summaryrefslogtreecommitdiff
path: root/src/cairo-hash.c
blob: 948cd232f89812795cb832fffcb7dbc43097952f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
/* cairo - a vector graphics library with display and print output
 *
 * Copyright © 2004 Red Hat, Inc.
 * Copyright © 2005 Red Hat, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 *
 * The Original Code is the cairo graphics library.
 *
 * The Initial Developer of the Original Code is Red Hat, Inc.
 *
 * Contributor(s):
 *      Keith Packard <keithp@keithp.com>
 *	Graydon Hoare <graydon@redhat.com>
 *	Carl Worth <cworth@cworth.org>
 */

#include "cairoint.h"

/*
 * An entry can be in one of three states:
 *
 * FREE: Entry has never been used, terminates all searches.
 *       Appears in the table as a NULL pointer.
 *
 * DEAD: Entry had been live in the past. A dead entry can be reused
 *       but does not terminate a search for an exact entry.
 *       Appears in the table as a pointer to DEAD_ENTRY.
 *
 * LIVE: Entry is currently being used.
 *       Appears in the table as any non-NULL, non-DEAD_ENTRY pointer.
 */

static cairo_hash_entry_t dead_entry = { 0 };
#define DEAD_ENTRY (&dead_entry)

#define ENTRY_IS_FREE(entry) ((entry) == NULL)
#define ENTRY_IS_DEAD(entry) ((entry) == DEAD_ENTRY)
#define ENTRY_IS_LIVE(entry) ((entry) && ! ENTRY_IS_DEAD(entry))

/* We expect keys will not be destroyed frequently, so our table does not
 * contain any explicit shrinking code nor any chain-coalescing code for
 * entries randomly deleted by memory pressure (except during rehashing, of
 * course). These assumptions are potentially bad, but they make the
 * implementation straightforward.
 *
 * Revisit later if evidence appears that we're using excessive memory from
 * a mostly-dead table.
 *
 * This table is open-addressed with double hashing. Each table size is a
 * prime chosen to be a little more than double the high water mark for a
 * given arrangement, so the tables should remain < 50% full. The table
 * size makes for the "first" hash modulus; a second prime (2 less than the
 * first prime) serves as the "second" hash modulus, which is co-prime and
 * thus guarantees a complete permutation of table indices.
 *
 * This structure, and accompanying table, is borrowed/modified from the
 * file xserver/render/glyph.c in the freedesktop.org x server, with
 * permission (and suggested modification of doubling sizes) by Keith
 * Packard.
 */

typedef struct _cairo_hash_table_arrangement {
    unsigned long high_water_mark;
    unsigned long size;
    unsigned long rehash;
} cairo_hash_table_arrangement_t;

static const cairo_hash_table_arrangement_t hash_table_arrangements [] = {
    { 16,		43,		41		},
    { 32,		73,		71		},
    { 64,		151,		149		},
    { 128,		283,		281		},
    { 256,		571,		569		},
    { 512,		1153,		1151		},
    { 1024,		2269,		2267		},
    { 2048,		4519,		4517		},
    { 4096,		9013,		9011		},
    { 8192,		18043,		18041		},
    { 16384,		36109,		36107		},
    { 32768,		72091,		72089		},
    { 65536,		144409,		144407		},
    { 131072,		288361,		288359		},
    { 262144,		576883,		576881		},
    { 524288,		1153459,	1153457		},
    { 1048576,		2307163,	2307161		},
    { 2097152,		4613893,	4613891		},
    { 4194304,		9227641,	9227639		},
    { 8388608,		18455029,	18455027	},
    { 16777216,		36911011,	36911009	},
    { 33554432,		73819861,	73819859 	},
    { 67108864,		147639589,	147639587	},
    { 134217728,	295279081,	295279079	},
    { 268435456,	590559793,	590559791	}
};

#define NUM_HASH_TABLE_ARRANGEMENTS ((int)(sizeof(hash_table_arrangements)/sizeof(hash_table_arrangements[0])))

struct _cairo_hash_table {
    cairo_hash_keys_equal_func_t keys_equal;

    const cairo_hash_table_arrangement_t *arrangement;
    cairo_hash_entry_t **entries;

    unsigned long live_entries;
    unsigned long iterating;   /* Iterating, no insert, no resize */
};

