1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
|
/************************************************************
Copyright 1987 by Sun Microsystems, Inc. Mountain View, CA.
All Rights Reserved
Permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright no-
tice appear in all copies and that both that copyright no-
tice and this permission notice appear in supporting docu-
mentation, and that the names of Sun or The Open Group
not be used in advertising or publicity pertaining to
distribution of the software without specific prior
written permission. Sun and The Open Group make no
representations about the suitability of this software for
any purpose. It is provided "as is" without any express or
implied warranty.
SUN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SUN BE LI-
ABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS SOFTWARE.
********************************************************/
/* Optimizations for PSZ == 32 added by Kyle Marvin (marvin@vitec.com) */
#include <X11/X.h>
#include <X11/Xmd.h>
#include "servermd.h"
#include "compiler.h"
/*
* ==========================================================================
* Converted from mfb to support memory-mapped color framebuffer by smarks@sun,
* April-May 1987.
*
* The way I did the conversion was to consider each longword as an
* array of four bytes instead of an array of 32 one-bit pixels. So
* getbits() and putbits() retain much the same calling sequence, but
* they move bytes around instead of bits. Of course, this entails the
* removal of all of the one-bit-pixel dependencies from the other
* files, but the major bit-hacking stuff should be covered here.
*
* I've created some new macros that make it easier to understand what's
* going on in the pixel calculations, and that make it easier to change the
* pixel size.
*
* name explanation
* ---- -----------
* PSZ pixel size (in bits)
* PGSZ pixel group size (in bits)
* PGSZB pixel group size (in bytes)
* PGSZBMSK mask with lowest PGSZB bits set to 1
* PPW pixels per word (pixels per pixel group)
* PPWMSK mask with lowest PPW bits set to 1
* PLST index of last pixel in a word (should be PPW-1)
* PIM pixel index mask (index within a pixel group)
* PWSH pixel-to-word shift (should be log2(PPW))
* PMSK mask with lowest PSZ bits set to 1
*
*
* Here are some sample values. In the notation cfbA,B: A is PSZ, and
* B is PGSZB. All the other values are derived from these
* two. This table does not show all combinations!
*
* name cfb8,4 cfb24,4 cfb32,4 cfb8,8 cfb24,8 cfb32,8
* ---- ------ ------- ------ ------ ------ -------
* PSZ 8 24 32 8 24 32
* PGSZ 32 32 32 64 64 64
* PGSZB 4 4 4 8 8 8
* PGSZBMSK 0xF 0xF? 0xF 0xFF 0xFF 0xFF
* PPW 4 1 1 8 2 2
* PPWMSK 0xF 0x1 0x1 0xFF 0x3? 0x3
* PLST 3 0 0 7 1 1
* PIM 0x3 0x0 0x0 0x7 0x1? 0x1
* PWSH 2 0 0 3 1 1
* PMSK 0xFF 0xFFFFFF 0xFFFFFFFF 0xFF 0xFFFFFF 0xFFFFFFFF
*
*
* I have also added a new macro, PFILL, that takes one pixel and
* replicates it throughout a word. This macro definition is dependent
* upon pixel and word size; it doesn't use macros like PPW and so
* forth. Examples: for monochrome, PFILL(1) => 0xffffffff, PFILL(0) =>
* 0x00000000. For 8-bit color, PFILL(0x5d) => 0x5d5d5d5d. This macro
* is used primarily for replicating a plane mask into a word.
*
* Color framebuffers operations also support the notion of a plane
* mask. This mask determines which planes of the framebuffer can be
* altered; the others are left unchanged. I have added another
* parameter to the putbits and putbitsrop macros that is the plane
* mask.
* ==========================================================================
*
* Keith Packard (keithp@suse.com)
* 64bit code is no longer supported; it requires DIX support
* for repadding images which significantly impacts performance
*/
/*
* PSZ needs to be defined before we get here. Usually it comes from a
* -DPSZ=foo on the compilation command line.
*/
#ifndef PSZ
#define PSZ 8
#endif
/*
* PixelGroup is the data type used to operate on groups of pixels.
* We typedef it here to CARD32 with the assumption that you
* want to manipulate 32 bits worth of pixels at a time as you can. If CARD32
* is not appropriate for your server, define it to something else
* before including this file. In this case you will also have to define
* PGSZB to the size in bytes of PixelGroup.
