1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
|
'\" t
.\" Copyright (c) 2008, Linux Foundation, written by Michael Kerrisk
.\" <mtk.manpages@gmail.com>
.\"
.\" Permission is granted to make and distribute verbatim copies of this
.\" manual provided the copyright notice and this permission notice are
.\" preserved on all copies.
.\"
.\" Permission is granted to copy and distribute modified versions of this
.\" manual under the conditions for verbatim copying, provided that the
.\" entire resulting derived work is distributed under the terms of a
.\" permission notice identical to this one.
.\"
.\" Since the Linux kernel and libraries are constantly changing, this
.\" manual page may be incorrect or out-of-date. The author(s) assume no
.\" responsibility for errors or omissions, or for damages resulting from
.\" the use of the information contained herein. The author(s) may not
.\" have taken the same level of care in the production of this manual,
.\" which is licensed free of charge, as they might when working
.\" professionally.
.\"
.\" Formatted or processed versions of this manual, if unaccompanied by
.\" the source, must acknowledge the copyright and authors of this work.
.\"
.TH MATHERR 3 2010-09-10 "Linux" "Linux Programmer's Manual"
.SH NAME
matherr \- SVID math library exception handling
.SH SYNOPSIS
.nf
.BR "#define _SVID_SOURCE" " /* See feature_test_macros(7) */"
.B #include <math.h>
.BI "int matherr(struct exception *" exc );
.B extern _LIB_VERSION_TYPE _LIB_VERSION;
.fi
.sp
Link with \fI\-lm\fP.
.SH DESCRIPTION
The System V Interface Definition (SVID) specifies that various
math functions should invoke a function called
.BR matherr ()
if a math exception is detected.
This function is called before the math function returns;
after
.BR matherr ()
returns, the system then returns to the math function,
which in turn returns to the caller.
The
.BR matherr ()
mechanism is supported by glibc, but is now obsolete:
new applications should use the techniques described in
.BR math_error (7)
and
.BR fenv (3).
This page documents the glibc
.BR matherr ()
mechanism as an aid for maintaining and porting older applications.
To employ
.BR matherr (),
the programmer must define the
.B _SVID_SOURCE
feature test macro
(before including
.I any
header files),
and assign the value
.B _SVID_
to the external variable
.BR _LIB_VERSION .
The system provides a default version of
.BR matherr ().
This version does nothing, and returns zero
(see below for the significance of this).
The default
.BR matherr ()
can be overridden by a programmer-defined
version, which will be invoked when an exception occurs.
The function is invoked with one argument, a pointer to an
.I exception
structure, defined as follows:
.in +4n
.nf
struct exception {
int type; /* Exception type */
char *name; /* Name of function causing exception */
double arg1; /* 1st argument to function */
double arg2; /* 2nd argument to function */
double retval; /* Function return value */
}
.fi
.in
.PP
The
.I type
field has one of the following values:
.TP 12
.B DOMAIN
A domain error occurred (the function argument was outside the range
for which the function is defined).
The return value depends on the function;
.I errno
is set to
.BR EDOM .
.TP
.B SING
A pole error occurred (the function result is an infinity).
The return value in most cases is
.B HUGE
(the largest single precision floating-point number),
appropriately signed.
In most cases,
.I errno
is set to
.BR EDOM .
.TP
.B OVERFLOW
An overflow occurred.
In most cases, the value
.B HUGE
is returned, and
.I errno
is set to
.BR ERANGE .
.TP
.B UNDERFLOW
An underflow occurred.
0.0 is returned, and
.I errno
is set to
.BR ERANGE .
.TP
.B TLOSS
Total loss of significance.
0.0 is returned, and
.I errno
is set to
.BR ERANGE .
.TP
.B PLOSS
Partial loss of significance.
This value is unused on glibc
(and many other systems).
.PP
The
.I arg1
and
.I arg2
fields are the arguments supplied to the function
.RI ( arg2
is undefined for functions that take only one argument).
The
.I retval
field specifies the return value that the math
function will return to its caller.
The programmer-defined
.BR matherr ()
can modify this field to change the return value of the math function.
If the
.BR matherr ()
function returns zero, then the system sets
.I errno
as described above, and may print an error message on standard error
(see below).