/**
 * _cairo_hash_table_create:
 * @keys_equal: a function to return TRUE if two keys are equal
 *
 * Creates a new hash table which will use the keys_equal() function
 * to compare hash keys. Data is provided to the hash table in the
 * form of user-derived versions of cairo_hash_entry_t. A hash entry
 * must be able to hold both a key (including a hash code) and a
 * value. Sometimes only the key will be necessary, (as in
 * _cairo_hash_table_remove), and other times both a key and a value
 * will be necessary, (as in _cairo_hash_table_insert).
 *
 * See #cairo_hash_entry_t for more details.
 *
 * Return value: the new hash table or NULL if out of memory.
 **/
cairo_hash_table_t *
_cairo_hash_table_create (cairo_hash_keys_equal_func_t keys_equal)
{
    cairo_hash_table_t *hash_table;

    hash_table = malloc (sizeof (cairo_hash_table_t));
    if (hash_table == NULL)
	return NULL;

    hash_table->keys_equal = keys_equal;

    hash_table->arrangement = &hash_table_arrangements[0];

    hash_table->entries = calloc (hash_table->arrangement->size,
				  sizeof(cairo_hash_entry_t *));
    if (hash_table->entries == NULL) {
	free (hash_table);
	return NULL;
    }

    hash_table->live_entries = 0;
    hash_table->iterating = 0;

    return hash_table;
}

/**
 * _cairo_hash_table_destroy:
 * @hash_table: an empty hash table to destroy
 *
 * Immediately destroys the given hash table, freeing all resources
 * associated with it.
 *
 * WARNING: The hash_table must have no live entries in it before
 * _cairo_hash_table_destroy is called. It is a fatal error otherwise,
 * and this function will halt. The rationale for this behavior is to
 * avoid memory leaks and to avoid needless complication of the API
 * with destroy notifiy callbacks.
 *
 * WARNING: The hash_table must have no running iterators in it when
 * _cairo_hash_table_destroy is called. It is a fatal error otherwise,
 * and this function will halt.
 **/
void
_cairo_hash_table_destroy (cairo_hash_table_t *hash_table)
{
    if (hash_table == NULL)
	return;

    /* The hash table must be empty. Otherwise, halt. */
    assert (hash_table->live_entries == 0);
    /* No iterators can be running. Otherwise, halt. */
    assert (hash_table->iterating == 0);

    free (hash_table->entries);
    hash_table->entries = NULL;

    free (hash_table);
}

/**
 * _cairo_hash_table_lookup_internal:
 *
 * @hash_table: a #cairo_hash_table_t to search
 * @key: the key to search on
 * @hash_code: the hash_code for @key
 * @key_unique: If TRUE, then caller asserts that no key already
 * exists that will compare equal to #key, so search can be
 * optimized. If unsure, set to FALSE and the code will always work.
 *
 * Search the hashtable for a live entry for which
 * hash_table->keys_equal returns true. If no such entry exists then
 * return the first available (free or dead entry).
 *
 * If the key_unique flag is set, then the search will never call
 * hash_table->keys_equal and will act as if it always returned
 * false. This is useful as a performance optimization in special
 * circumstances where the caller knows that there is no existing
 * entry in the hash table with a matching key.
 *
 * Return value: The matching entry in the hash table (if
 * any). Otherwise, the first available entry. The caller should check
 * entry->state to check whether a match was found or not.
 **/
static cairo_hash_entry_t **
_cairo_hash_table_lookup_internal (cairo_hash_table_t *hash_table,
				   cairo_hash_entry_t *key,
				   cairo_bool_t	       key_is_unique)
{
    cairo_hash_entry_t **entry, **first_available = NULL;
    unsigned long table_size, i, idx, step;

    table_size = hash_table->arrangement->size;

    idx = key->hash % table_size;
    step = 0;

    for (i = 0; i < table_size; ++i)
    {
	entry = &hash_table->entries[idx];

	if (ENTRY_IS_FREE(*entry))
	{
	    return entry;
	}
	else if (ENTRY_IS_DEAD(*entry))
	{
	    if (key_is_unique) {
		return entry;
	    } else {
		if (! first_available)
		    first_available = entry;
	    }
	}
	else /* ENTRY_IS_LIVE(*entry) */
	{
	    if (! key_is_unique)
		if (hash_table->keys_equal (key, *entry))
		    return entry;
	}

	if (step == 0) {
	    step = key->hash % hash_table->arrangement->rehash;
	    if (step == 0)
		step = 1;
	}

	idx += step;
	if (idx >= table_size)
	    idx -= table_size;
    }

    /*
     * The table should not have permitted you to get here if you were just
     * looking for a free slot: there should have been room.
     */
    assert (key_is_unique == 0);

    return first_available;
}

/**
 * _cairo_hash_table_resize:
 * @hash_table: a hash table
 *
 * Resize the hash table if the number of entries has gotten much
 * bigger or smaller than the ideal number of entries for the current
 * size.
 *
 * Return value: CAIRO_STATUS_SUCCESS if successful or
 * CAIRO_STATUS_NO_MEMORY if out of memory.
 **/
static cairo_status_t
_cairo_hash_table_resize  (cairo_hash_table_t *hash_table)
{
    cairo_hash_table_t tmp;
    cairo_hash_entry_t **entry;
    unsigned long new_size, i;

