summaryrefslogtreecommitdiff
path: root/gs/src/gdevpsdi.c
blob: a3abc26ca542b5bb0b258ee08c8188b18253a987 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
/* Copyright (C) 2001-2006 artofcode LLC.
   All Rights Reserved.
  
   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied, modified
   or distributed except as expressly authorized under the terms of that
   license.  Refer to licensing information at http://www.artifex.com/
   or contact Artifex Software, Inc.,  7 Mt. Lassen Drive - Suite A-134,
   San Rafael, CA  94903, U.S.A., +1(415)492-9861, for further information.
*/

/* $Id$ */
/* Image compression for PostScript and PDF writers */
#include "stdio_.h"		/* for jpeglib.h */
#include "jpeglib_.h"		/* for sdct.h */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gscspace.h"
#include "gdevpsdf.h"
#include "gdevpsds.h"
#include "gxdevmem.h"
#include "gxcspace.h"
#include "gsparamx.h"
#include "strimpl.h"
#include "scfx.h"
#include "sdct.h"
#include "sjpeg.h"
#include "slzwx.h"
#include "spngpx.h"
#include "srlx.h"
#include "szlibx.h"

/* Define parameter-setting procedures. */
extern stream_state_proc_put_params(s_CF_put_params, stream_CF_state);

/* ---------------- Image compression ---------------- */

/*
 * Add a filter to expand or reduce the pixel width if needed.
 * At least one of bpc_in and bpc_out is 8; the other is 1, 2, 4, or 8,
 * except if bpc_out is 8, bpc_in may be 12.
 */
private int
pixel_resize(psdf_binary_writer * pbw, int width, int num_components,
	     int bpc_in, int bpc_out)
{
    gs_memory_t *mem = pbw->dev->v_memory;
    const stream_template *template;
    stream_1248_state *st;
    int code;

    if (bpc_out == bpc_in)
	return 0;
    if (bpc_in != 8) {
	static const stream_template *const exts[13] = {
	    0, &s_1_8_template, &s_2_8_template, 0, &s_4_8_template,
	    0, 0, 0, 0, 0, 0, 0, &s_12_8_template
	};

	template = exts[bpc_in];
    } else {
	static const stream_template *const rets[5] = {
	    0, &s_8_1_template, &s_8_2_template, 0, &s_8_4_template
	};

	template = rets[bpc_out];
    }
    st = (stream_1248_state *)
	s_alloc_state(mem, template->stype, "pixel_resize state");
    if (st == 0)
	return_error(gs_error_VMerror);
    code = psdf_encode_binary(pbw, template, (stream_state *) st);
    if (code < 0) {
	gs_free_object(mem, st, "pixel_resize state");
	return code;
    }
    s_1248_init(st, width, num_components);
    return 0;
}

private int
convert_color(gx_device *pdev, const gs_color_space *pcs, const gs_imager_state * pis, 
	      gs_client_color *cc, float c[3])
{
    int code;
    gx_device_color dc;

    cs_restrict_color(cc, pcs);
    code = pcs->type->remap_color(cc, pcs, &dc, pis, pdev, gs_color_select_texture);
    if (code < 0)
	return code;
    c[0] = (float)((int)(dc.colors.pure >> pdev->color_info.comp_shift[0]) & ((1 << pdev->color_info.comp_bits[0]) - 1));
    c[1] = (float)((int)(dc.colors.pure >> pdev->color_info.comp_shift[1]) & ((1 << pdev->color_info.comp_bits[1]) - 1));
    c[2] = (float)((int)(dc.colors.pure >> pdev->color_info.comp_shift[2]) & ((1 << pdev->color_info.comp_bits[2]) - 1));
    return 0;
}

