cairo_matrix_translate:
* @matrix: a cairo_matrix_t
* @tx: amount to translate in the X direction
* @ty: amount to translate in the Y direction
*
* Applies a translation by @tx, @ty to the transformation in
* @matrix. The effect of the new transformation is to first translate
* the coordinates by @tx and @ty, then apply the original transformation
* to the coordinates.
**/
void
cairo_matrix_translate (cairo_matrix_t *matrix, double tx, double ty)
{
cairo_matrix_t tmp;
cairo_matrix_init_translate (&tmp, tx, ty);
cairo_matrix_multiply (matrix, &tmp, matrix);
}
/**
* cairo_matrix_init_scale:
* @matrix: a cairo_matrix_t
* @sx: scale factor in the X direction
* @sy: scale factor in the Y direction
*
* Initializes @matrix to a transformation that scales by @sx and @sy
* in the X and Y dimensions, respectively.
**/
void
cairo_matrix_init_scale (cairo_matrix_t *matrix,
double sx, double sy)
{
cairo_matrix_init (matrix,
sx, 0,
0, sy,
0, 0);
}
slim_hidden_def(cairo_matrix_init_scale);
/**
* cairo_matrix_scale:
* @matrix: a #cairo_matrix_t
* @sx: scale factor in the X direction
* @sy: scale factor in the Y direction
*
* Applies scaling by @tx, @ty to the transformation in @matrix. The
* effect of the new transformation is to first scale the coordinates
* by @sx and @sy, then apply the original transformation to the coordinates.
**/
void
cairo_matrix_scale (cairo_matrix_t *matrix, double sx, double sy)
{
cairo_matrix_t tmp;
cairo_matrix_init_scale (&tmp, sx, sy);
cairo_matrix_multiply (matrix, &tmp, matrix);
}
slim_hidden_def(cairo_matrix_scale);
/**
* cairo_matrix_init_rotate:
* @matrix: a cairo_matrix_t
* @radians: angle of rotation, in radians. The direction of rotation
* is defined such that positive angles rotate in the direction from
* the positive X axis toward the positive Y axis. With the default
* axis orientation of cairo, positive angles rotate in a clockwise
* direction.
*
* Initialized @matrix to a transformation that rotates by @radians.
**/
void
cairo_matrix_init_rotate (cairo_matrix_t *matrix,
double radians)
{
double s;
double c;
s = sin (radians);
c = cos (radians);
cairo_matrix_init (matrix,
c, s,
-s, c,
0, 0);
}
slim_hidden_def(cairo_matrix_init_rotate);
/**
* cairo_matrix_rotate:
* @matrix: a @cairo_matrix_t
* @radians: angle of rotation, in radians. The direction of rotation
* is defined such that positive angles rotate in the direction from
* the positive X axis toward the positive Y axis. With the default
* axis orientation of cairo, positive angles rotate in a clockwise
* direction.
*
* Applies rotation by @radians to the transformation in
* @matrix. The effect of the new transformation is to first rotate the
* coordinates by @radians, then apply the original transformation
* to the coordinates.
**/
void
cairo_matrix_rotate (cairo_matrix_t *matrix, double radians)
{
cairo_matrix_t tmp;
cairo_matrix_init_rotate (&tmp, radians);
cairo_matrix_multiply (matrix, &tmp, matrix);
}
/**
* cairo_matrix_multiply:
* @result: a @cairo_matrix_t in which to store the result
* @a: a @cairo_matrix_t
* @b: a @cairo_matrix_t
*
* Multiplies the affine transformations in @a and @b together
* and stores the result in @result. The effect of the resulting
* transformation is to first apply the transformation in @a to the
* coordinates and then apply the transformation in @b to the
* coordinates.
*
* It is allowable for @result to be identical to either @a or @b.
**/
/*
* XXX: The ordering of the arguments to this function corresponds
* to [row_vector]*A*B. If we want to use column vectors instead,
* then we need to switch the two arguments and fix up all
* uses.
