summaryrefslogtreecommitdiff
path: root/arch/parisc/lib/milli/div_const.S
blob: dd660076e94458ad2060fa29f2794339c01a23c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/* 32 and 64-bit millicode, original author Hewlett-Packard
   adapted for gcc by Paul Bame <bame@debian.org>
   and Alan Modra <alan@linuxcare.com.au>.

   Copyright 2001, 2002, 2003 Free Software Foundation, Inc.

   This file is part of GCC and is released under the terms of
   of the GNU General Public License as published by the Free Software
   Foundation; either version 2, or (at your option) any later version.
   See the file COPYING in the top-level GCC source directory for a copy
   of the license.  */

#include "milli.h"

#ifdef L_div_const
/* ROUTINE:	$$divI_2
   .		$$divI_3	$$divU_3
   .		$$divI_4
   .		$$divI_5	$$divU_5
   .		$$divI_6	$$divU_6
   .		$$divI_7	$$divU_7
   .		$$divI_8
   .		$$divI_9	$$divU_9
   .		$$divI_10	$$divU_10
   .
   .		$$divI_12	$$divU_12
   .
   .		$$divI_14	$$divU_14
   .		$$divI_15	$$divU_15
   .		$$divI_16
   .		$$divI_17	$$divU_17
   .
   .	Divide by selected constants for single precision binary integers.

   INPUT REGISTERS:
   .	arg0 ==	dividend
   .	mrp  == return pc
   .	sr0  == return space when called externally

   OUTPUT REGISTERS:
   .	arg0 =	undefined
   .	arg1 =	undefined
   .	ret1 =	quotient

   OTHER REGISTERS AFFECTED:
   .	r1   =	undefined

   SIDE EFFECTS:
   .	Causes a trap under the following conditions: NONE
   .	Changes memory at the following places:  NONE

   PERMISSIBLE CONTEXT:
   .	Unwindable.
   .	Does not create a stack frame.
   .	Suitable for internal or external millicode.
   .	Assumes the special millicode register conventions.

   DISCUSSION:
   .	Calls other millicode routines using mrp:  NONE
   .	Calls other millicode routines:  NONE  */


/* TRUNCATED DIVISION BY SMALL INTEGERS

   We are interested in q(x) = floor(x/y), where x >= 0 and y > 0
   (with y fixed).

   Let a = floor(z/y), for some choice of z.  Note that z will be
   chosen so that division by z is cheap.

   Let r be the remainder(z/y).  In other words, r = z - ay.

   Now, our method is to choose a value for b such that

   q'(x) = floor((ax+b)/z)

   is equal to q(x) over as large a range of x as possible.  If the
   two are equal over a sufficiently large range, and if it is easy to
   form the product (ax), and it is easy to divide by z, then we can
   perform the division much faster than the general division algorithm.

   So, we want the following to be true:

   .	For x in the following range:
   .
   .	    ky <= x < (k+1)y
   .
   .	implies that
   .
   .	    k <= (ax+b)/z < (k+1)

   We want to determine b such that this is true for all k in the
   range {0..K} for some maximum K.

   Since (ax+b) is an increasing function of x, we can take each
   bound separately to determine the "best" value for b.

   (ax+b)/z < (k+1)	       implies

   (a((k+1)y-1)+b < (k+1)z     implies

   b < a + (k+1)(z-ay)	       implies

   b < a + (k+1)r

   This needs to be true for all k in the range {0..K}.  In
   particular, it is true for k = 0 and this leads to a maximum
   acceptable value for b.

   b < a+r   or   b <= a+r-1

   Taking the other bound, we have

   k <= (ax+b)/z	       implies

   k <= (aky+b)/z	       implies

   k(z-ay) <= b		       implies

   kr <= b

   Clearly, the largest range for k will be achieved by maximizing b,
   when r is not zero.	When r is zero, then the simplest choice for b
   is 0.  When r is not 0, set

   .	b = a+r-1

   Now, by construction, q'(x) = floor((ax+b)/z) = q(x) = floor(x/y)
   for all x in the range:

   .	0 <= x < (K+1)y

   We need to determine what K is.  Of our two bounds,

   .	b < a+(k+1)r	is satisfied for all k >= 0, by construction.

