1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
|
/* Copyright (C) 1989, 1995, 1996, 1997, 1998, 1999 Aladdin Enterprises. All rights reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
For more information about licensing, please refer to
http://www.ghostscript.com/licensing/. For information on
commercial licensing, go to http://www.artifex.com/licensing/ or
contact Artifex Software, Inc., 101 Lucas Valley Road #110,
San Rafael, CA 94903, U.S.A., +1(415)492-9861.
*/
/* $Id$ */
/* Default polygon and image drawing device procedures */
#include "math_.h"
#include "memory_.h"
#include "stdint_.h"
#include "gx.h"
#include "gpcheck.h"
#include "gserrors.h"
#include "gsrect.h"
#include "gxfixed.h"
#include "gxmatrix.h"
#include "gxdcolor.h"
#include "gxdevice.h"
#include "gxiparam.h"
#include "gxistate.h"
#include "gdevddrw.h"
#include "vdtrace.h"
/*
#include "gxdtfill.h" - Do not remove this comment.
"gxdtfill.h" is included below.
*/
#define VD_RECT_COLOR RGB(0, 0, 255)
#define SWAP(a, b, t)\
(t = a, a = b, b = t)
/* ---------------- Polygon and line drawing ---------------- */
/* Define the 'remainder' analogue of fixed_mult_quo. */
private fixed
fixed_mult_rem(fixed a, fixed b, fixed c)
{
/* All kinds of truncation may happen here, but it's OK. */
return a * b - fixed_mult_quo(a, b, c) * c;
}
/*
* The trapezoid fill algorithm uses trap_line structures to keep track of
* the left and right edges during the Bresenham loop.
*/
typedef struct trap_line_s {
/*
* h is the y extent of the line (edge.end.y - edge.start.y).
* We know h > 0.
*/
fixed h;
/*
* The dx/dy ratio for the line is di + df/h.
* (The quotient refers to the l.s.b. of di, not fixed_1.)
* We know 0 <= df < h.
*/
int di;
fixed df;
/*
* The intersection of the line with a scan line is x + xf/h + 1.
* (The 1 refers to the least significant bit of x, not fixed_1;
* similarly, the quotient refers to the l.s.b. of x.)
* We know -h <= xf < 0.
*
* This rational value preciselly represents the mathematical line
* (with no machine arithmetic error).
*
* Note that the fractional part is negative to simplify
* some conditions in the Bresenham algorithm.
* Due to that some expressions are inobvious.
* We believe that it's a kind of archaic
* for the modern hyperthreading architecture,
* we still keep it because the code passed a huge testing
* on various platforms.
*/
fixed x, xf;
/*
* We increment (x,xf) by (ldi,ldf) after each scan line.
* (ldi,ldf) is just (di,df) converted to fixed point.
* We know 0 <= ldf < h.
*/
fixed ldi, ldf;
} trap_line;
/*
* The linear color trapezoid fill algorithm uses trap_color structures to keep track of
* the color change during the Bresenham loop.
*/
typedef struct trap_gradient_s {
frac31 *c; /* integer part of the color in frac32 units. */
int32_t *f; /* the fraction part numerator */
int32_t *num; /* the gradient numerator */
int32_t den; /* color gradient denominator */
} trap_gradient;
/*
* Compute the di and df members of a trap_line structure. The x extent
* (edge.end.x - edge.start.x) is a parameter; the y extent (h member)
* has already been set. Also adjust x for the initial y.