*/
#ifndef PixelGroup
#define PixelGroup CARD32
#define PGSZB 4
#endif /* PixelGroup */
#ifndef CfbBits
#define CfbBits CARD32
#endif
#define PGSZ (PGSZB << 3)
#define PPW (PGSZ/PSZ)
#define PLST (PPW-1)
#define PIM PLST
#define PMSK (((PixelGroup)1 << PSZ) - 1)
#define PPWMSK (((PixelGroup)1 << PPW) - 1) /* instead of BITMSK */
#define PGSZBMSK (((PixelGroup)1 << PGSZB) - 1)
/* set PWSH = log2(PPW) using brute force */
#if PPW == 1
#define PWSH 0
#else
#if PPW == 2
#define PWSH 1
#else
#if PPW == 4
#define PWSH 2
#else
#if PPW == 8
#define PWSH 3
#else
#if PPW == 16
#define PWSH 4
#endif /* PPW == 16 */
#endif /* PPW == 8 */
#endif /* PPW == 4 */
#endif /* PPW == 2 */
#endif /* PPW == 1 */
/* Defining PIXEL_ADDR means that individual pixels are addressable by this
* machine (as type PixelType). A possible CFB architecture which supported
* 8-bits-per-pixel on a non byte-addressable machine would not have this
* defined.
*
* Defining FOUR_BIT_CODE means that cfb knows how to stipple on this machine;
* eventually, stippling code for 16 and 32 bit devices should be written
* which would allow them to also use FOUR_BIT_CODE. There isn't that
* much to do in those cases, but it would make them quite a bit faster.
*/
#if PSZ == 8
#define PIXEL_ADDR
typedef CARD8 PixelType;
#define FOUR_BIT_CODE
#endif
#if PSZ == 16
#define PIXEL_ADDR
typedef CARD16 PixelType;
#endif
#if PSZ == 24
#undef PMSK
#define PMSK 0xFFFFFF
/*#undef PIM
#define PIM 3*/
#define PIXEL_ADDR
typedef CARD32 PixelType;
#endif
#if PSZ == 32
#undef PMSK
#define PMSK 0xFFFFFFFF
#define PIXEL_ADDR
typedef CARD32 PixelType;
#endif
/* the following notes use the following conventions:
SCREEN LEFT SCREEN RIGHT
in this file and maskbits.c, left and right refer to screen coordinates,
NOT bit numbering in registers.
cfbstarttab[n]
pixels[0,n-1] = 0's pixels[n,PPW-1] = 1's
cfbendtab[n] =
pixels[0,n-1] = 1's pixels[n,PPW-1] = 0's
cfbstartpartial[], cfbendpartial[]
these are used as accelerators for doing putbits and masking out
bits that are all contained between longword boudaries. the extra
256 bytes of data seems a small price to pay -- code is smaller,
and narrow things (e.g. window borders) go faster.
the names may seem misleading; they are derived not from which end
of the word the bits are turned on, but at which end of a scanline
the table tends to be used.
look at the tables and macros to understand boundary conditions.
(careful readers will note that starttab[n] = ~endtab[n] for n != 0)
-----------------------------------------------------------------------
these two macros depend on the screen's bit ordering.
in both of them x is a screen position. they are used to
combine bits collected from multiple longwords into a
single destination longword, and to unpack a single
source longword into multiple destinations.
SCRLEFT(dst, x)
takes dst[x, PPW] and moves them to dst[0, PPW-x]
the contents of the rest of dst are 0 ONLY IF
dst is UNSIGNED.
is cast as an unsigned.
this is a right shift on the VAX, left shift on
Sun and pc-rt.
SCRRIGHT(dst, x)
takes dst[0,x] and moves them to dst[PPW-x, PPW]
the contents of the rest of dst are 0 ONLY IF
dst is UNSIGNED.
this is a left shift on the VAX, right shift on
Sun and pc-rt.
the remaining macros are cpu-independent; all bit order dependencies
are built into the tables and the two macros above.
maskbits(x, w, startmask, endmask, nlw)
for a span of width w starting at position x, returns
a mask for ragged pixels at start, mask for ragged pixels at end,
and the number of whole longwords between the ends.
maskpartialbits(x, w, mask)
works like maskbits(), except all the pixels are in the
same longword (i.e. (x&0xPIM + w) <= PPW)
mask32bits(x, w, startmask, endmask, nlw)
as maskbits, but does not calculate nlw. it is used by
cfbGlyphBlt to put down glyphs <= PPW bits wide.
getbits(psrc, x, w, dst)
starting at position x in psrc (x < PPW), collect w
pixels and put them in the screen left portion of dst.
psrc is a longword pointer. this may span longword boundaries.
it special-cases fetching all w bits from one longword.