/* A hewristic choice of DCT compression parameters - see bug 687174. */
private int 
choose_DCT_params(gx_device *pdev, const gs_color_space *pcs, 
		  const gs_imager_state * pis, 
		  gs_c_param_list *list, gs_c_param_list **param, 
		  stream_state *st) 
{   
    gx_device_memory mdev;
    gs_client_color cc;
    int code;
    float c[4][3];
    const float MIN_FLOAT = - MAX_FLOAT;
    const float domination = (float)0.25;
    const int one = 1, zero = 0;

    if (pcs->type->num_components(pcs) != 3)
	return 0;
    /* Make a copy of the parameter list since we will modify it. */
    code = param_list_copy((gs_param_list *)list, (gs_param_list *)*param);
    if (code < 0)
	return code;
    *param = list;

    /* Create a local memory device for transforming colors to DeviceRGB. */
    gs_make_mem_device(&mdev, gdev_mem_device_for_bits(24), pdev->memory, 0, NULL);
    gx_device_retain((gx_device *)&mdev, true);	/* prevent freeing */
    set_linear_color_bits_mask_shift((gx_device *)&mdev);
    mdev.color_info.separable_and_linear = GX_CINFO_SEP_LIN;

    /* Check for an RGB-like color space.  
       To recognize that we make a matrix as it were a linear operator,
       suppress an ununiformity by subtracting the image of {0,0,0},
       and then check for giagonal domination.  */
    cc.paint.values[0] = cc.paint.values[1] = cc.paint.values[2] = MIN_FLOAT;
    convert_color((gx_device *)&mdev, pcs, pis, &cc, c[3]);
    cc.paint.values[0] = MAX_FLOAT; cc.paint.values[1] = MIN_FLOAT; cc.paint.values[2] = MIN_FLOAT;
    convert_color((gx_device *)&mdev, pcs, pis, &cc, c[0]);
    cc.paint.values[0] = MIN_FLOAT; cc.paint.values[1] = MAX_FLOAT; cc.paint.values[2] = MIN_FLOAT;
    convert_color((gx_device *)&mdev, pcs, pis, &cc, c[1]);
    cc.paint.values[0] = MIN_FLOAT; cc.paint.values[1] = MIN_FLOAT; cc.paint.values[2] = MAX_FLOAT;
    convert_color((gx_device *)&mdev, pcs, pis, &cc, c[2]);
    c[0][0] -= c[3][0]; c[0][1] -= c[3][1]; c[0][2] -= c[3][2];
    c[1][0] -= c[3][0]; c[1][1] -= c[3][1]; c[1][2] -= c[3][2];
    c[2][0] -= c[3][0]; c[2][1] -= c[3][1]; c[2][2] -= c[3][2];
    c[0][0] = any_abs(c[0][0]); c[0][1] = any_abs(c[0][1]); c[0][2] = any_abs(c[0][2]);
    c[1][0] = any_abs(c[1][0]); c[1][1] = any_abs(c[1][1]); c[1][2] = any_abs(c[1][2]);
    c[2][0] = any_abs(c[2][0]); c[2][1] = any_abs(c[2][1]); c[2][2] = any_abs(c[2][2]);
    if (c[0][0] * domination > c[0][1] && c[0][0] * domination > c[0][2] &&
	c[1][1] * domination > c[1][0] && c[1][1] * domination > c[1][2] &&
	c[2][2] * domination > c[2][0] && c[2][2] * domination > c[2][1]) {
	/* Yes, it looks like an RGB color space. 
	   Replace ColorTransform with 1. */
	code = param_write_int((gs_param_list *)list, "ColorTransform", &one);
	if (code < 0)
	    return code;
	goto done;
    }