*/
inline private void
compute_dx(trap_line *tl, fixed xd, fixed ys)
{
fixed h = tl->h;
int di;
if (xd >= 0) {
if (xd < h)
tl->di = 0, tl->df = xd;
else {
tl->di = di = (int)(xd / h);
tl->df = xd - di * h;
tl->x += ys * di;
}
} else {
if ((tl->df = xd + h) >= 0 /* xd >= -h */)
tl->di = -1, tl->x -= ys;
else {
tl->di = di = (int)-((h - 1 - xd) / h);
tl->df = xd - di * h;
tl->x += ys * di;
}
}
}
#define YMULT_LIMIT (max_fixed / fixed_1)
/* Compute ldi, ldf, and xf similarly. */
inline private void
compute_ldx(trap_line *tl, fixed ys)
{
int di = tl->di;
fixed df = tl->df;
fixed h = tl->h;
if ( df < YMULT_LIMIT ) {
if ( df == 0 ) /* vertical edge, worth checking for */
tl->ldi = int2fixed(di), tl->ldf = 0, tl->xf = -h;
else {
tl->ldi = int2fixed(di) + int2fixed(df) / h;
tl->ldf = int2fixed(df) % h;
tl->xf =
(ys < fixed_1 ? ys * df % h : fixed_mult_rem(ys, df, h)) - h;
}
}
else {
tl->ldi = int2fixed(di) + fixed_mult_quo(fixed_1, df, h);
tl->ldf = fixed_mult_rem(fixed_1, df, h);
tl->xf = fixed_mult_rem(ys, df, h) - h;
}
}
private inline int
init_gradient(trap_gradient *g, const gs_fill_attributes *fa,
const gs_linear_color_edge *e, const gs_linear_color_edge *e1,
const trap_line *l, fixed ybot, int num_components)
{
int i;
int64_t c;
int32_t d;
if (e->c1 == NULL || e->c0 == NULL)
g->den = 0; /* A wedge - the color is axial along another edge. */
else {
bool ends_from_fa = (e1->c1 == NULL || e1->c0 == NULL);
if (ends_from_fa)
g->den = fa->yend - fa->ystart;
else {
g->den = e->end.y - e->start.y;
if (g->den != l->h)
return_error(gs_error_unregistered); /* Must not happen. */
}
for (i = 0; i < num_components; i++) {
g->num[i] = e->c1[i] - e->c0[i];
c = (int64_t)g->num[i] * (uint32_t)(ybot -
(ends_from_fa ? fa->ystart : e->start.y));
d = (int32_t)(c / g->den);
g->c[i] = e->c0[i] + d;
c -= (int64_t)d * g->den;
if (c < 0) {
g->c[i]--;
c += g->den;
}
g->f[i] = (int32_t)c;
}
}
return 0;
}
private inline void
step_gradient(trap_gradient *g, int num_components)
{
int i;
if (g->den == 0)
return;
for (i = 0; i < num_components; i++) {
int64_t fc = g->f[i] + (int64_t)g->num[i] * fixed_1;
int32_t fc32;
g->c[i] += (int32_t)(fc / g->den);
fc32 = (int32_t)(fc - fc / g->den * g->den);
if (fc32 < 0) {
fc32 += g->den;
g->c[i]--;
}
g->f[i] = fc32;
}
}
private inline bool
check_gradient_overflow(const gs_linear_color_edge *le, const gs_linear_color_edge *re,
int num_components)
{
if (le->c1 == NULL || re->c1 == NULL) {
/* A wedge doesn't use a gradient by X. */
return false;
} else {
/* Check whether set_x_gradient, fill_linear_color_scanline can overflow.
dev_proc(dev, fill_linear_color_scanline) can perform its computation in 32-bit fractions,
so we assume it never overflows. Devices which implement it with no this
assumption must implement the check in gx_default_fill_linear_color_trapezoid,
gx_default_fill_linear_color_triangle with a function other than this one.
Since set_x_gradient perform computations in int64_t, which provides 63 bits
while multiplying a 32-bits color value to a coordinate,
we must restrict the X span with 63 - 32 = 31 bits.