+--------+--------+ +--------+
| | m |n| | ==> | m |n| |
+--------+--------+ +--------+
x x+w 0 w
psrc psrc+1 dst
m = PPW - x
n = w - m
implementation:
get m pixels, move to screen-left of dst, zeroing rest of dst;
get n pixels from next word, move screen-right by m, zeroing
lower m pixels of word.
OR the two things together.
putbits(src, x, w, pdst, planemask)
starting at position x in pdst, put down the screen-leftmost
w bits of src. pdst is a longword pointer. this may
span longword boundaries.
it special-cases putting all w bits into the same longword.
+--------+ +--------+--------+
| m |n| | ==> | | m |n| |
+--------+ +--------+--------+
0 w x x+w
dst pdst pdst+1
m = PPW - x
n = w - m
implementation:
get m pixels, shift screen-right by x, zero screen-leftmost x
pixels; zero rightmost m bits of *pdst and OR in stuff
from before the semicolon.
shift src screen-left by m, zero bits n-32;
zero leftmost n pixels of *(pdst+1) and OR in the
stuff from before the semicolon.
putbitsrop(src, x, w, pdst, planemask, ROP)
like putbits but calls DoRop with the rasterop ROP (see cfb.h for
DoRop)
getleftbits(psrc, w, dst)
get the leftmost w (w<=PPW) bits from *psrc and put them
in dst. this is used by the cfbGlyphBlt code for glyphs
<=PPW bits wide.
*/
#if (BITMAP_BIT_ORDER == MSBFirst)
#define BitRight(lw,n) ((lw) >> (n))
#define BitLeft(lw,n) ((lw) << (n))
#else /* (BITMAP_BIT_ORDER == LSBFirst) */
#define BitRight(lw,n) ((lw) << (n))
#define BitLeft(lw,n) ((lw) >> (n))
#endif /* (BITMAP_BIT_ORDER == MSBFirst) */
#define SCRLEFT(lw, n) BitLeft (lw, (n) * PSZ)
#define SCRRIGHT(lw, n) BitRight(lw, (n) * PSZ)
/*
* Note that the shift direction is independent of the byte ordering of the
* machine. The following is portable code.
*/
#if PPW == 16
#define PFILL(p) ( ((p)&PMSK) | \
((p)&PMSK) << PSZ | \
((p)&PMSK) << 2*PSZ | \
((p)&PMSK) << 3*PSZ | \
((p)&PMSK) << 4*PSZ | \
((p)&PMSK) << 5*PSZ | \
((p)&PMSK) << 6*PSZ | \
((p)&PMSK) << 7*PSZ | \
((p)&PMSK) << 8*PSZ | \
((p)&PMSK) << 9*PSZ | \
((p)&PMSK) << 10*PSZ | \
((p)&PMSK) << 11*PSZ | \
((p)&PMSK) << 12*PSZ | \
((p)&PMSK) << 13*PSZ | \
((p)&PMSK) << 14*PSZ | \
((p)&PMSK) << 15*PSZ )
#define PFILL2(p, pf) { \
pf = (p) & PMSK; \
pf |= (pf << PSZ); \
pf |= (pf << 2*PSZ); \
pf |= (pf << 4*PSZ); \
pf |= (pf << 8*PSZ); \
}
#endif /* PPW == 16 */
#if PPW == 8
#define PFILL(p) ( ((p)&PMSK) | \
((p)&PMSK) << PSZ | \
((p)&PMSK) << 2*PSZ | \
((p)&PMSK) << 3*PSZ | \
((p)&PMSK) << 4*PSZ | \
((p)&PMSK) << 5*PSZ | \
((p)&PMSK) << 6*PSZ | \
((p)&PMSK) << 7*PSZ )
#define PFILL2(p, pf) { \