    /* This keeps the hash table between 25% and 50% full. */
    unsigned long high = hash_table->arrangement->high_water_mark;
    unsigned long low = high >> 2;

    if (hash_table->live_entries >= low && hash_table->live_entries <= high)
	return CAIRO_STATUS_SUCCESS;

    tmp = *hash_table;

    if (hash_table->live_entries > high)
    {
	tmp.arrangement = hash_table->arrangement + 1;
	/* This code is being abused if we can't make a table big enough. */
	assert (tmp.arrangement - hash_table_arrangements <
		NUM_HASH_TABLE_ARRANGEMENTS);
    }
    else /* hash_table->live_entries < low */
    {
	/* Can't shrink if we're at the smallest size */
	if (hash_table->arrangement == &hash_table_arrangements[0])
	    return CAIRO_STATUS_SUCCESS;
	tmp.arrangement = hash_table->arrangement - 1;
    }

    new_size = tmp.arrangement->size;
    tmp.entries = calloc (new_size, sizeof (cairo_hash_entry_t*));
    if (tmp.entries == NULL)
	return CAIRO_STATUS_NO_MEMORY;

    for (i = 0; i < hash_table->arrangement->size; ++i) {
	if (ENTRY_IS_LIVE (hash_table->entries[i])) {
	    entry = _cairo_hash_table_lookup_internal (&tmp,
						       hash_table->entries[i],
						       TRUE);
	    assert (ENTRY_IS_FREE(*entry));
	    *entry = hash_table->entries[i];
	}
    }

    free (hash_table->entries);
    hash_table->entries = tmp.entries;
    hash_table->arrangement = tmp.arrangement;

    return CAIRO_STATUS_SUCCESS;
}

/**
 * _cairo_hash_table_lookup:
 * @hash_table: a hash table
 * @key: the key of interest
 * @entry_return: pointer for return value.
 *
 * Performs a lookup in @hash_table looking for an entry which has a
 * key that matches @key, (as determined by the keys_equal() function
 * passed to _cairo_hash_table_create).
 *
 * Return value: TRUE if there is an entry in the hash table that
 * matches the given key, (which will now be in *entry_return). FALSE
 * otherwise, (in which case *entry_return will be NULL).
 **/
cairo_bool_t
_cairo_hash_table_lookup (cairo_hash_table_t *hash_table,
			  cairo_hash_entry_t *key,
			  cairo_hash_entry_t **entry_return)
{
    cairo_hash_entry_t **entry;

    /* See if we have an entry in the table already. */
    entry = _cairo_hash_table_lookup_internal (hash_table, key, FALSE);
    if (ENTRY_IS_LIVE(*entry)) {
	*entry_return = *entry;
	return TRUE;
    }

    *entry_return = NULL;
    return FALSE;
}

/**
 * _cairo_hash_table_random_entry:
 * @hash_table: a hash table
 * @predicate: a predicate function, or NULL for any entry.
 *
 * Find a random entry in the hash table satisfying the given
 * @predicate. A NULL @predicate is taken as equivalent to a function
 * which always returns TRUE, (eg. any entry in the table will do).
 *
 * We use the same algorithm as the lookup algorithm to walk over the
 * entries in the hash table in a pseudo-random order. Walking
 * linearly would favor entries following gaps in the hash table. We
 * could also call rand() repeatedly, which works well for almost-full
 * tables, but degrades when the table is almost empty, or predicate
 * returns TRUE for most entries.
 *
 * Return value: a random live entry or NULL if there are no entries
 * that match the given predicate. In particular, if predicate is
 * NULL, a NULL return value indicates that the table is empty.
 **/
void *
_cairo_hash_table_random_entry (cairo_hash_table_t	   *hash_table,
				cairo_hash_predicate_func_t predicate)
{
    cairo_hash_entry_t **entry;
    unsigned long hash;
    unsigned long table_size, i, idx, step;

    table_size = hash_table->arrangement->size;

    hash = rand ();
    idx = hash % table_size;
    step = 0;

    for (i = 0; i < table_size; ++i)
    {
	entry = &hash_table->entries[idx];