*/
int32_t xl = min(le->start.x, le->end.x);
int32_t xr = min(re->start.x, re->end.x);
/* The pixel span boundaries : */
return arith_rshift_1(xr) - arith_rshift_1(xl) >= 0x3FFFFFFE;
}
}
private inline int
set_x_gradient_nowedge(trap_gradient *xg, const trap_gradient *lg, const trap_gradient *rg,
const trap_line *l, const trap_line *r, int il, int ir, int num_components)
{
/* Ignoring the ending coordinats fractions,
so the gridient is slightly shifted to the left (in <1 'fixed' unit). */
int32_t xl = l->x - (l->xf == -l->h ? 1 : 0) - fixed_half; /* Revert the GX_FILL_TRAPEZOID shift. */
int32_t xr = r->x - (r->xf == -r->h ? 1 : 0) - fixed_half; /* Revert the GX_FILL_TRAPEZOID shift. */
/* The pixel span boundaries : */
int32_t x0 = int2fixed(il) + fixed_half; /* Shift to the pixel center. */
int32_t x1 = int2fixed(ir) + fixed_half; /* Shift to the pixel center. */
int i;
# ifdef DEBUG
if (arith_rshift_1(xr) - arith_rshift_1(xl) >= 0x3FFFFFFE) /* Can overflow ? */
return_error(gs_error_unregistered); /* Must not happen. */
# endif
xg->den = fixed2int(x1 - x0);
for (i = 0; i < num_components; i++) {
/* Ignoring the ending colors fractions,
so the color gets a slightly smaller value
(in <1 'frac31' unit), but it's not important due to
the further conversion to [0, 1 << cinfo->comp_bits[j]],
which drops the fraction anyway. */
int32_t cl = lg->c[i];
int32_t cr = rg->c[i];
int32_t c0 = (int32_t)(cl + ((int64_t)cr - cl) * (x0 - xl) / (xr - xl));
int32_t c1 = (int32_t)(cl + ((int64_t)cr - cl) * (x1 - xl) / (xr - xl));
xg->c[i] = c0;
xg->f[i] = 0; /* Insufficient bits to compute it better.
The color so the color gets a slightly smaller value
(in <1 'frac31' unit), but it's not important due to
the further conversion to [0, 1 << cinfo->comp_bits[j]],
which drops the fraction anyway.
So setting 0 appears pretty good and fast. */
xg->num[i] = c1 - c0;
}
return 0;
}
private inline int
set_x_gradient(trap_gradient *xg, const trap_gradient *lg, const trap_gradient *rg,
const trap_line *l, const trap_line *r, int il, int ir, int num_components)
{
if (lg->den == 0 || rg->den == 0) {
/* A wedge doesn't use a gradient by X. */
int i;
xg->den = 1;
for (i = 0; i < num_components; i++) {
xg->c[i] = (lg->den == 0 ? rg->c[i] : lg->c[i]);
xg->f[i] = 0; /* Compatible to set_x_gradient_nowedge. */
xg->num[i] = 0;
}
return 0;
} else
return set_x_gradient_nowedge(xg, lg, rg, l, r, il, ir, num_components);
}
/*
* Fill a trapezoid.
* Since we need several statically defined variants of this algorithm,
* we stored it in gxdtfill.h and include it configuring with
* macros defined here.
*/
#define LINEAR_COLOR 0 /* Common for shading variants. */
#define EDGE_TYPE gs_fixed_edge /* Common for non-shading variants. */
#define FILL_ATTRS gs_logical_operation_t /* Common for non-shading variants. */
#define GX_FILL_TRAPEZOID private int gx_fill_trapezoid_as_fd
#define CONTIGUOUS_FILL 0
#define SWAP_AXES 1
#define FILL_DIRECT 1
#include "gxdtfill.h"
#undef GX_FILL_TRAPEZOID
#undef CONTIGUOUS_FILL
#undef SWAP_AXES
#undef FILL_DIRECT
#define GX_FILL_TRAPEZOID private int gx_fill_trapezoid_as_nd
#define CONTIGUOUS_FILL 0
#define SWAP_AXES 1
#define FILL_DIRECT 0
#include "gxdtfill.h"
#undef GX_FILL_TRAPEZOID
#undef CONTIGUOUS_FILL
#undef SWAP_AXES
#undef FILL_DIRECT
#define GX_FILL_TRAPEZOID private int gx_fill_trapezoid_ns_fd
#define CONTIGUOUS_FILL 0
#define SWAP_AXES 0