pf = (p) & PMSK; \
pf |= (pf << PSZ); \
pf |= (pf << 2*PSZ); \
pf |= (pf << 4*PSZ); \
}
#endif
#if PPW == 4
#define PFILL(p) ( ((p)&PMSK) | \
((p)&PMSK) << PSZ | \
((p)&PMSK) << 2*PSZ | \
((p)&PMSK) << 3*PSZ )
#define PFILL2(p, pf) { \
pf = (p) & PMSK; \
pf |= (pf << PSZ); \
pf |= (pf << 2*PSZ); \
}
#endif
#if PPW == 2
#define PFILL(p) ( ((p)&PMSK) | \
((p)&PMSK) << PSZ )
#define PFILL2(p, pf) { \
pf = (p) & PMSK; \
pf |= (pf << PSZ); \
}
#endif
#if PPW == 1
#define PFILL(p) (p)
#define PFILL2(p,pf) (pf = (p))
#endif
/*
* Reduced raster op - using precomputed values, perform the above
* in three instructions
*/
#define DoRRop(dst, and, xor) (((dst) & (and)) ^ (xor))
#define DoMaskRRop(dst, and, xor, mask) \
(((dst) & ((and) | ~(mask))) ^ (xor & mask))
#if PSZ != 32 || PPW != 1
# if (PSZ == 24 && PPW == 1)
#define maskbits(x, w, startmask, endmask, nlw) {\
startmask = cfbstarttab[(x)&3]; \
endmask = cfbendtab[((x)+(w)) & 3]; \
nlw = ((((x)+(w))*3)>>2) - (((x)*3 +3)>>2); \
}
#define mask32bits(x, w, startmask, endmask) \
startmask = cfbstarttab[(x)&3]; \
endmask = cfbendtab[((x)+(w)) & 3];
#define maskpartialbits(x, w, mask) \
mask = cfbstartpartial[(x) & 3] & cfbendpartial[((x)+(w)) & 3];
#define maskbits24(x, w, startmask, endmask, nlw) \
startmask = cfbstarttab24[(x) & 3]; \
endmask = cfbendtab24[((x)+(w)) & 3]; \
if (startmask){ \
nlw = (((w) - (4 - ((x) & 3))) >> 2); \
} else { \
nlw = (w) >> 2; \
}
#define getbits24(psrc, dst, index) {\
register int idx; \
switch(idx = ((index)&3)<<1){ \
case 0: \
dst = (*(psrc) &cfbmask[idx]); \
break; \
case 6: \
dst = BitLeft((*(psrc) &cfbmask[idx]), cfb24Shift[idx]); \
break; \
default: \
dst = BitLeft((*(psrc) &cfbmask[idx]), cfb24Shift[idx]) | \
BitRight(((*((psrc)+1)) &cfbmask[idx+1]), cfb24Shift[idx+1]); \
}; \
}
#define putbits24(src, w, pdst, planemask, index) {\
register PixelGroup dstpixel; \
register unsigned int idx; \
switch(idx = ((index)&3)<<1){ \
case 0: \
dstpixel = (*(pdst) &cfbmask[idx]); \
break; \
case 6: \
dstpixel = BitLeft((*(pdst) &cfbmask[idx]), cfb24Shift[idx]); \
break; \
default: \
dstpixel = BitLeft((*(pdst) &cfbmask[idx]), cfb24Shift[idx])| \
BitRight(((*((pdst)+1)) &cfbmask[idx+1]), cfb24Shift[idx+1]); \
}; \
dstpixel &= ~(planemask); \
dstpixel |= (src & planemask); \
*(pdst) &= cfbrmask[idx]; \
switch(idx){ \
case 0: \
*(pdst) |= (dstpixel & cfbmask[idx]); \
break; \
case 2: \
case 4: \
pdst++;idx++; \
*(pdst) = ((*(pdst)) & cfbrmask[idx]) | \
(BitLeft(dstpixel, cfb24Shift[idx]) & cfbmask[idx]); \
pdst--;idx--; \
case 6: \