*/
void
cairo_matrix_multiply (cairo_matrix_t *result, const cairo_matrix_t *a, const cairo_matrix_t *b)
{
cairo_matrix_t r;
r.xx = a->xx * b->xx + a->yx * b->xy;
r.yx = a->xx * b->yx + a->yx * b->yy;
r.xy = a->xy * b->xx + a->yy * b->xy;
r.yy = a->xy * b->yx + a->yy * b->yy;
r.x0 = a->x0 * b->xx + a->y0 * b->xy + b->x0;
r.y0 = a->x0 * b->yx + a->y0 * b->yy + b->y0;
*result = r;
}
slim_hidden_def(cairo_matrix_multiply);
/**
* cairo_matrix_transform_distance:
* @matrix: a @cairo_matrix_t
* @dx: X component of a distance vector. An in/out parameter
* @dy: Y component of a distance vector. An in/out parameter
*
* Transforms the distance vector (@dx,@dy) by @matrix. This is
* similar to cairo_matrix_transform() except that the translation
* components of the transformation are ignored. The calculation of
* the returned vector is as follows:
*
* <programlisting>
* dx2 = dx1 * a + dy1 * c;
* dy2 = dx1 * b + dy1 * d;
* </programlisting>
*
* Affine transformations are position invariant, so the same vector
* always transforms to the same vector. If (@x1,@y1) transforms
* to (@x2,@y2) then (@x1+@dx1,@y1+@dy1) will transform to
* (@x1+@dx2,@y1+@dy2) for all values of @x1 and @x2.
**/
void
cairo_matrix_transform_distance (const cairo_matrix_t *matrix, double *dx, double *dy)
{
double new_x, new_y;
new_x = (matrix->xx * *dx + matrix->xy * *dy);
new_y = (matrix->yx * *dx + matrix->yy * *dy);
*dx = new_x;
*dy = new_y;
}
slim_hidden_def(cairo_matrix_transform_distance);
/**
* cairo_matrix_transform_point:
* @matrix: a @cairo_matrix_t
* @x: X position. An in/out parameter
* @y: Y position. An in/out parameter
*
* Transforms the point (@x, @y) by @matrix.
**/
void
cairo_matrix_transform_point (const cairo_matrix_t *matrix, double *x, double *y)
{
cairo_matrix_transform_distance (matrix, x, y);
*x += matrix->x0;
*y += matrix->y0;
}
slim_hidden_def(cairo_matrix_transform_point);
void
_cairo_matrix_transform_bounding_box (const cairo_matrix_t *matrix,
double *x, double *y,
double *width, double *height)
{
int i;
double quad_x[4], quad_y[4];
double dx1, dy1;
double dx2, dy2;
double min_x, max_x;
double min_y, max_y;
quad_x[0] = *x;
quad_y[0] = *y;
cairo_matrix_transform_point (matrix, &quad_x[0], &quad_y[0]);
dx1 = *width;
dy1 = 0;
cairo_matrix_transform_distance (matrix, &dx1, &dy1);
quad_x[1] = quad_x[0] + dx1;
quad_y[1] = quad_y[0] + dy1;
dx2 = 0;
dy2 = *height;
cairo_matrix_transform_distance (matrix, &dx2, &dy2);
quad_x[2] = quad_x[0] + dx2;
quad_y[2] = quad_y[0] + dy2;
quad_x[3] = quad_x[0] + dx1 + dx2;
quad_y[3] = quad_y[0] + dy1 + dy2;
min_x = max_x = quad_x[0];
min_y = max_y = quad_y[0];
for (i=1; i < 4; i++) {
if (quad_x[i] < min_x)
min_x = quad_x[i];
if (quad_x[i] > max_x)
max_x = quad_x[i];
if (quad_y[i] < min_y)
min_y = quad_y[i];
if (quad_y[i] > max_y)
max_y = quad_y[i];
}
*x = min_x;
*y = min_y;
*width = max_x - min_x;
*height = max_y - min_y;
}
static void
_cairo_matrix_scalar_multiply (cairo_matrix_t *matrix, double scalar)
{
matrix->xx *= scalar;
matrix->yx *= scalar;
matrix->xy *= scalar;
matrix->yy *= scalar;
matrix->x0 *= scalar;
matrix->y0 *= scalar;
}
/* This function isn't a correct adjoint in that the implicit 1 in the
homogeneous result should actually be ad-bc instead. But, since this
adjoint is only used in the computation of the inverse, which
divides by det (A)=ad-bc anyway, everything works out in the end. */
static void
_cairo_matrix_compute_adjoint (cairo_matrix_t *matrix)
{
/* adj (A) = transpose (C:cofactor (A,i,j)) */
double a, b, c, d, tx, ty;
_cairo_matrix_get_affine (matrix,
&a, &b,
&c, &d,
&tx, &ty);
cairo_matrix_init (matrix,
d, -b,
-c, a,
c*ty - d*tx, b*tx - a*ty);
}
/**
* cairo_matrix_invert:
* @matrix: a @cairo_matrix_t
*
* Changes @matrix to be the inverse of it's original value. Not
* all transformation matrices have inverses; if the matrix
* collapses points together (it is <firstterm>degenerate</firstterm>),
* then it has no inverse and this function will fail.
