1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Jason Ekstrand (jason@jlekstrand.net)
*
*/
#include "nir.h"
/*
* Implements a pass that lowers vector phi nodes to scalar phi nodes when
* we don't think it will hurt anything.
*/
struct lower_phis_to_scalar_state {
void *mem_ctx;
void *dead_ctx;
/* Hash table marking which phi nodes are scalarizable. The key is
* pointers to phi instructions and the entry is either NULL for not
* scalarizable or non-null for scalarizable.
*/
struct hash_table *phi_table;
};
static bool
should_lower_phi(nir_phi_instr *phi, struct lower_phis_to_scalar_state *state);
static bool
is_phi_src_scalarizable(nir_phi_src *src,
struct lower_phis_to_scalar_state *state)
{
/* Don't know what to do with non-ssa sources */
if (!src->src.is_ssa)
return false;
nir_instr *src_instr = src->src.ssa->parent_instr;
switch (src_instr->type) {
case nir_instr_type_alu: {
nir_alu_instr *src_alu = nir_instr_as_alu(src_instr);
/* ALU operations with output_size == 0 should be scalarized. We
* will also see a bunch of vecN operations from scalarizing ALU
* operations and, since they can easily be copy-propagated, they
* are ok too.
*/
return nir_op_infos[src_alu->op].output_size == 0 ||
src_alu->op == nir_op_vec2 ||
src_alu->op == nir_op_vec3 ||
src_alu->op == nir_op_vec4;
}
case nir_instr_type_phi:
/* A phi is scalarizable if we're going to lower it */
return should_lower_phi(nir_instr_as_phi(src_instr), state);
case nir_instr_type_load_const:
case nir_instr_type_ssa_undef:
/* These are trivially scalarizable */
return true;
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *src_intrin = nir_instr_as_intrinsic(src_instr);
switch (src_intrin->intrinsic) {
case nir_intrinsic_load_var:
return src_intrin->variables[0]->var->data.mode == nir_var_shader_in ||
src_intrin->variables[0]->var->data.mode == nir_var_uniform;
case nir_intrinsic_interp_var_at_centroid:
case nir_intrinsic_interp_var_at_sample:
case nir_intrinsic_interp_var_at_offset:
case nir_intrinsic_load_uniform:
case nir_intrinsic_load_uniform_indirect:
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_ubo_indirect:
case nir_intrinsic_load_input:
case nir_intrinsic_load_input_indirect:
return true;
default:
break;
}
}
default:
/* We can't scalarize this type of instruction */
return false;
}
}
/**
* Determines if the given phi node should be lowered. The only phi nodes
* we will scalarize at the moment are those where all of the sources are
* scalarizable.
*
* The reason for this comes down to coalescing. Since phi sources can't
* swizzle, swizzles on phis have to be resolved by inserting a mov right
* before the phi. The choice then becomes between movs to pick off
* components for a scalar phi or potentially movs to recombine components
* for a vector phi. The problem is that the movs generated to pick off
* the components are almost uncoalescable. We can't coalesce them in NIR
* because we need them to pick off components and we can't coalesce them
* in the backend because the source register is a vector and the
* destination is a scalar that may be used at other places in the program.
* On the other hand, if we have a bunch of scalars going into a vector
* phi, the situation is much better. In this case, if the SSA def is
* generated in the predecessor block to the corresponding phi source, the
* backend code will be an ALU op into a temporary and then a mov into the
* given vector component; this move can almost certainly be coalesced
* away.
*/
static bool
should_lower_phi(nir_phi_instr *phi, struct lower_phis_to_scalar_state *state)
{
/* Already scalar */
if (phi->dest.ssa.num_components == 1)
return false;
struct hash_entry *entry = _mesa_hash_table_search(state->phi_table, phi);
if (entry)
return entry->data != NULL;
/* Insert an entry and mark it as scalarizable for now. That way
* we don't recurse forever and a cycle in the dependence graph
* won't automatically make us fail to scalarize.
*/
entry = _mesa_hash_table_insert(state->phi_table, phi, (void *)(intptr_t)1);
bool scalarizable = true;
nir_foreach_phi_src(phi, src) {
scalarizable = is_phi_src_scalarizable(src, state);
if (!scalarizable)
break;
}
/* The hash table entry for 'phi' may have changed while recursing the
* dependence graph, so we need to reset it */
entry = _mesa_hash_table_search(state->phi_table, phi);
assert(entry);
entry->data = (void *)(intptr_t)scalarizable;
return scalarizable;
}
static bool
lower_phis_to_scalar_block(nir_block *block, void *void_state)
{
struct lower_phis_to_scalar_state *state = void_state;
/* Find the last phi node in the block */
nir_phi_instr *last_phi = NULL;
nir_foreach_instr(block, instr) {
if (instr->type != nir_instr_type_phi)
break;
last_phi = nir_instr_as_phi(instr);
}
/* We have to handle the phi nodes in their own pass due to the way
* we're modifying the linked list of instructions.
