summaryrefslogtreecommitdiff
path: root/gs/psi/zdict.c
blob: 57749923667453057552aa9d50fa1d9bbf3f986c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/* Copyright (C) 2001-2006 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied, modified
   or distributed except as expressly authorized under the terms of that
   license.  Refer to licensing information at http://www.artifex.com/
   or contact Artifex Software, Inc.,  7 Mt. Lassen Drive - Suite A-134,
   San Rafael, CA  94903, U.S.A., +1(415)492-9861, for further information.
*/

/* $Id$ */
/* Dictionary operators */
#include "ghost.h"
#include "oper.h"
#include "iddict.h"
#include "dstack.h"
#include "ilevel.h"		/* for [count]dictstack */
#include "iname.h"		/* for dict_find_name */
#include "ipacked.h"		/* for inline dict lookup */
#include "ivmspace.h"
#include "store.h"

/* <int> dict <dict> */
int
zdict(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;

    check_type(*op, t_integer);
    if (op->value.intval < 0)
        return_error(e_rangecheck);
    return dict_create((uint) op->value.intval, op);
}

/* <dict> maxlength <int> */
static int
zmaxlength(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;

    check_type(*op, t_dictionary);
    check_dict_read(*op);
    make_int(op, dict_maxlength(op));
    return 0;
}

/* <dict> begin - */
int
zbegin(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;

    check_type(*op, t_dictionary);
    check_dict_read(*op);
    if ( dsp == dstop ) {
        int code = ref_stack_extend(&d_stack, 1);

        if ( code < 0 ) {
            if (code == e_dictstackoverflow) {
                /* Adobe doesn't restore the operand that caused stack */
                /* overflow. We do the same to match CET 20-02-02      */
                pop(1);
            }
            return code;
        }
    }
    ++dsp;
    ref_assign(dsp, op);
    dict_set_top();
    pop(1);
    return 0;
}

/* - end - */
int
zend(i_ctx_t *i_ctx_p)
{
    if (ref_stack_count_inline(&d_stack) == min_dstack_size) {
        /* We would underflow the d-stack. */
        return_error(e_dictstackunderflow);
    }
    while (dsp == dsbot) {
        /* We would underflow the current block. */
        ref_stack_pop_block(&d_stack);
    }
    dsp--;
    dict_set_top();
    return 0;
}

/* <key> <value> def - */
/*
 * We make this into a separate procedure because
 * the interpreter will almost always call it directly.
 */
int
zop_def(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    os_ptr op1 = op - 1;
    ref *pvslot;

    /* The following combines a check_op(2) with a type check. */
    switch (r_type(op1)) {
        case t_name: {
            /* We can use the fast single-probe lookup here. */
            uint nidx = name_index(imemory, op1);
            uint htemp;

            if_dict_find_name_by_index_top(nidx, htemp, pvslot) {
                if (dtop_can_store(op))
                    goto ra;
            }
            break;		/* handle all slower cases */
            }
        case t_null:
            return_error(e_typecheck);
        case t__invalid:
            return_error(e_stackunderflow);
    }
    /*
     * Combine the check for a writable top dictionary with
     * the global/local store check.  See dstack.h for details.
     */
    if (!dtop_can_store(op)) {
        check_dict_write(*dsp);
        /*
         * If the dictionary is writable, the problem must be
         * an invalid store.
         */
        return_error(e_invalidaccess);
    }
    /*
     * Save a level of procedure call in the common (redefinition)
     * case.  With the current interfaces, we pay a double lookup
     * in the uncommon case.
     */
    if (dict_find(dsp, op1, &pvslot) <= 0)
        return idict_put(dsp, op1, op);
ra:
    if ((pvslot->tas.type_attrs & (&i_ctx_p->memory)->test_mask) == 0)
        alloc_save_change(idmemory, &dsp->value.pdict->values, (ref_packed *)pvslot, "dict_put(value)");
    ref_assign_new_inline(pvslot,op);

    return 0;
}
int
zdef(i_ctx_t *i_ctx_p)
{
    int code = zop_def(i_ctx_p);

    if (code >= 0) {
        pop(2);
    }
    return code;
}

/* <key> load <value> */
static int
zload(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    ref *pvalue;

    switch (r_type(op)) {
        case t_name:
            /* Use the fast lookup. */
            if ((pvalue = dict_find_name(op)) == 0)
                return_error(e_undefined);
            ref_assign(op, pvalue);
            return 0;
        case t_null:
            return_error(e_typecheck);
        case t__invalid:
            return_error(e_stackunderflow);
        default: {
                /* Use an explicit loop. */
                uint size = ref_stack_count(&d_stack);
                uint i;

                for (i = 0; i < size; i++) {
                    ref *dp = ref_stack_index(&d_stack, i);

                    check_dict_read(*dp);
                    if (dict_find(dp, op, &pvalue) > 0) {
                        ref_assign(op, pvalue);
                        return 0;
                    }
                }
                return_error(e_undefined);
            }
    }
}