*
* Returns: If @matrix has an inverse, modifies @matrix to
* be the inverse matrix and returns %CAIRO_STATUS_SUCCESS. Otherwise,
* returns %CAIRO_STATUS_INVALID_MATRIX.
**/
cairo_status_t
cairo_matrix_invert (cairo_matrix_t *matrix)
{
/* inv (A) = 1/det (A) * adj (A) */
double det;
_cairo_matrix_compute_determinant (matrix, &det);
if (det == 0)
return CAIRO_STATUS_INVALID_MATRIX;
_cairo_matrix_compute_adjoint (matrix);
_cairo_matrix_scalar_multiply (matrix, 1 / det);
return CAIRO_STATUS_SUCCESS;
}
slim_hidden_def(cairo_matrix_invert);
void
_cairo_matrix_compute_determinant (const cairo_matrix_t *matrix,
double *det)
{
double a, b, c, d;
a = matrix->xx; b = matrix->yx;
c = matrix->xy; d = matrix->yy;
*det = a*d - b*c;
}
/* Compute the amount that each basis vector is scaled by. */
cairo_status_t
_cairo_matrix_compute_scale_factors (const cairo_matrix_t *matrix,
double *sx, double *sy, int x_major)
{
double det;
_cairo_matrix_compute_determinant (matrix, &det);
if (det == 0)
{
*sx = *sy = 0;
}
else
{
double x = x_major != 0;
double y = x == 0;
double major, minor;
cairo_matrix_transform_distance (matrix, &x, &y);
major = sqrt(x*x + y*y);
/*
* ignore mirroring
*/
if (det < 0)
det = -det;
if (major)
minor = det / major;
else
minor = 0.0;
if (x_major)
{
*sx = major;
*sy = minor;
}
else
{
*sx = minor;
*sy = major;
}
}
return CAIRO_STATUS_SUCCESS;
}
cairo_bool_t
_cairo_matrix_is_identity (const cairo_matrix_t *matrix)
{
return (matrix->xx == 1.0 && matrix->yx == 0.0 &&
matrix->xy == 0.0 && matrix->yy == 1.0 &&
matrix->x0 == 0.0 && matrix->y0 == 0.0);
}
cairo_bool_t
_cairo_matrix_is_integer_translation(const cairo_matrix_t *m,
int *itx, int *ity)
{
cairo_bool_t is_integer_translation;
cairo_fixed_t x0_fixed, y0_fixed;
x0_fixed = _cairo_fixed_from_double (m->x0);
y0_fixed = _cairo_fixed_from_double (m->y0);
is_integer_translation = ((m->xx == 1.0) &&
(m->yx == 0.0) &&
(m->xy == 0.0) &&
(m->yy == 1.0) &&
(_cairo_fixed_is_integer(x0_fixed)) &&
(_cairo_fixed_is_integer(y0_fixed)));
if (! is_integer_translation)
return FALSE;
if (itx)
*itx = _cairo_fixed_integer_part(x0_fixed);
if (ity)
*ity = _cairo_fixed_integer_part(y0_fixed);
return TRUE;
}
/*
A circle in user space is transformed into an ellipse in device space.
The following is a derivation of a formula to calculate the length of the
major axis for this ellipse; this is useful for error bounds calculations.
Thanks to Walter Brisken <wbrisken@aoc.nrao.edu> for this derivation:
1. First some notation:
All capital letters represent vectors in two dimensions. A prime '
represents a transformed coordinate. Matrices are written in underlined
form, ie _R_. Lowercase letters represent scalar real values.
2. The question has been posed: What is the maximum expansion factor
achieved by the linear transformation
X' = X _R_
where _R_ is a real-valued 2x2 matrix with entries:
_R_ = [a b]
[c d] .