   The other bound is

   .	kr <= b

   This is always true if r = 0.  If r is not 0 (the usual case), then
   K = floor((a+r-1)/r), is the maximum value for k.

   Therefore, the formula q'(x) = floor((ax+b)/z) yields the correct
   answer for q(x) = floor(x/y) when x is in the range

   (0,(K+1)y-1)	       K = floor((a+r-1)/r)

   To be most useful, we want (K+1)y-1 = (max x) >= 2**32-1 so that
   the formula for q'(x) yields the correct value of q(x) for all x
   representable by a single word in HPPA.

   We are also constrained in that computing the product (ax), adding
   b, and dividing by z must all be done quickly, otherwise we will be
   better off going through the general algorithm using the DS
   instruction, which uses approximately 70 cycles.

   For each y, there is a choice of z which satisfies the constraints
   for (K+1)y >= 2**32.  We may not, however, be able to satisfy the
   timing constraints for arbitrary y.	It seems that z being equal to
   a power of 2 or a power of 2 minus 1 is as good as we can do, since
   it minimizes the time to do division by z.  We want the choice of z
   to also result in a value for (a) that minimizes the computation of
   the product (ax).  This is best achieved if (a) has a regular bit
   pattern (so the multiplication can be done with shifts and adds).
   The value of (a) also needs to be less than 2**32 so the product is
   always guaranteed to fit in 2 words.

   In actual practice, the following should be done:

   1) For negative x, you should take the absolute value and remember
   .  the fact so that the result can be negated.  This obviously does
   .  not apply in the unsigned case.
   2) For even y, you should factor out the power of 2 that divides y
   .  and divide x by it.  You can then proceed by dividing by the
   .  odd factor of y.

   Here is a table of some odd values of y, and corresponding choices
   for z which are "good".

    y	  z	  r	 a (hex)     max x (hex)

    3	2**32	  1	55555555      100000001
    5	2**32	  1	33333333      100000003
    7  2**24-1	  0	  249249     (infinite)
    9  2**24-1	  0	  1c71c7     (infinite)
   11  2**20-1	  0	   1745d     (infinite)
   13  2**24-1	  0	  13b13b     (infinite)
   15	2**32	  1	11111111      10000000d
   17	2**32	  1	 f0f0f0f      10000000f

   If r is 1, then b = a+r-1 = a.  This simplifies the computation
   of (ax+b), since you can compute (x+1)(a) instead.  If r is 0,
   then b = 0 is ok to use which simplifies (ax+b).

   The bit patterns for 55555555, 33333333, and 11111111 are obviously
   very regular.  The bit patterns for the other values of a above are:

    y	   (hex)	  (binary)

    7	  249249  001001001001001001001001  << regular >>
    9	  1c71c7  000111000111000111000111  << regular >>
   11	   1745d  000000010111010001011101  << irregular >>
   13	  13b13b  000100111011000100111011  << irregular >>

   The bit patterns for (a) corresponding to (y) of 11 and 13 may be
   too irregular to warrant using this method.

   When z is a power of 2 minus 1, then the division by z is slightly
   more complicated, involving an iterative solution.

   The code presented here solves division by 1 through 17, except for
   11 and 13. There are algorithms for both signed and unsigned
   quantities given.

   TIMINGS (cycles)

   divisor  positive  negative	unsigned

   .   1	2	   2	     2
   .   2	4	   4	     2
   .   3       19	  21	    19
   .   4	4	   4	     2
   .   5       18	  22	    19
   .   6       19	  22	    19
   .   8	4	   4	     2
   .  10       18	  19	    17
   .  12       18	  20	    18
   .  15       16	  18	    16
   .  16	4	   4	     2
   .  17       16	  18	    16

   Now, the algorithm for 7, 9, and 14 is an iterative one.  That is,
   a loop body is executed until the tentative quotient is 0.  The
   number of times the loop body is executed varies depending on the
   dividend, but is never more than two times.	If the dividend is
   less than the divisor, then the loop body is not executed at all.
   Each iteration adds 4 cycles to the timings.