#define FILL_DIRECT 1
#include "gxdtfill.h"
#undef GX_FILL_TRAPEZOID
#undef CONTIGUOUS_FILL
#undef SWAP_AXES
#undef FILL_DIRECT
#define GX_FILL_TRAPEZOID private int gx_fill_trapezoid_ns_nd
#define CONTIGUOUS_FILL 0
#define SWAP_AXES 0
#define FILL_DIRECT 0
#include "gxdtfill.h"
#undef GX_FILL_TRAPEZOID
#undef CONTIGUOUS_FILL
#undef SWAP_AXES
#undef FILL_DIRECT
#define GX_FILL_TRAPEZOID int gx_fill_trapezoid_cf_fd
#define CONTIGUOUS_FILL 1
#define SWAP_AXES 0
#define FILL_DIRECT 1
#include "gxdtfill.h"
#undef GX_FILL_TRAPEZOID
#undef CONTIGUOUS_FILL
#undef SWAP_AXES
#undef FILL_DIRECT
#define GX_FILL_TRAPEZOID int gx_fill_trapezoid_cf_nd
#define CONTIGUOUS_FILL 1
#define SWAP_AXES 0
#define FILL_DIRECT 0
#include "gxdtfill.h"
#undef GX_FILL_TRAPEZOID
#undef CONTIGUOUS_FILL
#undef SWAP_AXES
#undef FILL_DIRECT
#undef EDGE_TYPE
#undef LINEAR_COLOR
#undef FILL_ATTRS
#define LINEAR_COLOR 1 /* Common for shading variants. */
#define EDGE_TYPE gs_linear_color_edge /* Common for shading variants. */
#define FILL_ATTRS const gs_fill_attributes * /* Common for non-shading variants. */
#define GX_FILL_TRAPEZOID private int gx_fill_trapezoid_ns_lc
#define CONTIGUOUS_FILL 0
#define SWAP_AXES 0
#define FILL_DIRECT 1
#include "gxdtfill.h"
#undef GX_FILL_TRAPEZOID
#undef CONTIGUOUS_FILL
#undef SWAP_AXES
#undef FILL_DIRECT
#define GX_FILL_TRAPEZOID private int gx_fill_trapezoid_as_lc
#define CONTIGUOUS_FILL 0
#define SWAP_AXES 1
#define FILL_DIRECT 1
#include "gxdtfill.h"
#undef GX_FILL_TRAPEZOID
#undef CONTIGUOUS_FILL
#undef SWAP_AXES
#undef FILL_DIRECT
#undef EDGE_TYPE
#undef LINEAR_COLOR
#undef FILL_ATTRS
int
gx_default_fill_trapezoid(gx_device * dev, const gs_fixed_edge * left,
const gs_fixed_edge * right, fixed ybot, fixed ytop, bool swap_axes,
const gx_device_color * pdevc, gs_logical_operation_t lop)
{
bool fill_direct = color_writes_pure(pdevc, lop);
if (swap_axes) {
if (fill_direct)
return gx_fill_trapezoid_as_fd(dev, left, right, ybot, ytop, 0, pdevc, lop);
else
return gx_fill_trapezoid_as_nd(dev, left, right, ybot, ytop, 0, pdevc, lop);
} else {
if (fill_direct)
return gx_fill_trapezoid_ns_fd(dev, left, right, ybot, ytop, 0, pdevc, lop);
else
return gx_fill_trapezoid_ns_nd(dev, left, right, ybot, ytop, 0, pdevc, lop);
}
}
private inline void
middle_frac31_color(frac31 *c, const frac31 *c0, const frac31 *c2, int num_components)
{
/* Assuming non-negative values. */
int i;
for (i = 0; i < num_components; i++)
c[i] = (int32_t)(((uint32_t)c0[i] + (uint32_t)c2[i]) >> 1);
}
private inline int
fill_linear_color_trapezoid_nocheck(gx_device *dev, const gs_fill_attributes *fa,
const gs_linear_color_edge *le, const gs_linear_color_edge *re)
{
fixed y02 = max(le->start.y, re->start.y), ymin = max(y02, fa->clip->p.y);
fixed y13 = min(le->end.y, re->end.y), ymax = min(y13, fa->clip->q.y);
int code;
code = (fa->swap_axes ? gx_fill_trapezoid_as_lc : gx_fill_trapezoid_ns_lc)(dev,
le, re, ymin, ymax, 0, NULL, fa);
if (code < 0)
return code;
return !code;
}
/* Fill a trapezoid with a linear color.
[p0 : p1] - left edge, from bottom to top.
[p2 : p3] - right edge, from bottom to top.
The filled area is within Y-spans of both edges.
This implemetation actually handles a bilinear color,
in which the generatrix keeps a parallelizm to the X axis.
In general a bilinear function doesn't keep the generatrix parallelizm,
so the caller must decompose/approximate such functions.