*(pdst) |= (BitRight(dstpixel, cfb24Shift[idx]) & cfbmask[idx]); \
break; \
}; \
}
#define putbitsrop24(src, x, pdst, planemask, rop) \
{ \
register PixelGroup t1, dstpixel; \
register unsigned int idx; \
switch(idx = (x)<<1){ \
case 0: \
dstpixel = (*(pdst) &cfbmask[idx]); \
break; \
case 6: \
dstpixel = BitLeft((*(pdst) &cfbmask[idx]), cfb24Shift[idx]); \
break; \
default: \
dstpixel = BitLeft((*(pdst) &cfbmask[idx]), cfb24Shift[idx])| \
BitRight(((*((pdst)+1)) &cfbmask[idx+1]), cfb24Shift[idx+1]); \
}; \
DoRop(t1, rop, (src), dstpixel); \
dstpixel &= ~planemask; \
dstpixel |= (t1 & planemask); \
*(pdst) &= cfbrmask[idx]; \
switch(idx){ \
case 0: \
*(pdst) |= (dstpixel & cfbmask[idx]); \
break; \
case 2: \
case 4: \
*((pdst)+1) = ((*((pdst)+1)) & cfbrmask[idx+1]) | \
(BitLeft(dstpixel, cfb24Shift[idx+1]) & (cfbmask[idx+1])); \
case 6: \
*(pdst) |= (BitRight(dstpixel, cfb24Shift[idx]) & cfbmask[idx]); \
}; \
}
# else /* PSZ == 24 && PPW == 1 */
#define maskbits(x, w, startmask, endmask, nlw) \
startmask = cfbstarttab[(x)&PIM]; \
endmask = cfbendtab[((x)+(w)) & PIM]; \
if (startmask) \
nlw = (((w) - (PPW - ((x)&PIM))) >> PWSH); \
else \
nlw = (w) >> PWSH;
#define maskpartialbits(x, w, mask) \
mask = cfbstartpartial[(x) & PIM] & cfbendpartial[((x) + (w)) & PIM];
#define mask32bits(x, w, startmask, endmask) \
startmask = cfbstarttab[(x)&PIM]; \
endmask = cfbendtab[((x)+(w)) & PIM];
/* FIXME */
#define maskbits24(x, w, startmask, endmask, nlw) \
abort()
#define getbits24(psrc, dst, index) \
abort()
#define putbits24(src, w, pdst, planemask, index) \
abort()
#define putbitsrop24(src, x, pdst, planemask, rop) \
abort()
#endif /* PSZ == 24 && PPW == 1 */
#define getbits(psrc, x, w, dst) \
if ( ((x) + (w)) <= PPW) \
{ \
dst = SCRLEFT(*(psrc), (x)); \
} \
else \
{ \
int m; \
m = PPW-(x); \
dst = (SCRLEFT(*(psrc), (x)) & cfbendtab[m]) | \
(SCRRIGHT(*((psrc)+1), m) & cfbstarttab[m]); \
}
#define putbits(src, x, w, pdst, planemask) \
if ( ((x)+(w)) <= PPW) \
{ \
PixelGroup tmpmask; \
maskpartialbits((x), (w), tmpmask); \
tmpmask &= PFILL(planemask); \
*(pdst) = (*(pdst) & ~tmpmask) | (SCRRIGHT(src, x) & tmpmask); \
} \
else \
{ \
unsigned int m; \
unsigned int n; \
PixelGroup pm = PFILL(planemask); \
m = PPW-(x); \
n = (w) - m; \
*(pdst) = (*(pdst) & (cfbendtab[x] | ~pm)) | \
(SCRRIGHT(src, x) & (cfbstarttab[x] & pm)); \
*((pdst)+1) = (*((pdst)+1) & (cfbstarttab[n] | ~pm)) | \
(SCRLEFT(src, m) & (cfbendtab[n] & pm)); \
}
#if defined(__GNUC__) && defined(mc68020)
#undef getbits
#define FASTGETBITS(psrc, x, w, dst) \