/* get - implemented in zgeneric.c */

/* put - implemented in zgeneric.c */

/* <dict> <key> .undef - */
/* <dict> <key> undef - */
static int
zundef(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    os_ptr op1 = op - 1;
    int code;

    check_type(*op1, t_dictionary);
    if (i_ctx_p->in_superexec == 0)
        check_dict_write(*op1);
    code = idict_undef(op1, op);
    if (code < 0 && code != e_undefined) /* ignore undefined error */
        return code;
    pop(2);
    return 0;
}

/* <dict> <key> known <bool> */
static int
zknown(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    register os_ptr op1 = op - 1;
    ref *pvalue;
    int code;

    check_type(*op1, t_dictionary);
    check_dict_read(*op1);
    code = dict_find(op1, op, &pvalue);
    switch (code) {
    case e_dictfull:
        code = 0;
    case 0: case 1:
        break;
    default:
        return code;
    }
    make_bool(op1, code);
    pop(1);
    return 0;
}

/* <key> where <dict> true */
/* <key> where false */
int
zwhere(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    ref_stack_enum_t rsenum;

    check_op(1);
    ref_stack_enum_begin(&rsenum, &d_stack);
    do {
        const ref *const bot = rsenum.ptr;
        const ref *pdref = bot + rsenum.size;
        ref *pvalue;
        int code;

        while (pdref-- > bot) {
            check_dict_read(*pdref);
            code = dict_find(pdref, op, &pvalue);
            if (code < 0 && code != e_dictfull)
                return code;
            if (code > 0) {
                push(1);
                ref_assign(op - 1, pdref);
                make_true(op);
                return 0;
            }
        }
    } while (ref_stack_enum_next(&rsenum));
    make_false(op);
    return 0;
}

/* copy for dictionaries -- called from zcopy in zgeneric.c. */
/* Only the type of *op has been checked. */
int
zcopy_dict(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    os_ptr op1 = op - 1;
    int code;

    check_type(*op1, t_dictionary);
    check_dict_read(*op1);
    check_dict_write(*op);
    if (!imemory->gs_lib_ctx->dict_auto_expand &&
        (dict_length(op) != 0 || dict_maxlength(op) < dict_length(op1))
        )
        return_error(e_rangecheck);
    code = idict_copy(op1, op);
    if (code < 0)
        return code;
    /*
     * In Level 1 systems, we must copy the access attributes too.
     * The only possible effect this can have is to make the
     * copy read-only if the original dictionary is read-only.
     */
    if (!level2_enabled)
        r_copy_attrs(dict_access_ref(op), a_write, dict_access_ref(op1));
    ref_assign(op1, op);
    pop(1);
    return 0;
}

/* - currentdict <dict> */
static int
zcurrentdict(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;

    push(1);
    ref_assign(op, dsp);
    return 0;
}

/* - countdictstack <int> */
static int
zcountdictstack(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    uint count = ref_stack_count(&d_stack);

    push(1);
    if (!level2_enabled)
        count--;		/* see dstack.h */
    make_int(op, count);
    return 0;
}

/* <array> dictstack <subarray> */
static int
zdictstack(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    uint count = ref_stack_count(&d_stack);

    if (!level2_enabled)
        count--;		/* see dstack.h */
    if (!r_is_array(op))
        return_op_typecheck(op);
    if (r_size(op) < count)
        return_error(e_rangecheck);
    if (!r_has_type_attrs(op, t_array, a_write))
        return_error(e_invalidaccess);
    return ref_stack_store(&d_stack, op, count, 0, 0, true, idmemory,
                           "dictstack");
}

/* - cleardictstack - */
static int
zcleardictstack(i_ctx_t *i_ctx_p)
{
    while (zend(i_ctx_p) >= 0)
        DO_NOTHING;
    return 0;
}

/* ------ Extensions ------ */

/* -mark- <key0> <value0> <key1> <value1> ... .dicttomark <dict> */
/* This is the Level 2 >> operator. */
static int
zdicttomark(i_ctx_t *i_ctx_p)
{
    uint count2 = ref_stack_counttomark(&o_stack);
    ref rdict;
    int code;
    uint idx;

    if (count2 == 0)
        return_error(e_unmatchedmark);
    count2--;
    if ((count2 & 1) != 0)
        return_error(e_rangecheck);
    code = dict_create(count2 >> 1, &rdict);
    if (code < 0)
        return code;
    /* << /a 1 /a 2 >> => << /a 1 >>, i.e., */
    /* we must enter the keys in top-to-bottom order. */
    for (idx = 0; idx < count2; idx += 2) {
        code = idict_put(&rdict,
                         ref_stack_index(&o_stack, idx + 1),
                         ref_stack_index(&o_stack, idx));
        if (code < 0) {		/* There's no way to free the dictionary -- too bad. */
            return code;
        }
    }
    ref_stack_pop(&o_stack, count2);
    ref_assign(osp, &rdict);
    return code;
}