Return values :
1 - success;
0 - Too big. The area isn't filled. The client must decompose the area.
<0 - error.
*/
int
gx_default_fill_linear_color_trapezoid(gx_device *dev, const gs_fill_attributes *fa,
const gs_fixed_point *p0, const gs_fixed_point *p1,
const gs_fixed_point *p2, const gs_fixed_point *p3,
const frac31 *c0, const frac31 *c1,
const frac31 *c2, const frac31 *c3)
{
gs_linear_color_edge le, re;
int num_components = dev->color_info.num_components;
le.start = *p0;
le.end = *p1;
le.c0 = c0;
le.c1 = c1;
le.clip_x = fa->clip->p.x;
re.start = *p2;
re.end = *p3;
re.c0 = c2;
re.c1 = c3;
re.clip_x = fa->clip->q.x;
if (check_gradient_overflow(&le, &re, num_components))
return 0;
return fill_linear_color_trapezoid_nocheck(dev, fa, &le, &re);
}
private inline int
fill_linear_color_triangle(gx_device *dev, const gs_fill_attributes *fa,
const gs_fixed_point *p0, const gs_fixed_point *p1,
const gs_fixed_point *p2,
const frac31 *c0, const frac31 *c1, const frac31 *c2)
{ /* p0 must be the lowest vertex. */
int code;
gs_linear_color_edge e0, e1, e2;
int num_components = dev->color_info.num_components;
if (p0->y == p1->y)
return gx_default_fill_linear_color_trapezoid(dev, fa, p0, p2, p1, p2, c0, c2, c1, c2);
if (p1->y == p2->y)
return gx_default_fill_linear_color_trapezoid(dev, fa, p0, p2, p0, p1, c0, c2, c0, c1);
e0.start = *p0;
e0.end = *p2;
e0.c0 = c0;
e0.c1 = c2;
e0.clip_x = fa->clip->p.x;
e1.start = *p0;
e1.end = *p1;
e1.c0 = c0;
e1.c1 = c1;
e1.clip_x = fa->clip->q.x;
if (p0->y < p1->y && p1->y < p2->y) {
e2.start = *p1;
e2.end = *p2;
e2.c0 = c1;
e2.c1 = c2;
e2.clip_x = fa->clip->q.x;
if (check_gradient_overflow(&e0, &e1, num_components))
return 0;
if (check_gradient_overflow(&e0, &e2, num_components))
return 0;
code = fill_linear_color_trapezoid_nocheck(dev, fa, &e0, &e1);
if (code <= 0) /* Sic! */
return code;
return fill_linear_color_trapezoid_nocheck(dev, fa, &e0, &e2);
} else { /* p0->y < p2->y && p2->y < p1->y */
e2.start = *p2;
e2.end = *p1;
e2.c0 = c2;
e2.c1 = c1;
e2.clip_x = fa->clip->q.x;
if (check_gradient_overflow(&e0, &e1, num_components))
return 0;
if (check_gradient_overflow(&e2, &e1, num_components))
return 0;
code = fill_linear_color_trapezoid_nocheck(dev, fa, &e0, &e1);
if (code <= 0) /* Sic! */
return code;
return fill_linear_color_trapezoid_nocheck(dev, fa, &e2, &e1);
}
}
/* Fill a triangle with a linear color. */
int
gx_default_fill_linear_color_triangle(gx_device *dev, const gs_fill_attributes *fa,
const gs_fixed_point *p0, const gs_fixed_point *p1,
const gs_fixed_point *p2,
const frac31 *c0, const frac31 *c1, const frac31 *c2)
{
fixed dx1 = p1->x - p0->x, dy1 = p1->y - p0->y;
fixed dx2 = p2->x - p0->x, dy2 = p2->y - p0->y;
if ((int64_t)dx1 * dy2 < (int64_t)dx2 * dy1) {
const gs_fixed_point *p = p1;
const frac31 *c = c1;
p1 = p2;
p2 = p;
c1 = c2;
c2 = c;
}
if (p0->y <= p1->y && p0->y <= p2->y)
return fill_linear_color_triangle(dev, fa, p0, p1, p2, c0, c1, c2);
if (p1->y <= p0->y && p1->y <= p2->y)
return fill_linear_color_triangle(dev, fa, p1, p2, p0, c1, c2, c0);
else
return fill_linear_color_triangle(dev, fa, p2, p0, p1, c2, c0, c1);
}
/* Fill a parallelogram whose points are p, p+a, p+b, and p+a+b. */
/* We should swap axes to get best accuracy, but we don't. */
/* We must be very careful to follow the center-of-pixel rule in all cases. */
int
gx_default_fill_parallelogram(gx_device * dev,