asm ("bfextu %3{%1:%2},%0" \
: "=d" (dst) : "di" (x), "di" (w), "o" (*(char *)(psrc)))
#define getbits(psrc,x,w,dst) \
{ \
FASTGETBITS(psrc, (x) * PSZ, (w) * PSZ, dst); \
dst = SCRLEFT(dst,PPW-(w)); \
}
#define FASTPUTBITS(src, x, w, pdst) \
asm ("bfins %3,%0{%1:%2}" \
: "=o" (*(char *)(pdst)) \
: "di" (x), "di" (w), "d" (src), "0" (*(char *) (pdst)))
#undef putbits
#define putbits(src, x, w, pdst, planemask) \
{ \
if (planemask != PMSK) { \
PixelGroup _m, _pm; \
FASTGETBITS(pdst, (x) * PSZ , (w) * PSZ, _m); \
PFILL2(planemask, _pm); \
_m &= (~_pm); \
_m |= (SCRRIGHT(src, PPW-(w)) & _pm); \
FASTPUTBITS(_m, (x) * PSZ, (w) * PSZ, pdst); \
} else { \
FASTPUTBITS(SCRRIGHT(src, PPW-(w)), (x) * PSZ, (w) * PSZ, pdst); \
} \
}
#endif /* mc68020 */
#define putbitsrop(src, x, w, pdst, planemask, rop) \
if ( ((x)+(w)) <= PPW) \
{ \
PixelGroup tmpmask; \
PixelGroup t1, t2; \
maskpartialbits((x), (w), tmpmask); \
PFILL2(planemask, t1); \
tmpmask &= t1; \
t1 = SCRRIGHT((src), (x)); \
DoRop(t2, rop, t1, *(pdst)); \
*(pdst) = (*(pdst) & ~tmpmask) | (t2 & tmpmask); \
} \
else \
{ \
CfbBits m; \
CfbBits n; \
PixelGroup t1, t2; \
PixelGroup pm; \
PFILL2(planemask, pm); \
m = PPW-(x); \
n = (w) - m; \
t1 = SCRRIGHT((src), (x)); \
DoRop(t2, rop, t1, *(pdst)); \
*(pdst) = (*(pdst) & (cfbendtab[x] | ~pm)) | (t2 & (cfbstarttab[x] & pm));\
t1 = SCRLEFT((src), m); \
DoRop(t2, rop, t1, *((pdst) + 1)); \
*((pdst)+1) = (*((pdst)+1) & (cfbstarttab[n] | ~pm)) | \
(t2 & (cfbendtab[n] & pm)); \
}
#else /* PSZ == 32 && PPW == 1*/
/*
* These macros can be optimized for 32-bit pixels since there is no
* need to worry about left/right edge masking. These macros were
* derived from the above using the following reductions:
*
* - x & PIW = 0 [since PIW = 0]
* - all masking tables are only indexed by 0 [ due to above ]
* - cfbstartab[0] and cfbendtab[0] = 0 [ no left/right edge masks]
* - cfbstartpartial[0] and cfbendpartial[0] = ~0 [no partial pixel mask]
*
* Macro reduction based upon constants cannot be performed automatically
* by the compiler since it does not know the contents of the masking
* arrays in cfbmskbits.c.
*/
#define maskbits(x, w, startmask, endmask, nlw) \
startmask = endmask = 0; \
nlw = (w);
#define maskpartialbits(x, w, mask) \
mask = 0xFFFFFFFF;
#define mask32bits(x, w, startmask, endmask) \
startmask = endmask = 0;
/*
* For 32-bit operations, getbits(), putbits(), and putbitsrop()
* will only be invoked with x = 0 and w = PPW (1). The getbits()
* macro is only called within left/right edge logic, which doesn't
* happen for 32-bit pixels.