   divisor  positive  negative	unsigned

   .   7       19+4n	 20+4n	   20+4n    n = number of iterations
   .   9       21+4n	 22+4n	   21+4n
   .  14       21+4n	 22+4n	   20+4n

   To give an idea of how the number of iterations varies, here is a
   table of dividend versus number of iterations when dividing by 7.

   smallest	 largest       required
   dividend	dividend      iterations

   .	0	     6		    0
   .	7	 0x6ffffff	    1
   0x1000006	0xffffffff	    2

   There is some overlap in the range of numbers requiring 1 and 2
   iterations.	*/

RDEFINE(t2,r1)
RDEFINE(x2,arg0)	/*  r26 */
RDEFINE(t1,arg1)	/*  r25 */
RDEFINE(x1,ret1)	/*  r29 */

	SUBSPA_MILLI_DIV
	ATTR_MILLI

	.proc
	.callinfo	millicode
	.entry
/* NONE of these routines require a stack frame
   ALL of these routines are unwindable from millicode	*/

GSYM($$divide_by_constant)
	.export $$divide_by_constant,millicode
/*  Provides a "nice" label for the code covered by the unwind descriptor
    for things like gprof.  */

/* DIVISION BY 2 (shift by 1) */
GSYM($$divI_2)
	.export		$$divI_2,millicode
	comclr,>=	arg0,0,0
	addi		1,arg0,arg0
	MILLIRET
	extrs		arg0,30,31,ret1


/* DIVISION BY 4 (shift by 2) */
GSYM($$divI_4)
	.export		$$divI_4,millicode
	comclr,>=	arg0,0,0
	addi		3,arg0,arg0
	MILLIRET
	extrs		arg0,29,30,ret1


/* DIVISION BY 8 (shift by 3) */
GSYM($$divI_8)
	.export		$$divI_8,millicode
	comclr,>=	arg0,0,0
	addi		7,arg0,arg0
	MILLIRET
	extrs		arg0,28,29,ret1

/* DIVISION BY 16 (shift by 4) */
GSYM($$divI_16)
	.export		$$divI_16,millicode
	comclr,>=	arg0,0,0
	addi		15,arg0,arg0
	MILLIRET
	extrs		arg0,27,28,ret1

/****************************************************************************
*
*	DIVISION BY DIVISORS OF FFFFFFFF, and powers of 2 times these
*
*	includes 3,5,15,17 and also 6,10,12
*
****************************************************************************/

/* DIVISION BY 3 (use z = 2**32; a = 55555555) */

GSYM($$divI_3)
	.export		$$divI_3,millicode
	comb,<,N	x2,0,LREF(neg3)

	addi		1,x2,x2		/* this cannot overflow	*/
	extru		x2,1,2,x1	/* multiply by 5 to get started */
	sh2add		x2,x2,x2
	b		LREF(pos)
	addc		x1,0,x1

LSYM(neg3)
	subi		1,x2,x2		/* this cannot overflow	*/
	extru		x2,1,2,x1	/* multiply by 5 to get started */
	sh2add		x2,x2,x2
	b		LREF(neg)
	addc		x1,0,x1

GSYM($$divU_3)
	.export		$$divU_3,millicode
	addi		1,x2,x2		/* this CAN overflow */
	addc		0,0,x1
	shd		x1,x2,30,t1	/* multiply by 5 to get started */
	sh2add		x2,x2,x2
	b		LREF(pos)
	addc		x1,t1,x1

/* DIVISION BY 5 (use z = 2**32; a = 33333333) */

GSYM($$divI_5)
	.export		$$divI_5,millicode
	comb,<,N	x2,0,LREF(neg5)

	addi		3,x2,t1		/* this cannot overflow	*/
	sh1add		x2,t1,x2	/* multiply by 3 to get started */
	b		LREF(pos)
	addc		0,0,x1