fixed px, fixed py, fixed ax, fixed ay, fixed bx, fixed by,
const gx_device_color * pdevc, gs_logical_operation_t lop)
{
fixed t;
fixed qx, qy, ym;
dev_proc_fill_trapezoid((*fill_trapezoid));
gs_fixed_edge left, right;
int code;
/* Make a special fast check for rectangles. */
if (PARALLELOGRAM_IS_RECT(ax, ay, bx, by)) {
gs_int_rect r;
INT_RECT_FROM_PARALLELOGRAM(&r, px, py, ax, ay, bx, by);
return gx_fill_rectangle_device_rop(r.p.x, r.p.y, r.q.x - r.p.x,
r.q.y - r.p.y, pdevc, dev, lop);
}
/*
* Not a rectangle. Ensure that the 'a' line is to the left of
* the 'b' line. Testing ax <= bx is neither sufficient nor
* necessary: in general, we need to compare the slopes.
*/
/* Ensure ay >= 0, by >= 0. */
if (ay < 0)
px += ax, py += ay, ax = -ax, ay = -ay;
if (by < 0)
px += bx, py += by, bx = -bx, by = -by;
qx = px + ax + bx;
if ((ax ^ bx) < 0) { /* In this case, the test ax <= bx is sufficient. */
if (ax > bx)
SWAP(ax, bx, t), SWAP(ay, by, t);
} else { /*
* Compare the slopes. We know that ay >= 0, by >= 0,
* and ax and bx have the same sign; the lines are in the
* correct order iff
* ay/ax >= by/bx, or
* ay*bx >= by*ax
* Eventually we can probably find a better way to test this,
* without using floating point.
*/
if ((double)ay * bx < (double)by * ax)
SWAP(ax, bx, t), SWAP(ay, by, t);
}
fill_trapezoid = dev_proc(dev, fill_trapezoid);
qy = py + ay + by;
left.start.x = right.start.x = px;
left.start.y = right.start.y = py;
left.end.x = px + ax;
left.end.y = py + ay;
right.end.x = px + bx;
right.end.y = py + by;
#define ROUNDED_SAME(p1, p2)\
(fixed_pixround(p1) == fixed_pixround(p2))
if (ay < by) {
if (!ROUNDED_SAME(py, left.end.y)) {
code = (*fill_trapezoid) (dev, &left, &right, py, left.end.y,
false, pdevc, lop);
if (code < 0)
return code;
}
left.start = left.end;
left.end.x = qx, left.end.y = qy;
ym = right.end.y;
if (!ROUNDED_SAME(left.start.y, ym)) {
code = (*fill_trapezoid) (dev, &left, &right, left.start.y, ym,
false, pdevc, lop);
if (code < 0)
return code;
}
right.start = right.end;
right.end.x = qx, right.end.y = qy;
} else {
if (!ROUNDED_SAME(py, right.end.y)) {
code = (*fill_trapezoid) (dev, &left, &right, py, right.end.y,
false, pdevc, lop);
if (code < 0)
return code;
}
right.start = right.end;
right.end.x = qx, right.end.y = qy;
ym = left.end.y;
if (!ROUNDED_SAME(right.start.y, ym)) {
code = (*fill_trapezoid) (dev, &left, &right, right.start.y, ym,
false, pdevc, lop);
if (code < 0)
return code;
}
left.start = left.end;
left.end.x = qx, left.end.y = qy;
}
if (!ROUNDED_SAME(ym, qy))
return (*fill_trapezoid) (dev, &left, &right, ym, qy,
false, pdevc, lop);
else
return 0;
#undef ROUNDED_SAME
}
/* Fill a triangle whose points are p, p+a, and p+b. */
/* We should swap axes to get best accuracy, but we don't. */
int
gx_default_fill_triangle(gx_device * dev,
fixed px, fixed py, fixed ax, fixed ay, fixed bx, fixed by,
const gx_device_color * pdevc, gs_logical_operation_t lop)
{
fixed t;
fixed ym;
dev_proc_fill_trapezoid((*fill_trapezoid)) =
dev_proc(dev, fill_trapezoid);
gs_fixed_edge left, right;
int code;
/* Ensure ay >= 0, by >= 0. */
if (ay < 0)
px += ax, py += ay, bx -= ax, by -= ay, ax = -ax, ay = -ay;
if (by < 0)
px += bx, py += by, ax -= bx, ay -= by, bx = -bx, by = -by;
/* Ensure ay <= by. */
if (ay > by)
SWAP(ax, bx, t), SWAP(ay, by, t);
/*
* Make a special check for a flat bottom or top,
* which we can handle with a single call on fill_trapezoid.