    /* Check for a Lab-like color space.
       Colors {v,0,0} should map to grays. */
    cc.paint.values[0] = MAX_FLOAT; cc.paint.values[1] = cc.paint.values[2] = 0;
    convert_color((gx_device *)&mdev, pcs, pis, &cc, c[0]);
    cc.paint.values[0] /= 2;
    convert_color((gx_device *)&mdev, pcs, pis, &cc, c[1]);
    cc.paint.values[0] /= 2;
    convert_color((gx_device *)&mdev, pcs, pis, &cc, c[2]);
    c[0][1] -= c[0][0]; c[0][2] -= c[0][0];
    c[1][1] -= c[1][0]; c[1][2] -= c[1][0];
    c[2][1] -= c[2][0]; c[2][2] -= c[2][0];
    c[0][1] = any_abs(c[0][1]); c[0][2] = any_abs(c[0][2]);
    c[1][1] = any_abs(c[1][1]); c[1][2] = any_abs(c[1][2]);
    c[2][1] = any_abs(c[2][1]); c[2][2] = any_abs(c[2][2]);
    if (c[0][0] * domination > c[0][1] && c[0][0] * domination > c[0][2] &&
	c[1][0] * domination > c[1][1] && c[1][0] * domination > c[1][2] &&
	c[2][0] * domination > c[2][1] && c[2][0] * domination > c[2][2]) {
	/* Yes, it looks like an Lab color space. 
	   Replace ColorTransform with 0. */
	code = param_write_int((gs_param_list *)list, "ColorTransform", &zero);
	if (code < 0)
	    return code;
    } else {
	/* Unknown color space type.
	   Replace /HSamples [1 1 1 1] /VSamples [1 1 1 1] to avoid quality degradation. */
	gs_param_string a;
	static const byte v[4] = {1, 1, 1, 1};

	a.data = v;
	a.size = 4;
	a.persistent = true;
	code = param_write_string((gs_param_list *)list, "HSamples", &a);
	if (code < 0)
	    return code;
	code = param_write_string((gs_param_list *)list, "VSamples", &a);
	if (code < 0)
	    return code;
    }
done:
    gs_c_param_list_read(list);
    return 0;
}

/* Add the appropriate image compression filter, if any. */
private int
setup_image_compression(psdf_binary_writer *pbw, const psdf_image_params *pdip,
			const gs_pixel_image_t * pim, const gs_imager_state * pis, 
			bool lossless)
{
    gx_device_psdf *pdev = pbw->dev;
    gs_memory_t *mem = pdev->v_memory;
    const stream_template *template = pdip->filter_template;
    const stream_template *orig_template = template;
    const stream_template *lossless_template =
	(pdev->params.UseFlateCompression &&
	 pdev->version >= psdf_version_ll3 ?
	 &s_zlibE_template : &s_LZWE_template);
    const gs_color_space *pcs = pim->ColorSpace; /* null if mask */
    int Colors = (pcs ? gs_color_space_num_components(pcs) : 1);
    bool Indexed =
	(pcs != 0 && 
	 gs_color_space_get_index(pcs) == gs_color_space_index_Indexed);
    gs_c_param_list *dict = pdip->Dict;
    stream_state *st;
    int code;

    if (!pdip->Encode)		/* no compression */
	return 0;
    if (pdip->AutoFilter) {
	/*
	 * Disregard the requested filter.  What we should do at this point
	 * is analyze the image to decide whether to use JPEG encoding
	 * (DCTEncode with ACSDict) or the lossless filter.  However, since
	 * we don't buffer the entire image, we'll make the choice on-fly,
	 * forking the image data into 3 streams : (1) JPEG, (2) lossless,
	 * (3) the compression chooser. In this case this function is
	 * called 2 times with different values of the 'lossless' argument.
	 */
        if (lossless) {
            orig_template = template = lossless_template;
        } else {
            orig_template = template = &s_DCTE_template;
        }
	dict = pdip->ACSDict;
    } else if (!lossless)
	return gs_error_rangecheck; /* Reject the alternative stream. */   
    if (pdev->version < psdf_version_ll3 && template == &s_zlibE_template)
	orig_template = template = lossless_template;
    if (dict) /* NB: rather than dereference NULL lets continue on without a dict */
	gs_c_param_list_read(dict);	/* ensure param list is in read mode */
    if (template == 0)	/* no compression */
	return 0;
    if (pim->Width < 200 && pim->Height < 200) /* Prevent a fixed overflow. */
	if (pim->Width * pim->Height * Colors * pim->BitsPerComponent <= 160)
	    return 0;  /* not worth compressing */
    /* Only use DCTE for 8-bit, non-Indexed data. */
    if (template == &s_DCTE_template) {
	if (Indexed ||
            !(pdip->Downsample ?
	      pdip->Depth == 8 ||
	      (pdip->Depth == -1 && pim->BitsPerComponent == 8) :
	      pim->BitsPerComponent == 8)
	    ) {
	    /* Use LZW/Flate instead. */
	    template = lossless_template;
	}
    }
    st = s_alloc_state(mem, template->stype, "setup_image_compression");
    if (st == 0)
	return_error(gs_error_VMerror);
    if (template->set_defaults)
	(*template->set_defaults) (st);
    if (template == &s_CFE_template) {
	stream_CFE_state *const ss = (stream_CFE_state *) st;