LSYM(neg5)
	sub		0,x2,x2		/* negate x2			*/
	addi		1,x2,x2		/* this cannot overflow	*/
	shd		0,x2,31,x1	/* get top bit (can be 1)	*/
	sh1add		x2,x2,x2	/* multiply by 3 to get started */
	b		LREF(neg)
	addc		x1,0,x1

GSYM($$divU_5)
	.export		$$divU_5,millicode
	addi		1,x2,x2		/* this CAN overflow */
	addc		0,0,x1
	shd		x1,x2,31,t1	/* multiply by 3 to get started */
	sh1add		x2,x2,x2
	b		LREF(pos)
	addc		t1,x1,x1

/* DIVISION BY	6 (shift to divide by 2 then divide by 3) */
GSYM($$divI_6)
	.export		$$divI_6,millicode
	comb,<,N	x2,0,LREF(neg6)
	extru		x2,30,31,x2	/* divide by 2			*/
	addi		5,x2,t1		/* compute 5*(x2+1) = 5*x2+5	*/
	sh2add		x2,t1,x2	/* multiply by 5 to get started */
	b		LREF(pos)
	addc		0,0,x1

LSYM(neg6)
	subi		2,x2,x2		/* negate, divide by 2, and add 1 */
					/* negation and adding 1 are done */
					/* at the same time by the SUBI   */
	extru		x2,30,31,x2
	shd		0,x2,30,x1
	sh2add		x2,x2,x2	/* multiply by 5 to get started */
	b		LREF(neg)
	addc		x1,0,x1

GSYM($$divU_6)
	.export		$$divU_6,millicode
	extru		x2,30,31,x2	/* divide by 2 */
	addi		1,x2,x2		/* cannot carry */
	shd		0,x2,30,x1	/* multiply by 5 to get started */
	sh2add		x2,x2,x2
	b		LREF(pos)
	addc		x1,0,x1

/* DIVISION BY 10 (shift to divide by 2 then divide by 5) */
GSYM($$divU_10)
	.export		$$divU_10,millicode
	extru		x2,30,31,x2	/* divide by 2 */
	addi		3,x2,t1		/* compute 3*(x2+1) = (3*x2)+3	*/
	sh1add		x2,t1,x2	/* multiply by 3 to get started */
	addc		0,0,x1
LSYM(pos)
	shd		x1,x2,28,t1	/* multiply by 0x11 */
	shd		x2,0,28,t2
	add		x2,t2,x2
	addc		x1,t1,x1
LSYM(pos_for_17)
	shd		x1,x2,24,t1	/* multiply by 0x101 */
	shd		x2,0,24,t2
	add		x2,t2,x2
	addc		x1,t1,x1

	shd		x1,x2,16,t1	/* multiply by 0x10001 */
	shd		x2,0,16,t2
	add		x2,t2,x2
	MILLIRET
	addc		x1,t1,x1

GSYM($$divI_10)
	.export		$$divI_10,millicode
	comb,<		x2,0,LREF(neg10)
	copy		0,x1
	extru		x2,30,31,x2	/* divide by 2 */
	addib,TR	1,x2,LREF(pos)	/* add 1 (cannot overflow)     */
	sh1add		x2,x2,x2	/* multiply by 3 to get started */

LSYM(neg10)
	subi		2,x2,x2		/* negate, divide by 2, and add 1 */
					/* negation and adding 1 are done */
					/* at the same time by the SUBI   */
	extru		x2,30,31,x2
	sh1add		x2,x2,x2	/* multiply by 3 to get started */
LSYM(neg)
	shd		x1,x2,28,t1	/* multiply by 0x11 */
	shd		x2,0,28,t2
	add		x2,t2,x2
	addc		x1,t1,x1
LSYM(neg_for_17)
	shd		x1,x2,24,t1	/* multiply by 0x101 */
	shd		x2,0,24,t2
	add		x2,t2,x2
	addc		x1,t1,x1

	shd		x1,x2,16,t1	/* multiply by 0x10001 */
	shd		x2,0,16,t2
	add		x2,t2,x2
	addc		x1,t1,x1
	MILLIRET
	sub		0,x1,x1