If the
.BR matherr ()
function returns a nonzero value, then the system does not set
.IR errno ,
and doesn't print an error message.
.SS Math functions that employ matherr()
The table below lists the functions and circumstances in which
.BR matherr ()
is called.
The "Type" column indicates the value assigned to
.I exc\->type
when calling
.BR matherr ().
The "Result" column is the default return value assigned to
.IR exc\->retval .
The "Msg?" and "errno" columns describe the default behavior if
.BR matherr ()
returns zero.
If the "Msg?" columns contains "y",
then the system prints an error message on standard error.
The table uses the following notations and abbreviations:
.RS
.nf
x first argument to function
y second argument to function
fin finite value for argument
neg negative value for argument
int integral value for argument
o/f result overflowed
u/f result underflowed
|x| absolute value of x
X_TLOSS is a constant defined in \fI<math.h>\fP
.fi
.RE
.\" Details below from glibc 2.8's sysdeps/ieee754/k_standard.c
.\" A subset of cases were test by experimental programs.
.TS
lB lB lB cB lB
l l l c l.
Function Type Result Msg? errno
acos(|x|>1) DOMAIN HUGE y EDOM
asin(|x|>1) DOMAIN HUGE y EDOM
atan2(0,0) DOMAIN HUGE y EDOM
acosh(x<1) DOMAIN NAN y EDOM \" retval is 0.0/0.0
atanh(|x|>1) DOMAIN NAN y EDOM \" retval is 0.0/0.0
atanh(|x|==1) SING (x>0.0)? y EDOM \" retval is x/0.0
\ \ HUGE_VAL :
\ \ \-HUGE_VAL
cosh(fin) o/f OVERFLOW HUGE n ERANGE
sinh(fin) o/f OVERFLOW (x>0.0) ? n ERANGE
\ \ HUGE : \-HUGE
sqrt(x<0) DOMAIN 0.0 y EDOM
hypot(fin,fin) o/f OVERFLOW HUGE n ERANGE
exp(fin) o/f OVERFLOW HUGE n ERANGE
exp(fin) u/f UNDERFLOW 0.0 n ERANGE
exp2(fin) o/f OVERFLOW HUGE n ERANGE
exp2(fin) u/f UNDERFLOW 0.0 n ERANGE
exp10(fin) o/f OVERFLOW HUGE n ERANGE
exp10(fin) u/f UNDERFLOW 0.0 n ERANGE
j0(|x|>X_TLOSS) TLOSS 0.0 y ERANGE
j1(|x|>X_TLOSS) TLOSS 0.0 y ERANGE
jn(|x|>X_TLOSS) TLOSS 0.0 y ERANGE
y0(x>X_TLOSS) TLOSS 0.0 y ERANGE
y1(x>X_TLOSS) TLOSS 0.0 y ERANGE
yn(x>X_TLOSS) TLOSS 0.0 y ERANGE
y0(0) DOMAIN \-HUGE y EDOM
y0(x<0) DOMAIN \-HUGE y EDOM
y1(0) DOMAIN \-HUGE y EDOM
y1(x<0) DOMAIN \-HUGE y EDOM
yn(n,0) DOMAIN \-HUGE y EDOM
yn(x<0) DOMAIN \-HUGE y EDOM
lgamma(fin) o/f OVERFLOW HUGE n ERANGE
lgamma(\-int) or SING HUGE y EDOM
\ \ lgamma(0)
tgamma(fin) o/f OVERFLOW HUGE_VAL n ERANGE
tgamma(\-int) SING NAN y EDOM
tgamma(0) SING copysign( y ERANGE
\ \ HUGE_VAL,x)
log(0) SING \-HUGE y EDOM
log(x<0) DOMAIN \-HUGE y EDOM
log2(0) SING \-HUGE n EDOM \" different from log()
log2(x<0) DOMAIN -HUGE n EDOM \" different from log()
log10(0) SING \-HUGE y EDOM
log10(x<0) DOMAIN \-HUGE y EDOM
pow(0.0,0.0) DOMAIN 0.0 y EDOM
pow(x,y) o/f OVERFLOW HUGE n ERANGE
pow(x,y) u/f UNDERFLOW 0.0 n ERANGE
pow(NaN,0.0) DOMAIN x n EDOM
0**neg DOMAIN 0.0 y EDOM \" +0 and -0
neg**non-int DOMAIN 0.0 y EDOM
scalb() o/f OVERFLOW (x>0.0) ? n ERANGE
\ \ HUGE_VAL :
\ \ \-HUGE_VAL
scalb() u/f UNDERFLOW copysign( n ERANGE
\ \ \ \ 0.0,x)
fmod(x,0) DOMAIN x y EDOM
remainder(x,0) DOMAIN NAN y EDOM \" retval is 0.0/0.0
.TE
.SH EXAMPLE
The example program demonstrates the use of
.BR matherr ()
when calling
.BR log (3).