	if (pdip->Dict != 0 && pdip->filter_template == template) {
	    s_CF_put_params((gs_param_list *)pdip->Dict,
			    (stream_CF_state *)ss); /* ignore errors */
	} else {
	    ss->K = -1;
	    ss->BlackIs1 = true;
	}
	ss->Columns = pim->Width;
	ss->Rows = (ss->EndOfBlock ? 0 : pim->Height);
    } else if ((template == &s_LZWE_template ||
		template == &s_zlibE_template) &&
	       pdev->version >= psdf_version_ll3) {
	/* If not Indexed, add a PNGPredictor filter. */
	if (!Indexed) {
	    code = psdf_encode_binary(pbw, template, st);
	    if (code < 0)
		goto fail;
	    template = &s_PNGPE_template;
	    st = s_alloc_state(mem, template->stype, "setup_image_compression");
	    if (st == 0) {
		code = gs_note_error(gs_error_VMerror);
		goto fail;
	    }
	    if (template->set_defaults)
		(*template->set_defaults) (st);
	    {
		stream_PNGP_state *const ss = (stream_PNGP_state *) st;

		ss->Colors = Colors;
		ss->Columns = pim->Width;
	    }
	}
    } else if (template == &s_DCTE_template) {
	gs_c_param_list list, *param = dict;

	gs_c_param_list_write(&list, mem);
	code = choose_DCT_params((gx_device *)pbw->dev, pcs, pis, &list, &param, st);
	if (code < 0) {
    	    gs_c_param_list_release(&list);
	    return code;
	}
	code = psdf_DCT_filter((gs_param_list *)param,
			       st, pim->Width, pim->Height, Colors, pbw);
	gs_c_param_list_release(&list);
	if (code < 0)
	    goto fail;
	/* psdf_DCT_filter already did the psdf_encode_binary. */
	return 0;
    } else if (template == &s_LZWE_template) {
	if (template->set_defaults)
	    (*template->set_defaults) (st);
    }
    code = psdf_encode_binary(pbw, template, st);
    if (code >= 0)
	return 0;
 fail:
    gs_free_object(mem, st, "setup_image_compression");
    return code;
}

/* Determine whether an image should be downsampled. */
private bool
do_downsample(const psdf_image_params *pdip, const gs_pixel_image_t *pim,
	      floatp resolution)
{
    floatp factor = (int)(resolution / pdip->Resolution);

    return (pdip->Downsample && factor >= pdip->DownsampleThreshold &&
	    factor <= pim->Width && factor <= pim->Height);
}

/* Add downsampling, antialiasing, and compression filters. */
/* Uses AntiAlias, Depth, DownsampleThreshold, DownsampleType, Resolution. */
/* Assumes do_downsampling() is true. */
private int
setup_downsampling(psdf_binary_writer * pbw, const psdf_image_params * pdip,
		   gs_pixel_image_t * pim, const gs_imager_state * pis, 
		   floatp resolution, bool lossless)
{
    gx_device_psdf *pdev = pbw->dev;
    /* Note: Bicubic is currently interpreted as Average. */
    const stream_template *template =
	(pdip->DownsampleType == ds_Subsample ?
	 &s_Subsample_template : &s_Average_template);
    int factor = (int)(resolution / pdip->Resolution);
    int orig_bpc = pim->BitsPerComponent;
    int orig_width = pim->Width;
    int orig_height = pim->Height;
    stream_state *st;
    int code;