/* DIVISION BY 12 (shift to divide by 4 then divide by 3) */
GSYM($$divI_12)
	.export		$$divI_12,millicode
	comb,<		x2,0,LREF(neg12)
	copy		0,x1
	extru		x2,29,30,x2	/* divide by 4			*/
	addib,tr	1,x2,LREF(pos)	/* compute 5*(x2+1) = 5*x2+5    */
	sh2add		x2,x2,x2	/* multiply by 5 to get started */

LSYM(neg12)
	subi		4,x2,x2		/* negate, divide by 4, and add 1 */
					/* negation and adding 1 are done */
					/* at the same time by the SUBI   */
	extru		x2,29,30,x2
	b		LREF(neg)
	sh2add		x2,x2,x2	/* multiply by 5 to get started */

GSYM($$divU_12)
	.export		$$divU_12,millicode
	extru		x2,29,30,x2	/* divide by 4   */
	addi		5,x2,t1		/* cannot carry */
	sh2add		x2,t1,x2	/* multiply by 5 to get started */
	b		LREF(pos)
	addc		0,0,x1

/* DIVISION BY 15 (use z = 2**32; a = 11111111) */
GSYM($$divI_15)
	.export		$$divI_15,millicode
	comb,<		x2,0,LREF(neg15)
	copy		0,x1
	addib,tr	1,x2,LREF(pos)+4
	shd		x1,x2,28,t1

LSYM(neg15)
	b		LREF(neg)
	subi		1,x2,x2

GSYM($$divU_15)
	.export		$$divU_15,millicode
	addi		1,x2,x2		/* this CAN overflow */
	b		LREF(pos)
	addc		0,0,x1

/* DIVISION BY 17 (use z = 2**32; a =  f0f0f0f) */
GSYM($$divI_17)
	.export		$$divI_17,millicode
	comb,<,n	x2,0,LREF(neg17)
	addi		1,x2,x2		/* this cannot overflow */
	shd		0,x2,28,t1	/* multiply by 0xf to get started */
	shd		x2,0,28,t2
	sub		t2,x2,x2
	b		LREF(pos_for_17)
	subb		t1,0,x1

LSYM(neg17)
	subi		1,x2,x2		/* this cannot overflow */
	shd		0,x2,28,t1	/* multiply by 0xf to get started */
	shd		x2,0,28,t2
	sub		t2,x2,x2
	b		LREF(neg_for_17)
	subb		t1,0,x1

GSYM($$divU_17)
	.export		$$divU_17,millicode
	addi		1,x2,x2		/* this CAN overflow */
	addc		0,0,x1
	shd		x1,x2,28,t1	/* multiply by 0xf to get started */
LSYM(u17)
	shd		x2,0,28,t2
	sub		t2,x2,x2
	b		LREF(pos_for_17)
	subb		t1,x1,x1


/* DIVISION BY DIVISORS OF FFFFFF, and powers of 2 times these
   includes 7,9 and also 14


   z = 2**24-1
   r = z mod x = 0

   so choose b = 0

   Also, in order to divide by z = 2**24-1, we approximate by dividing
   by (z+1) = 2**24 (which is easy), and then correcting.

   (ax) = (z+1)q' + r
   .	= zq' + (q'+r)

   So to compute (ax)/z, compute q' = (ax)/(z+1) and r = (ax) mod (z+1)
   Then the true remainder of (ax)/z is (q'+r).  Repeat the process
   with this new remainder, adding the tentative quotients together,
   until a tentative quotient is 0 (and then we are done).  There is
   one last correction to be done.  It is possible that (q'+r) = z.
   If so, then (q'+r)/(z+1) = 0 and it looks like we are done.	But,
   in fact, we need to add 1 more to the quotient.  Now, it turns
   out that this happens if and only if the original value x is
   an exact multiple of y.  So, to avoid a three instruction test at
   the end, instead use 1 instruction to add 1 to x at the beginning.  */