*/
left.start.x = right.start.x = px;
left.start.y = right.start.y = py;
if (ay == 0) {
/* Flat top */
if (ax < 0)
left.start.x = px + ax;
else
right.start.x = px + ax;
left.end.x = right.end.x = px + bx;
left.end.y = right.end.y = py + by;
ym = py;
} else if (ay == by) {
/* Flat bottom */
if (ax < bx)
left.end.x = px + ax, right.end.x = px + bx;
else
left.end.x = px + bx, right.end.x = px + ax;
left.end.y = right.end.y = py + by;
ym = py;
} else {
ym = py + ay;
if (fixed_mult_quo(bx, ay, by) < ax) {
/* The 'b' line is to the left of the 'a' line. */
left.end.x = px + bx, left.end.y = py + by;
right.end.x = px + ax, right.end.y = py + ay;
code = (*fill_trapezoid) (dev, &left, &right, py, ym,
false, pdevc, lop);
right.start = right.end;
right.end = left.end;
} else {
/* The 'a' line is to the left of the 'b' line. */
left.end.x = px + ax, left.end.y = py + ay;
right.end.x = px + bx, right.end.y = py + by;
code = (*fill_trapezoid) (dev, &left, &right, py, ym,
false, pdevc, lop);
left.start = left.end;
left.end = right.end;
}
if (code < 0)
return code;
}
return (*fill_trapezoid) (dev, &left, &right, ym, right.end.y,
false, pdevc, lop);
}
/* Draw a one-pixel-wide line. */
int
gx_default_draw_thin_line(gx_device * dev,
fixed fx0, fixed fy0, fixed fx1, fixed fy1,
const gx_device_color * pdevc, gs_logical_operation_t lop)
{
int ix = fixed2int_var(fx0);
int iy = fixed2int_var(fy0);
int itox = fixed2int_var(fx1);
int itoy = fixed2int_var(fy1);
return_if_interrupt(dev->memory);
if (itoy == iy) { /* horizontal line */
return (ix <= itox ?
gx_fill_rectangle_device_rop(ix, iy, itox - ix + 1, 1,
pdevc, dev, lop) :
gx_fill_rectangle_device_rop(itox, iy, ix - itox + 1, 1,
pdevc, dev, lop)
);
}
if (itox == ix) { /* vertical line */
return (iy <= itoy ?