    st = s_alloc_state(pdev->v_memory, template->stype,
		       "setup_downsampling");
    if (st == 0)
	return_error(gs_error_VMerror);
    if (template->set_defaults)
	template->set_defaults(st);
    {
	stream_Downsample_state *const ss = (stream_Downsample_state *) st;

	ss->Colors =
	    (pim->ColorSpace == 0 ? 1 /*mask*/ :
	     gs_color_space_num_components(pim->ColorSpace));
	ss->WidthIn = pim->Width;
	ss->HeightIn = pim->Height;
	ss->XFactor = ss->YFactor = factor;
	ss->AntiAlias = pdip->AntiAlias;
	ss->padX = ss->padY = false; /* should be true */
	if (template->init)
	    template->init(st);
	pim->Width = s_Downsample_size_out(pim->Width, factor, ss->padX);
	pim->Height = s_Downsample_size_out(pim->Height, factor, ss->padY);
	pim->BitsPerComponent = pdip->Depth;
	gs_matrix_scale(&pim->ImageMatrix, (double)pim->Width / orig_width,
			(double)pim->Height / orig_height,
			&pim->ImageMatrix);
	/****** NO ANTI-ALIASING YET ******/
	if ((code = setup_image_compression(pbw, pdip, pim, pis, lossless)) < 0 ||
	    (code = pixel_resize(pbw, pim->Width, ss->Colors,
				 8, pdip->Depth)) < 0 ||
	    (code = psdf_encode_binary(pbw, template, st)) < 0 ||
	    (code = pixel_resize(pbw, orig_width, ss->Colors,
				 orig_bpc, 8)) < 0
	    ) {
	    gs_free_object(pdev->v_memory, st, "setup_image_compression");
	    return code;
	}
    }
    return 0;
}

/* Decive whether to convert an image to RGB. */
bool
psdf_is_converting_image_to_RGB(const gx_device_psdf * pdev, 
		const gs_imager_state * pis, const gs_pixel_image_t * pim)
{
    return pdev->params.ConvertCMYKImagesToRGB &&
	    pis != 0 &&
	    gs_color_space_get_index(pim->ColorSpace) ==
	    gs_color_space_index_DeviceCMYK;
}

/* Set up compression and downsampling filters for an image. */
/* Note that this may modify the image parameters. */
int
psdf_setup_image_filters(gx_device_psdf * pdev, psdf_binary_writer * pbw,
			 gs_pixel_image_t * pim, const gs_matrix * pctm,
			 const gs_imager_state * pis, bool lossless)
{
    /*
     * The following algorithms are per Adobe Tech Note # 5151,
     * "Acrobat Distiller Parameters", revised 16 September 1996
     * for Acrobat(TM) Distiller(TM) 3.0.
     *
     * The control structure is a little tricky, because filter
     * pipelines must be constructed back-to-front.
     */
    int code = 0;
    psdf_image_params params;
    int bpc = pim->BitsPerComponent;
    int bpc_out = pim->BitsPerComponent = min(bpc, 8);
    int ncomp;
    double resolution;

    /*
     * The Adobe documentation doesn't say this, but mask images are
     * compressed on the same basis as 1-bit-deep monochrome images,
     * except that anti-aliasing (resolution/depth tradeoff) is not
     * allowed.
     */
    if (pim->ColorSpace == NULL) { /* mask image */
	params = pdev->params.MonoImage;
	params.Depth = 1;
	ncomp = 1;
    } else {
	ncomp = gs_color_space_num_components(pim->ColorSpace);
	if (ncomp == 1) {
	    if (bpc == 1)
		params = pdev->params.MonoImage;
	    else
		params = pdev->params.GrayImage;
	    if (params.Depth == -1)
		params.Depth = bpc;
	} else {
	    params = pdev->params.ColorImage;
	    /* params.Depth is reset below */
	}
    }