*/
#define getbits(psrc, x, w, dst) (dst) = *(psrc)
#define putbits(src, x, w, pdst, planemask) \
*(pdst) = (*(pdst) & ~planemask) | (src & planemask);
#define putbitsrop(src, x, w, pdst, planemask, rop) \
{ \
PixelGroup t1; \
DoRop(t1, rop, (src), *(pdst)); \
*(pdst) = (*(pdst) & ~planemask) | (t1 & planemask); \
}
#endif /* PSZ != 32 */
/*
* Use these macros only when you're using the MergeRop stuff
* in ../mfb/mergerop.h
*/
/* useful only when not spanning destination longwords */
#if PSZ == 24
#define putbitsmropshort24(src,x,w,pdst,index) {\
PixelGroup _tmpmask; \
PixelGroup _t1; \
maskpartialbits ((x), (w), _tmpmask); \
_t1 = SCRRIGHT((src), (x)); \
DoMaskMergeRop24(_t1, pdst, _tmpmask, index); \
}
#endif
#define putbitsmropshort(src,x,w,pdst) {\
PixelGroup _tmpmask; \
PixelGroup _t1; \
maskpartialbits ((x), (w), _tmpmask); \
_t1 = SCRRIGHT((src), (x)); \
*pdst = DoMaskMergeRop(_t1, *pdst, _tmpmask); \
}
/* useful only when spanning destination longwords */
#define putbitsmroplong(src,x,w,pdst) { \
PixelGroup _startmask, _endmask; \
int _m; \
PixelGroup _t1; \
_m = PPW - (x); \
_startmask = cfbstarttab[x]; \
_endmask = cfbendtab[(w) - _m]; \
_t1 = SCRRIGHT((src), (x)); \
pdst[0] = DoMaskMergeRop(_t1,pdst[0],_startmask); \
_t1 = SCRLEFT ((src),_m); \
pdst[1] = DoMaskMergeRop(_t1,pdst[1],_endmask); \
}
#define putbitsmrop(src,x,w,pdst) \
if ((x) + (w) <= PPW) {\
putbitsmropshort(src,x,w,pdst); \
} else { \
putbitsmroplong(src,x,w,pdst); \
}
#if GETLEFTBITS_ALIGNMENT == 1
#define getleftbits(psrc, w, dst) dst = *((unsigned int *) psrc)
#define getleftbits24(psrc, w, dst, idx){ \
regiseter int index; \
switch(index = ((idx)&3)<<1){ \
case 0: \
dst = (*((unsigned int *) psrc))&cfbmask[index]; \
break; \
case 2: \
case 4: \
dst = BitLeft(((*((unsigned int *) psrc))&cfbmask[index]), cfb24Shift[index]); \
dst |= BitRight(((*((unsigned int *) psrc)+1)&cfbmask[index]), cfb4Shift[index]); \
break; \
case 6: \
dst = BitLeft((*((unsigned int *) psrc)),cfb24Shift[index]); \
break; \
}; \
}
#endif /* GETLEFTBITS_ALIGNMENT == 1 */
#define getglyphbits(psrc, x, w, dst) \
{ \
dst = BitLeft((unsigned) *(psrc), (x)); \
if ( ((x) + (w)) > 32) \
dst |= (BitRight((unsigned) *((psrc)+1), 32-(x))); \
}
#if GETLEFTBITS_ALIGNMENT == 2
#define getleftbits(psrc, w, dst) \
{ \
if ( ((int)(psrc)) & 0x01 ) \
getglyphbits( ((unsigned int *)(((char *)(psrc))-1)), 8, (w), (dst) ); \
else \
dst = *((unsigned int *) psrc); \
}
#endif /* GETLEFTBITS_ALIGNMENT == 2 */
#if GETLEFTBITS_ALIGNMENT == 4
#define getleftbits(psrc, w, dst) \
{ \
int off, off_b; \
off_b = (off = ( ((int)(psrc)) & 0x03)) << 3; \
getglyphbits( \
(unsigned int *)( ((char *)(psrc)) - off), \
(off_b), (w), (dst) \
); \
}
#endif /* GETLEFTBITS_ALIGNMENT == 4 */
/*
* getstipplepixels( psrcstip, x, w, ones, psrcpix, destpix )
*
* Converts bits to pixels in a reasonable way. Takes w (1 <= w <= PPW)
* bits from *psrcstip, starting at bit x; call this a quartet of bits.
* Then, takes the pixels from *psrcpix corresponding to the one-bits (if
* ones is TRUE) or the zero-bits (if ones is FALSE) of the quartet
* and puts these pixels into destpix.
*
* Example:
*
* getstipplepixels( &(0x08192A3B), 17, 4, 1, &(0x4C5D6E7F), dest )
*
* 0x08192A3B = 0000 1000 0001 1001 0010 1010 0011 1011
*
* This will take 4 bits starting at bit 17, so the quartet is 0x5 = 0101.
* It will take pixels from 0x4C5D6E7F corresponding to the one-bits in this
* quartet, so dest = 0x005D007F.
*
* XXX Works with both byte order.
* XXX This works for all values of x and w within a doubleword.