/* <dict1> <dict2> .forcecopynew <dict2> */
/*
 * This operator is a special-purpose accelerator for use by 'restore' (see
 * gs_dps1.ps).  Note that this operator does *not* require that dict2 be
 * writable.  Hence it is in the same category of "dangerous" operators as
 * .forceput and .forceundef.
 */
static int
zforcecopynew(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    os_ptr op1 = op - 1;
    int code;

    check_type(*op1, t_dictionary);
    check_dict_read(*op1);
    check_type(*op, t_dictionary);
    /*check_dict_write(*op);*/	/* see above */
    /* This is only recognized in Level 2 mode. */
    if (!imemory->gs_lib_ctx->dict_auto_expand)
        return_error(e_undefined);
    code = idict_copy_new(op1, op);
    if (code < 0)
        return code;
    ref_assign(op1, op);
    pop(1);
    return 0;
}

/* <dict> <key> .forceundef - */
/*
 * This forces an "undef" even if the dictionary is not writable.
 * Like .forceput, it is meant to be used only in a few special situations,
 * and should not be accessible by name after initialization.
 */
static int
zforceundef(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;

    check_type(op[-1], t_dictionary);
    /* Don't check_dict_write */
    idict_undef(op - 1, op);	/* ignore undefined error */
    pop(2);
    return 0;
}

/* <dict> <key> .knownget <value> true */
/* <dict> <key> .knownget false */
static int
zknownget(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    register os_ptr op1 = op - 1;
    ref *pvalue;

    check_type(*op1, t_dictionary);
    check_dict_read(*op1);
    if (dict_find(op1, op, &pvalue) <= 0) {
        make_false(op1);
        pop(1);
    } else {
        ref_assign(op1, pvalue);
        make_true(op);
    }
    return 0;
}

/* <dict> <key> .knownundef <bool> */
static int
zknownundef(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    os_ptr op1 = op - 1;
    int code;

    check_type(*op1, t_dictionary);
    check_dict_write(*op1);
    code = idict_undef(op1, op);
    make_bool(op1, code == 0);
    pop(1);
    return 0;
}

/* <dict> <int> .setmaxlength - */
static int
zsetmaxlength(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    os_ptr op1 = op - 1;
    uint new_size;
    int code;

    check_type(*op1, t_dictionary);
    if (i_ctx_p->in_superexec == 0)
        check_dict_write(*op1);
    check_type(*op, t_integer);
    if (op->value.intval < 0)
        return_error(e_rangecheck);
    new_size = (uint) op->value.intval;
    if (dict_length(op - 1) > new_size)
        return_error(e_dictfull);
    code = idict_resize(op - 1, new_size);
    if (code >= 0)
        pop(2);
    return code;
}

/* ------ Initialization procedure ------ */

/* We need to split the table because of the 16-element limit. */
const op_def zdict1_op_defs[] = {
    {"0cleardictstack", zcleardictstack},
    {"1begin", zbegin},
    {"0countdictstack", zcountdictstack},
    {"0currentdict", zcurrentdict},
    {"2def", zdef},
    {"1dict", zdict},
    {"0dictstack", zdictstack},
    {"0end", zend},
    {"2known", zknown},
    {"1load", zload},
    {"1maxlength", zmaxlength},
    {"2.undef", zundef},	/* we need this even in Level 1 */
    {"1where", zwhere},
    op_def_end(0)
};
const op_def zdict2_op_defs[] = {
                /* Extensions */
    {"1.dicttomark", zdicttomark},
    {"2.forcecopynew", zforcecopynew},
    {"2.forceundef", zforceundef},
    {"2.knownget", zknownget},
    {"1.knownundef", zknownundef},
    {"2.setmaxlength", zsetmaxlength},
        /*
         * In Level 2, >> is a synonym for .dicttomark, and undef for
         * .undef.  By giving the former their own entries, they will not be
         * "eq" to .dicttomark and .undef, but that doesn't matter, since
         * we're doing this only for the sake of Adobe- compatible error
         * stacks.
         */
    op_def_begin_level2(),
    {"1>>", zdicttomark},
    {"2undef", zundef},
    op_def_end(0)
};