    /*
     * We can compute the image resolution by:
     *    W / (W * ImageMatrix^-1 * CTM / HWResolution).
     * We can replace W by 1 to simplify the computation.
     */
    if (pctm == 0)
	resolution = -1;
    else {
	gs_point pt;

	/* We could do both X and Y, but why bother? */
	code = gs_distance_transform_inverse(1.0, 0.0, &pim->ImageMatrix, &pt);
	if (code < 0)
	    return code;
	gs_distance_transform(pt.x, pt.y, pctm, &pt);
	resolution = 1.0 / hypot(pt.x / pdev->HWResolution[0],
				 pt.y / pdev->HWResolution[1]);
    }
    if (ncomp == 1) {
	/* Monochrome, gray, or mask */
	/* Check for downsampling. */
	if (do_downsample(&params, pim, resolution)) {
	    /* Use the downsampled depth, not the original data depth. */
	    if (params.Depth == 1) {
		params.Filter = pdev->params.MonoImage.Filter;
		params.filter_template = pdev->params.MonoImage.filter_template;
		params.Dict = pdev->params.MonoImage.Dict;
	    } else {
		params.Filter = pdev->params.GrayImage.Filter;
		params.filter_template = pdev->params.GrayImage.filter_template;
		params.Dict = pdev->params.GrayImage.Dict;
	    }
	    code = setup_downsampling(pbw, &params, pim, pis, resolution, lossless);
	} else {
	    code = setup_image_compression(pbw, &params, pim, pis, lossless);
	}
	if (code < 0)
	    return code;
	code = pixel_resize(pbw, pim->Width, ncomp, bpc, bpc_out);
    } else {
	/* Color */
	bool cmyk_to_rgb = psdf_is_converting_image_to_RGB(pdev, pis, pim);

	if (cmyk_to_rgb) {
	    extern_st(st_color_space);
	    gs_memory_t *mem = pdev->v_memory;
	    gs_color_space *rgb_cs = gs_alloc_struct(mem, 
		    gs_color_space, &st_color_space, "psdf_setup_image_filters");

	    gs_cspace_init_DeviceRGB(mem, rgb_cs);  /* idempotent initialization */
	    pim->ColorSpace = rgb_cs;
	}
	if (params.Depth == -1)
	    params.Depth = (cmyk_to_rgb ? 8 : bpc_out);
	if (do_downsample(&params, pim, resolution)) {
	    code = setup_downsampling(pbw, &params, pim, pis, resolution, lossless);
	} else {
	    code = setup_image_compression(pbw, &params, pim, pis, lossless);
	}
	if (code < 0)
	    return code;
	if (cmyk_to_rgb) {
	    gs_memory_t *mem = pdev->v_memory;
	    stream_C2R_state *ss = (stream_C2R_state *)
		s_alloc_state(mem, s_C2R_template.stype, "C2R state");
	    int code = pixel_resize(pbw, pim->Width, 3, 8, bpc_out);
		    
	    if (code < 0 ||
		(code = psdf_encode_binary(pbw, &s_C2R_template,
					   (stream_state *) ss)) < 0 ||
		(code = pixel_resize(pbw, pim->Width, 4, bpc, 8)) < 0
		)
		return code;
	    s_C2R_init(ss, pis);
	} else {
	    code = pixel_resize(pbw, pim->Width, ncomp, bpc, bpc_out);
	    if (code < 0)
		return code;
	}
    }
    return code;
}