The program takes up to three command-line arguments.
The first argument is the floating-point number to be given to
.BR log (3).
If the optional second argument is provided, then
.B _LIB_VERSION
is set to
.B _SVID_
so that
.BR matherr ()
is called, and the integer supplied in the
command-line argument is used as the return value from
.BR matherr ().
If the optional third command-line argument is supplied,
then it specifies an alternative return value that
.BR matherr ()
should assign as the return value of the math function.
The following example run, where
.BR log (3)
is given an argument of 0.0, does not use
.BR matherr() :
.in +4n
.nf
.RB "$" " ./a.out 0.0"
errno: Numerical result out of range
x=-inf
.fi
.in
In the following run,
.BR matherr ()
is called, and returns 0:
.in +4n
.nf
.RB "$" " ./a.out 0.0 0"
matherr SING exception in log() function
args: 0.000000, 0.000000
retval: -340282346638528859811704183484516925440.000000
log: SING error
errno: Numerical argument out of domain
x=-340282346638528859811704183484516925440.000000
.fi
.in
The message "log: SING error" was printed by the C library.
In the following run,
.BR matherr ()
is called, and returns a nonzero value:
.in +4n
.nf
.RB "$" " ./a.out 0.0 1"
matherr SING exception in log() function
args: 0.000000, 0.000000
retval: -340282346638528859811704183484516925440.000000
x=-340282346638528859811704183484516925440.000000
.fi
.in
In this case, the C library did not print a message, and
.I errno
was not set.
In the following run,
.BR matherr ()
is called, changes the return value of the math function,
and returns a nonzero value:
.in +4n
.nf
.RB "$" " ./a.out 0.0 1 12345.0"
matherr SING exception in log() function
args: 0.000000, 0.000000
retval: -340282346638528859811704183484516925440.000000
x=12345.000000
.fi
.in
.SS Program source
\&
.nf
#define _SVID_SOURCE
#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
static int matherr_ret = 0; /* Value that matherr()
should return */
static int change_retval = 0; /* Should matherr() change
function\(aqs return value? */
static double new_retval; /* New function return value */
int
matherr(struct exception *exc)
{
fprintf(stderr, "matherr %s exception in %s() function\\n",
(exc\->type == DOMAIN) ? "DOMAIN" :
(exc\->type == OVERFLOW) ? "OVERFLOW" :
(exc\->type == UNDERFLOW) ? "UNDERFLOW" :
(exc\->type == SING) ? "SING" :
(exc\->type == TLOSS) ? "TLOSS" :
(exc\->type == PLOSS) ? "PLOSS" : "???",
exc\->name);
fprintf(stderr, " args: %f, %f\\n",
exc\->arg1, exc->arg2);
fprintf(stderr, " retval: %f\\n", exc\->retval);
if (change_retval)
exc\->retval = new_retval;
return matherr_ret;
}
int
main(int argc, char *argv[])
{
double x;
if (argc < 2) {
fprintf(stderr, "Usage: %s <argval>"
" [<matherr\-ret> [<new\-func-retval>]]\\n", argv[0]);
exit(EXIT_FAILURE);
}
if (argc > 2) {
_LIB_VERSION = _SVID_;
matherr_ret = atoi(argv[2]);
}
if (argc > 3) {
change_retval = 1;
new_retval = atof(argv[3]);
}
x = log(atof(argv[1]));
if (errno != 0)
perror("errno");
printf("x=%f\\n", x);
exit(EXIT_SUCCESS);
}
.fi
.SH SEE ALSO
.BR fenv (3),
.BR math_error (7),
.BR standards (7)
|