*/
nir_foreach_instr_safe(block, instr) {
if (instr->type != nir_instr_type_phi)
break;
nir_phi_instr *phi = nir_instr_as_phi(instr);
if (!should_lower_phi(phi, state))
continue;
/* Create a vecN operation to combine the results. Most of these
* will be redundant, but copy propagation should clean them up for
* us. No need to add the complexity here.
*/
nir_op vec_op;
switch (phi->dest.ssa.num_components) {
case 2: vec_op = nir_op_vec2; break;
case 3: vec_op = nir_op_vec3; break;
case 4: vec_op = nir_op_vec4; break;
default: unreachable("Invalid number of components");
}
nir_alu_instr *vec = nir_alu_instr_create(state->mem_ctx, vec_op);
nir_ssa_dest_init(&vec->instr, &vec->dest.dest,
phi->dest.ssa.num_components, NULL);
vec->dest.write_mask = (1 << phi->dest.ssa.num_components) - 1;
for (unsigned i = 0; i < phi->dest.ssa.num_components; i++) {
nir_phi_instr *new_phi = nir_phi_instr_create(state->mem_ctx);
nir_ssa_dest_init(&new_phi->instr, &new_phi->dest, 1, NULL);
vec->src[i].src = nir_src_for_ssa(&new_phi->dest.ssa);
nir_foreach_phi_src(phi, src) {
/* We need to insert a mov to grab the i'th component of src */
nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
nir_op_imov);
nir_ssa_dest_init(&mov->instr, &mov->dest.dest, 1, NULL);
mov->dest.write_mask = 1;
nir_src_copy(&mov->src[0].src, &src->src, state->mem_ctx);
mov->src[0].swizzle[0] = i;
/* Insert at the end of the predecessor but before the jump */
nir_instr *pred_last_instr = nir_block_last_instr(src->pred);
if (pred_last_instr && pred_last_instr->type == nir_instr_type_jump)
nir_instr_insert_before(pred_last_instr, &mov->instr);
else
nir_instr_insert_after_block(src->pred, &mov->instr);
nir_phi_src *new_src = ralloc(new_phi, nir_phi_src);
new_src->pred = src->pred;
new_src->src = nir_src_for_ssa(&mov->dest.dest.ssa);
exec_list_push_tail(&new_phi->srcs, &new_src->node);
}
nir_instr_insert_before(&phi->instr, &new_phi->instr);
}
nir_instr_insert_after(&last_phi->instr, &vec->instr);
nir_ssa_def_rewrite_uses(&phi->dest.ssa,
nir_src_for_ssa(&vec->dest.dest.ssa));
ralloc_steal(state->dead_ctx, phi);
nir_instr_remove(&phi->instr);
/* We're using the safe iterator and inserting all the newly
* scalarized phi nodes before their non-scalarized version so that's
* ok. However, we are also inserting vec operations after all of
* the last phi node so once we get here, we can't trust even the
* safe iterator to stop properly. We have to break manually.
*/
if (instr == &last_phi->instr)
break;
}
return true;
}
static void
lower_phis_to_scalar_impl(nir_function_impl *impl)
{
struct lower_phis_to_scalar_state state;
state.mem_ctx = ralloc_parent(impl);
state.dead_ctx = ralloc_context(NULL);
state.phi_table = _mesa_hash_table_create(state.dead_ctx, _mesa_hash_pointer,
_mesa_key_pointer_equal);
nir_foreach_block(impl, lower_phis_to_scalar_block, &state);
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
ralloc_free(state.dead_ctx);
}
/** A pass that lowers vector phi nodes to scalar
*
* This pass loops through the blocks and lowers looks for vector phi nodes
* it can lower to scalar phi nodes. Not all phi nodes are lowered. For
* instance, if one of the sources is a non-scalarizable vector, then we
* don't bother lowering because that would generate hard-to-coalesce movs.
*/
void
nir_lower_phis_to_scalar(nir_shader *shader)
{
nir_foreach_overload(shader, overload) {
if (overload->impl)
lower_phis_to_scalar_impl(overload->impl);
}
}
|