/* DIVISION BY 7 (use z = 2**24-1; a = 249249) */
GSYM($$divI_7)
	.export		$$divI_7,millicode
	comb,<,n	x2,0,LREF(neg7)
LSYM(7)
	addi		1,x2,x2		/* cannot overflow */
	shd		0,x2,29,x1
	sh3add		x2,x2,x2
	addc		x1,0,x1
LSYM(pos7)
	shd		x1,x2,26,t1
	shd		x2,0,26,t2
	add		x2,t2,x2
	addc		x1,t1,x1

	shd		x1,x2,20,t1
	shd		x2,0,20,t2
	add		x2,t2,x2
	addc		x1,t1,t1

	/* computed <t1,x2>.  Now divide it by (2**24 - 1)	*/

	copy		0,x1
	shd,=		t1,x2,24,t1	/* tentative quotient  */
LSYM(1)
	addb,tr		t1,x1,LREF(2)	/* add to previous quotient   */
	extru		x2,31,24,x2	/* new remainder (unadjusted) */

	MILLIRETN

LSYM(2)
	addb,tr		t1,x2,LREF(1)	/* adjust remainder */
	extru,=		x2,7,8,t1	/* new quotient     */

LSYM(neg7)
	subi		1,x2,x2		/* negate x2 and add 1 */
LSYM(8)
	shd		0,x2,29,x1
	sh3add		x2,x2,x2
	addc		x1,0,x1

LSYM(neg7_shift)
	shd		x1,x2,26,t1
	shd		x2,0,26,t2
	add		x2,t2,x2
	addc		x1,t1,x1

	shd		x1,x2,20,t1
	shd		x2,0,20,t2
	add		x2,t2,x2
	addc		x1,t1,t1

	/* computed <t1,x2>.  Now divide it by (2**24 - 1)	*/

	copy		0,x1
	shd,=		t1,x2,24,t1	/* tentative quotient  */
LSYM(3)
	addb,tr		t1,x1,LREF(4)	/* add to previous quotient   */
	extru		x2,31,24,x2	/* new remainder (unadjusted) */

	MILLIRET
	sub		0,x1,x1		/* negate result    */

LSYM(4)
	addb,tr		t1,x2,LREF(3)	/* adjust remainder */
	extru,=		x2,7,8,t1	/* new quotient     */

GSYM($$divU_7)
	.export		$$divU_7,millicode
	addi		1,x2,x2		/* can carry */
	addc		0,0,x1
	shd		x1,x2,29,t1
	sh3add		x2,x2,x2
	b		LREF(pos7)
	addc		t1,x1,x1

/* DIVISION BY 9 (use z = 2**24-1; a = 1c71c7) */
GSYM($$divI_9)
	.export		$$divI_9,millicode
	comb,<,n	x2,0,LREF(neg9)
	addi		1,x2,x2		/* cannot overflow */
	shd		0,x2,29,t1
	shd		x2,0,29,t2
	sub		t2,x2,x2
	b		LREF(pos7)
	subb		t1,0,x1

LSYM(neg9)
	subi		1,x2,x2		/* negate and add 1 */
	shd		0,x2,29,t1
	shd		x2,0,29,t2
	sub		t2,x2,x2
	b		LREF(neg7_shift)
	subb		t1,0,x1

GSYM($$divU_9)
	.export		$$divU_9,millicode
	addi		1,x2,x2		/* can carry */
	addc		0,0,x1
	shd		x1,x2,29,t1
	shd		x2,0,29,t2
	sub		t2,x2,x2
	b		LREF(pos7)
	subb		t1,x1,x1

/* DIVISION BY 14 (shift to divide by 2 then divide by 7) */
GSYM($$divI_14)
	.export		$$divI_14,millicode
	comb,<,n	x2,0,LREF(neg14)
GSYM($$divU_14)
	.export		$$divU_14,millicode
	b		LREF(7)		/* go to 7 case */
	extru		x2,30,31,x2	/* divide by 2  */

LSYM(neg14)
	subi		2,x2,x2		/* negate (and add 2) */
	b		LREF(8)
	extru		x2,30,31,x2	/* divide by 2	      */
	.exit
	.procend
	.end
#endif