*/
#if (BITMAP_BIT_ORDER == MSBFirst)
#define getstipplepixels( psrcstip, x, w, ones, psrcpix, destpix ) \
{ \
PixelGroup q; \
int m; \
if ((m = ((x) - ((PPW*PSZ)-PPW))) > 0) { \
q = (*(psrcstip)) << m; \
if ( (x)+(w) > (PPW*PSZ) ) \
q |= *((psrcstip)+1) >> ((PPW*PSZ)-m); \
} \
else \
q = (*(psrcstip)) >> -m; \
q = QuartetBitsTable[(w)] & ((ones) ? q : ~q); \
*(destpix) = (*(psrcpix)) & QuartetPixelMaskTable[q]; \
}
/* I just copied this to get the linker satisfied on PowerPC,
* so this may not be correct at all.
*/
#define getstipplepixels24(psrcstip,xt,ones,psrcpix,destpix,stipindex) \
{ \
PixelGroup q; \
q = *(psrcstip) >> (xt); \
q = ((ones) ? q : ~q) & 1; \
*(destpix) = (*(psrcpix)) & QuartetPixelMaskTable[q]; \
}
#else /* BITMAP_BIT_ORDER == LSB */
/* this must load 32 bits worth; for most machines, thats an int */
#define CfbFetchUnaligned(x) ldl_u(x)
#define getstipplepixels( psrcstip, xt, w, ones, psrcpix, destpix ) \
{ \
PixelGroup q; \
q = CfbFetchUnaligned(psrcstip) >> (xt); \
if ( ((xt)+(w)) > (PPW*PSZ) ) \
q |= (CfbFetchUnaligned((psrcstip)+1)) << ((PPW*PSZ)-(xt)); \
q = QuartetBitsTable[(w)] & ((ones) ? q : ~q); \
*(destpix) = (*(psrcpix)) & QuartetPixelMaskTable[q]; \
}
#if PSZ == 24
# if 0
#define getstipplepixels24(psrcstip,xt,w,ones,psrcpix,destpix,stipindex,srcindex,dstindex) \
{ \
PixelGroup q; \
CfbBits src; \
register unsigned int sidx; \
register unsigned int didx; \
sidx = ((srcindex) & 3)<<1; \
didx = ((dstindex) & 3)<<1; \
q = *(psrcstip) >> (xt); \
/* if((srcindex)!=0)*/ \
/* src = (((*(psrcpix)) << cfb24Shift[sidx]) & (cfbmask[sidx])) |*/ \
/* (((*((psrcpix)+1)) << cfb24Shift[sidx+1]) & (cfbmask[sidx+1])); */\
/* else */\
src = (*(psrcpix))&0xFFFFFF; \
if ( ((xt)+(w)) > PGSZ ) \
q |= (*((psrcstip)+1)) << (PGSZ -(xt)); \
q = QuartetBitsTable[(w)] & ((ones) ? q : ~q); \
src &= QuartetPixelMaskTable[q]; \
*(destpix) &= cfbrmask[didx]; \
switch(didx) {\
case 0: \
*(destpix) |= (src &cfbmask[didx]); \
break; \
case 2: \
case 4: \
destpix++;didx++; \
*(destpix) = ((*(destpix)) & (cfbrmask[didx]))| \
(BitLeft(src, cfb24Shift[didx]) & (cfbmask[didx])); \
destpix--; didx--;\
case 6: \
*(destpix) |= (BitRight(src, cfb24Shift[didx]) & cfbmask[didx]); \
break; \
}; \
}
# else
#define getstipplepixels24(psrcstip,xt,ones,psrcpix,destpix,stipindex) \
{ \
PixelGroup q; \
q = *(psrcstip) >> (xt); \
q = ((ones) ? q : ~q) & 1; \
*(destpix) = (*(psrcpix)) & QuartetPixelMaskTable[q]; \
}
# endif
#endif /* PSZ == 24 */
#endif
extern PixelGroup cfbstarttab[];
extern PixelGroup cfbendtab[];
extern PixelGroup cfbstartpartial[];
extern PixelGroup cfbendpartial[];
extern PixelGroup cfbrmask[];
extern PixelGroup cfbmask[];
extern PixelGroup QuartetBitsTable[];
extern PixelGroup QuartetPixelMaskTable[];
#if PSZ == 24
extern int cfb24Shift[];
#endif
|