/* Set up compression filters for a lossless image, with no downsampling, */
/* no color space conversion, and only lossless filters. */
/* Note that this may modify the image parameters. */
int
psdf_setup_lossless_filters(gx_device_psdf *pdev, psdf_binary_writer *pbw,
			    gs_pixel_image_t *pim)
{
    /*
     * Set up a device with modified parameters for computing the image
     * compression filters.  Don't allow downsampling or lossy compression.
     */
    gx_device_psdf ipdev;

    ipdev = *pdev;
    ipdev.params.ColorImage.AutoFilter = false;
    ipdev.params.ColorImage.Downsample = false;
    ipdev.params.ColorImage.Filter = "FlateEncode";
    ipdev.params.ColorImage.filter_template = &s_zlibE_template;
    ipdev.params.ConvertCMYKImagesToRGB = false;
    ipdev.params.GrayImage.AutoFilter = false;
    ipdev.params.GrayImage.Downsample = false;
    ipdev.params.GrayImage.Filter = "FlateEncode";
    ipdev.params.GrayImage.filter_template = &s_zlibE_template;
    return psdf_setup_image_filters(&ipdev, pbw, pim, NULL, NULL, true);
}

/* Set up image compression chooser. */
int
psdf_setup_compression_chooser(psdf_binary_writer *pbw, gx_device_psdf *pdev,
		    int width, int height, int depth, int bits_per_sample)
{
    int code;
    stream_state *ss = s_alloc_state(pdev->memory, s_compr_chooser_template.stype, 
                                     "psdf_setup_compression_chooser");

    if (ss == 0)
	return_error(gs_error_VMerror);
    pbw->memory = pdev->memory;
    pbw->strm = pdev->strm; /* just a stub - will not write to it. */
    pbw->dev = pdev;
    pbw->target = pbw->strm; /* Since s_add_filter may insert NullEncode to comply buffering,
			         will need to close a chain of filetrs. */
    code = psdf_encode_binary(pbw, &s_compr_chooser_template, ss);
    if (code < 0)
	return code;
    code = s_compr_chooser_set_dimensions((stream_compr_chooser_state *)ss, 
		    width, height, depth, bits_per_sample);
    return code;
}

/* Set up an "image to mask" filter. */
int
psdf_setup_image_to_mask_filter(psdf_binary_writer *pbw, gx_device_psdf *pdev,
		    int width, int height, int depth, int bits_per_sample, uint *MaskColor)
{
    int code;
    stream_state *ss = s_alloc_state(pdev->memory, s__image_colors_template.stype, 
	"psdf_setup_image_colors_filter");

    if (ss == 0)
	return_error(gs_error_VMerror);
    pbw->memory = pdev->memory;
    pbw->dev = pdev;
    code = psdf_encode_binary(pbw, &s__image_colors_template, ss);
    if (code < 0)
	return code;
    s_image_colors_set_dimensions((stream_image_colors_state *)ss, 
		    width, height, depth, bits_per_sample);
    s_image_colors_set_mask_colors((stream_image_colors_state *)ss, MaskColor);
    return 0;
}

/* Set up an image colors filter. */
int
psdf_setup_image_colors_filter(psdf_binary_writer *pbw, 
			       gx_device_psdf *pdev, gs_pixel_image_t * pim, 
			       const gs_imager_state *pis)
{   /* fixme: currently it's a stub convertion to mask. */
    int code;
    stream_state *ss = s_alloc_state(pdev->memory, s__image_colors_template.stype, 
	"psdf_setup_image_colors_filter");
    int i;

    if (ss == 0)
	return_error(gs_error_VMerror);
    pbw->memory = pdev->memory;
    pbw->dev = pdev;
    code = psdf_encode_binary(pbw, &s__image_colors_template, ss);
    if (code < 0)
	return code;
    s_image_colors_set_dimensions((stream_image_colors_state *)ss, 
		    pim->Width, pim->Height, 
		    gs_color_space_num_components(pim->ColorSpace), 
		    pim->BitsPerComponent);
    s_image_colors_set_color_space((stream_image_colors_state *)ss, 
		    (gx_device *)pdev, pim->ColorSpace, pis, pim->Decode);
    pim->BitsPerComponent = pdev->color_info.comp_bits[0]; /* Same precision for all components. */
    for (i = 0; i < pdev->color_info.num_components; i++) {
	pim->Decode[i * 2 + 0] = 0;
	pim->Decode[i * 2 + 1] = 1;
    }
    return 0;
}