gx_fill_rectangle_device_rop(ix, iy, 1, itoy - iy + 1,
pdevc, dev, lop) :
gx_fill_rectangle_device_rop(ix, itoy, 1, iy - itoy + 1,
pdevc, dev, lop)
);
} {
fixed h = fy1 - fy0;
fixed w = fx1 - fx0;
fixed tf;
bool swap_axes;
gs_fixed_edge left, right;
if ((w < 0 ? -w : w) <= (h < 0 ? -h : h)) {
if (h < 0)
SWAP(fx0, fx1, tf), SWAP(fy0, fy1, tf),
h = -h;
right.start.x = (left.start.x = fx0 - fixed_half) + fixed_1;
right.end.x = (left.end.x = fx1 - fixed_half) + fixed_1;
left.start.y = right.start.y = fy0;
left.end.y = right.end.y = fy1;
swap_axes = false;
} else {
if (w < 0)
SWAP(fx0, fx1, tf), SWAP(fy0, fy1, tf),
w = -w;
right.start.x = (left.start.x = fy0 - fixed_half) + fixed_1;
right.end.x = (left.end.x = fy1 - fixed_half) + fixed_1;
left.start.y = right.start.y = fx0;
left.end.y = right.end.y = fx1;
swap_axes = true;
}
return (*dev_proc(dev, fill_trapezoid)) (dev, &left, &right,
left.start.y, left.end.y,
swap_axes, pdevc, lop);
}
}
/* Stub out the obsolete procedure. */
int
gx_default_draw_line(gx_device * dev,
int x0, int y0, int x1, int y1, gx_color_index color)
{
return -1;
}
/* ---------------- Image drawing ---------------- */
/* GC structures for image enumerator */
public_st_gx_image_enum_common();
private
ENUM_PTRS_WITH(image_enum_common_enum_ptrs, gx_image_enum_common_t *eptr)
return 0;
case 0: return ENUM_OBJ(gx_device_enum_ptr(eptr->dev));
ENUM_PTRS_END
private RELOC_PTRS_WITH(image_enum_common_reloc_ptrs, gx_image_enum_common_t *eptr)
{
eptr->dev = gx_device_reloc_ptr(eptr->dev, gcst);
}
RELOC_PTRS_END
/*
* gx_default_begin_image is only invoked for ImageType 1 images. However,
* the argument types are different, and if the device provides a
* begin_typed_image procedure, we should use it. See gxdevice.h.
*/
private int
gx_no_begin_image(gx_device * dev,
const gs_imager_state * pis, const gs_image_t * pim,
gs_image_format_t format, const gs_int_rect * prect,
const gx_drawing_color * pdcolor, const gx_clip_path * pcpath,
gs_memory_t * memory, gx_image_enum_common_t ** pinfo)
{
return -1;
}
int
gx_default_begin_image(gx_device * dev,
const gs_imager_state * pis, const gs_image_t * pim,
gs_image_format_t format, const gs_int_rect * prect,
const gx_drawing_color * pdcolor, const gx_clip_path * pcpath,
gs_memory_t * memory, gx_image_enum_common_t ** pinfo)
{
/*
* Hand off to begin_typed_image, being careful to avoid a
* possible recursion loop.
*/
dev_proc_begin_image((*save_begin_image)) = dev_proc(dev, begin_image);
gs_image_t image;
const gs_image_t *ptim;
int code;
set_dev_proc(dev, begin_image, gx_no_begin_image);
if (pim->format == format)
ptim = pim;
else {
image = *pim;
image.format = format;
ptim = ℑ
}
code = (*dev_proc(dev, begin_typed_image))
(dev, pis, NULL, (const gs_image_common_t *)ptim, prect, pdcolor,
pcpath, memory, pinfo);
set_dev_proc(dev, begin_image, save_begin_image);
return code;
}
int
gx_default_begin_typed_image(gx_device * dev,
const gs_imager_state * pis, const gs_matrix * pmat,
const gs_image_common_t * pic, const gs_int_rect * prect,
const gx_drawing_color * pdcolor, const gx_clip_path * pcpath,
gs_memory_t * memory, gx_image_enum_common_t ** pinfo)
{ /*
* If this is an ImageType 1 image using the imager's CTM,
* defer to begin_image.
*/
if (pic->type->begin_typed_image == gx_begin_image1) {
const gs_image_t *pim = (const gs_image_t *)pic;
if (pmat == 0 ||
(pis != 0 && !memcmp(pmat, &ctm_only(pis), sizeof(*pmat)))
) {
int code = (*dev_proc(dev, begin_image))
(dev, pis, pim, pim->format, prect, pdcolor,
pcpath, memory, pinfo);
if (code >= 0)
return code;
}
}
return (*pic->type->begin_typed_image)
(dev, pis, pmat, pic, prect, pdcolor, pcpath, memory, pinfo);
}
/* Backward compatibility for obsolete driver procedures. */
int
gx_default_image_data(gx_device *dev, gx_image_enum_common_t * info,
const byte ** plane_data,
int data_x, uint raster, int height)
{
return gx_image_data(info, plane_data, data_x, raster, height);
}
int
gx_default_end_image(gx_device *dev, gx_image_enum_common_t * info,
bool draw_last)
{
return gx_image_end(info, draw_last);
}
|