	if (ENTRY_IS_LIVE (*entry) &&
	    (predicate == NULL || predicate (*entry)))
	{
	    return *entry;
	}

	if (step == 0) {
	    step = hash % hash_table->arrangement->rehash;
	    if (step == 0)
		step = 1;
	}

	idx += step;
	if (idx >= table_size)
	    idx -= table_size;
    }

    return NULL;
}

/**
 * _cairo_hash_table_insert:
 * @hash_table: a hash table
 * @key_and_value: an entry to be inserted
 *
 * Insert the entry #key_and_value into the hash table.
 *
 * WARNING: It is a fatal error if an entry exists in the hash table
 * with a matching key, (this function will halt).
 *
 * WARNING: It is a fatal error to insert an element while
 * an iterator is running
 *
 * Instead of using insert to replace an entry, consider just editing
 * the entry obtained with _cairo_hash_table_lookup. Or if absolutely
 * necessary, use _cairo_hash_table_remove first.
 *
 * Return value: CAIRO_STATUS_SUCCESS if successful or
 * CAIRO_STATUS_NO_MEMORY if insufficient memory is available.
 **/
cairo_status_t
_cairo_hash_table_insert (cairo_hash_table_t *hash_table,
			  cairo_hash_entry_t *key_and_value)
{
    cairo_status_t status;
    cairo_hash_entry_t **entry;

    /* Insert is illegal while an iterator is running. */
    assert (hash_table->iterating == 0);

    entry = _cairo_hash_table_lookup_internal (hash_table,
					       key_and_value, FALSE);

    if (ENTRY_IS_LIVE(*entry))
    {
	/* User is being bad, let's crash. */
	ASSERT_NOT_REACHED;
    }

    *entry = key_and_value;
    hash_table->live_entries++;

    status = _cairo_hash_table_resize (hash_table);
    if (status)
	return status;

    return CAIRO_STATUS_SUCCESS;
}

/**
 * _cairo_hash_table_remove:
 * @hash_table: a hash table
 * @key: key of entry to be removed
 *
 * Remove an entry from the hash table which has a key that matches
 * @key, if any (as determined by the keys_equal() function passed to
 * _cairo_hash_table_create).
 *
 * Return value: CAIRO_STATUS_SUCCESS if successful or
 * CAIRO_STATUS_NO_MEMORY if out of memory.
 **/
void
_cairo_hash_table_remove (cairo_hash_table_t *hash_table,
			  cairo_hash_entry_t *key)
{
    cairo_hash_entry_t **entry;

    entry = _cairo_hash_table_lookup_internal (hash_table, key, FALSE);
    if (! ENTRY_IS_LIVE(*entry))
	return;

    *entry = DEAD_ENTRY;
    hash_table->live_entries--;

    /* Check for table resize. Don't do this when iterating as this will
     * reorder elements of the table and cause the iteration to potentially
     * skip some elements. */
    if (hash_table->iterating == 0) {
	/* This call _can_ fail, but only in failing to allocate new
	 * memory to shrink the hash table. It does leave the table in a
	 * consistent state, and we've already succeeded in removing the
	 * entry, so we don't examine the failure status of this call. */
	_cairo_hash_table_resize (hash_table);
    }
}

/**
 * _cairo_hash_table_foreach:
 * @hash_table: a hash table
 * @hash_callback: function to be called for each live entry
 * @closure: additional argument to be passed to @hash_callback
 *
 * Call @hash_callback for each live entry in the hash table, in a
 * non-specified order.
 *
 * Entries in @hash_table may be removed by code executed from @hash_callback.
 *
 * Entries may not be inserted to @hash_table, nor may @hash_table
 * be destroyed by code executed from @hash_callback. The relevant
 * functions will halt in these cases.
 **/
void
_cairo_hash_table_foreach (cairo_hash_table_t	      *hash_table,
			   cairo_hash_callback_func_t  hash_callback,
			   void			      *closure)
{
    unsigned long i;
    cairo_hash_entry_t *entry;

    if (hash_table == NULL)
	return;

    /* Mark the table for iteration */
    ++hash_table->iterating;
    for (i = 0; i < hash_table->arrangement->size; i++) {
	entry = hash_table->entries[i];
	if (ENTRY_IS_LIVE(entry))
	    hash_callback (entry, closure);
    }
    /* If some elements were deleted during the iteration,
     * the table may need resizing. Just do this every time
     * as the check is inexpensive.
     */
    if (--hash_table->iterating == 0)
	_cairo_hash_table_resize (hash_table);
}