In other words, what is the maximum radius, MAX[ |X'| ], reached for any
X on the unit circle ( |X| = 1 ) ?
3. Some useful formulae
(A) through (C) below are standard double-angle formulae. (D) is a lesser
known result and is derived below:
(A) sin²(θ) = (1 - cos(2*θ))/2
(B) cos²(θ) = (1 + cos(2*θ))/2
(C) sin(θ)*cos(θ) = sin(2*θ)/2
(D) MAX[a*cos(θ) + b*sin(θ)] = sqrt(a² + b²)
Proof of (D):
find the maximum of the function by setting the derivative to zero:
-a*sin(θ)+b*cos(θ) = 0
From this it follows that
tan(θ) = b/a
and hence
sin(θ) = b/sqrt(a² + b²)
and
cos(θ) = a/sqrt(a² + b²)
Thus the maximum value is
MAX[a*cos(θ) + b*sin(θ)] = (a² + b²)/sqrt(a² + b²)
= sqrt(a² + b²)
4. Derivation of maximum expansion
To find MAX[ |X'| ] we search brute force method using calculus. The unit
circle on which X is constrained is to be parameterized by t:
X(θ) = (cos(θ), sin(θ))
Thus
X'(θ) = X(θ) * _R_ = (cos(θ), sin(θ)) * [a b]
[c d]
= (a*cos(θ) + c*sin(θ), b*cos(θ) + d*sin(θ)).
Define
r(θ) = |X'(θ)|
Thus
r²(θ) = (a*cos(θ) + c*sin(θ))² + (b*cos(θ) + d*sin(θ))²
= (a² + b²)*cos²(θ) + (c² + d²)*sin²(θ)
+ 2*(a*c + b*d)*cos(θ)*sin(θ)
Now apply the double angle formulae (A) to (C) from above:
r²(θ) = (a² + b² + c² + d²)/2
+ (a² + b² - c² - d²)*cos(2*θ)/2
+ (a*c + b*d)*sin(2*θ)
= f + g*cos(φ) + h*sin(φ)
Where
f = (a² + b² + c² + d²)/2
g = (a² + b² - c² - d²)/2
h = (a*c + d*d)
φ = 2*θ
It is clear that MAX[ |X'| ] = sqrt(MAX[ r² ]). Here we determine MAX[ r² ]
using (D) from above:
MAX[ r² ] = f + sqrt(g² + h²)
And finally
MAX[ |X'| ] = sqrt( f + sqrt(g² + h²) )
Which is the solution to this problem.
Walter Brisken
2004/10/08
(Note that the minor axis length is at the minimum of the above solution,
which is just sqrt ( f - sqrt(g² + h²) ) given the symmetry of (D)).
*/
/* determine the length of the major axis of a circle of the given radius
after applying the transformation matrix. */
double
_cairo_matrix_transformed_circle_major_axis (cairo_matrix_t *matrix, double radius)
{
double a, b, c, d, f, g, h, i, j;
_cairo_matrix_get_affine (matrix,
&a, &b,
&c, &d,
NULL, NULL);
i = a*a + b*b;
j = c*c + d*d;
f = 0.5 * (i + j);
g = 0.5 * (i - j);
h = a*c + b*d;
return radius * sqrt (f + sqrt (g*g+h*h));
/*
* we don't need the minor axis length, which is
* double min = radius * sqrt (f - sqrt (g*g+h*h));
*/
}
void
_cairo_matrix_to_pixman_matrix (const cairo_matrix_t *matrix,
pixman_transform_t *pixman_transform)
{
pixman_transform->matrix[0][0] = _cairo_fixed_from_double (matrix->xx);
pixman_transform->matrix[0][1] = _cairo_fixed_from_double (matrix->xy);
pixman_transform->matrix[0][2] = _cairo_fixed_from_double (matrix->x0);
pixman_transform->matrix[1][0] = _cairo_fixed_from_double (matrix->yx);
pixman_transform->matrix[1][1] = _cairo_fixed_from_double (matrix->yy);
pixman_transform->matrix[1][2] = _cairo_fixed_from_double (matrix->y0);
pixman_transform->matrix[2][0] = 0;
pixman_transform->matrix[2][1] = 0;
pixman_transform->matrix[2][2] = _cairo_fixed_from_double (1);
}
|