1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
|
/* Copyright (C) 2001-2006 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied, modified
or distributed except as expressly authorized under the terms of that
license. Refer to licensing information at http://www.artifex.com/
or contact Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134,
San Rafael, CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* $Id$ */
/* Image scaling filters */
#include "math_.h"
#include "memory_.h"
#include "stdio_.h"
#include "stdint_.h"
#include "gdebug.h"
#include "strimpl.h"
#include "siscale.h"
/*
* Image scaling code is based on public domain code from
* Graphics Gems III (pp. 414-424), Academic Press, 1992.
*/
/* ---------------- ImageScaleEncode/Decode ---------------- */
/* Auxiliary structures. */
typedef struct {
float weight; /* float or scaled fraction */
} CONTRIB;
typedef struct {
int index; /* index of first element in list of */
/* contributors */
int n; /* number of contributors */
/* (not multiplied by stride) */
int first_pixel; /* offset of first value in source data */
} CLIST;
/* ImageScaleEncode / ImageScaleDecode */
typedef struct stream_IScale_state_s {
/* The client sets the params values before initialization. */
stream_image_scale_state_common; /* = state_common + params */
/* The init procedure sets the following. */
int sizeofPixelIn; /* bytes per input value, 1 or 2 */
int sizeofPixelOut; /* bytes per output value, 1 or 2 */
void /*PixelIn */ *src;
void /*PixelOut */ *dst;
byte *tmp;
CLIST *contrib;
CONTRIB *items;
/* The following are updated dynamically. */
int src_y;
uint src_offset, src_size;
int dst_y;
int src_y_offset;
uint dst_offset, dst_size;
CLIST dst_next_list; /* for next output value */
int dst_last_index; /* highest index used in list */
/* Vertical filter details */
int filter_width;
int max_support;
double (*filter)(double);
double min_scale;
CONTRIB *dst_items; /* ditto */
} stream_IScale_state;
gs_private_st_ptrs6(st_IScale_state, stream_IScale_state,
"ImageScaleEncode/Decode state",
iscale_state_enum_ptrs, iscale_state_reloc_ptrs,
dst, src, tmp, contrib, items, dst_items);
/* ------ Digital filter definition ------ */
/* Mitchell filter definition */
#define Mitchell_support 2
#define Mitchell_min_scale ((Mitchell_support * 2) / (MAX_ISCALE_SUPPORT - 1.01))
#define B (1.0 / 3.0)
#define C (1.0 / 3.0)
static double
Mitchell_filter(double t)
{
double t2 = t * t;
if (t < 0)
t = -t;
if (t < 1)
return
((12 - 9 * B - 6 * C) * (t * t2) +
(-18 + 12 * B + 6 * C) * t2 +
(6 - 2 * B)) / 6;
else if (t < 2)
return
((-1 * B - 6 * C) * (t * t2) +
(6 * B + 30 * C) * t2 +
(-12 * B - 48 * C) * t +
(8 * B + 24 * C)) / 6;
else
return 0;
}
/* Interpolated filter definition */
#define Interp_support 1
#define Interp_min_scale 0
static double
Interp_filter(double t)
{
if (t < 0)
t = -t;
if (t >= 1)
return 0;
return 1 + (2*t -3)*t*t;
}
/*
* The environment provides the following definitions:
* double fproc(double t)
* double fWidthIn
* PixelTmp {min,max,unit}PixelTmp
*/
#define CLAMP(v, mn, mx)\
(v < mn ? mn : v > mx ? mx : v)
/* ------ Auxiliary procedures ------ */
/* Calculate the support for a given scale. */
/* The value is always in the range 1..max_support (was MAX_ISCALE_SUPPORT). */
static int
Interp_contrib_pixels(double scale)
{
if (scale == 0.0)
return 1;
return (int)(((float)Interp_support) / (scale >= 1.0 ? 1.0 : scale)
* 2 + 1.5);
}
static int
Mitchell_contrib_pixels(double scale)
{
if (scale == 0.0)
return 1;
return (int)(((float)Mitchell_support) / (scale >= 1.0 ? 1.0 : max(scale, Mitchell_min_scale))
* 2 + 1.5);
}
/* Pre-calculate filter contributions for a row or a column. */
/* Return the highest input pixel index used. */
static int
calculate_contrib(
/* Return weight list parameters in contrib[0 .. size-1]. */
CLIST * contrib,
/* Store weights in items[0 .. contrib_pixels(scale)*size-1]. */
/* (Less space than this may actually be needed.) */
CONTRIB * items,
/* The output image is scaled by 'scale' relative to the input. */
double scale,
/* Start generating weights for input pixel 'starting_output_index'. */
int starting_output_index,
/* Offset of input subimage from the input image start. */
int src_y_offset,
/* Entire output image size. */
int dst_size,
/* Entire input image size. */
int src_size,
/* Generate 'size' weight lists. */
int size,
/* Limit pixel indices to 'limit', for clamping at the edges */
/* of the image. */
int limit,
/* Wrap pixel indices modulo 'modulus'. */
int modulus,
/* Successive pixel values are 'stride' distance apart -- */
/* normally, the number of color components. */
int stride,
/* The unit of output is 'rescale_factor' times the unit of input. */
double rescale_factor,
/* The filters width */
int fWidthIn,
/* The filter to use */
double (*fproc)(double),
/* minimum scale factor to use */
double min_scale
)
{
double WidthIn, fscale;
bool squeeze;
int npixels;
int i, j;
int last_index = -1;
if_debug1('w', "[w]calculate_contrib scale=%lg\n", scale);
if (scale < 1.0) {
double clamped_scale = max(scale, min_scale);
WidthIn = ((double)fWidthIn) / clamped_scale;
fscale = 1.0 / clamped_scale;
squeeze = true;
} else {
WidthIn = (double)fWidthIn;
fscale = 1.0;
squeeze = false;
}
npixels = (int)(WidthIn * 2 + 1);
for (i = 0; i < size; ++i) {
/* Here we need :
double scale = (double)dst_size / src_size;
float dst_offset_fraction = floor(dst_offset) - dst_offset;
double center = (starting_output_index + i + dst_offset_fraction + 0.5) / scale - 0.5;
int left = (int)ceil(center - WidthIn);
int right = (int)floor(center + WidthIn);
We can't compute 'right' in floats because float arithmetics is not associative.
In older versions tt caused a 1 pixel bias of image bands due to
rounding direction appears to depend on src_y_offset. So compute in rationals.
Since pixel center fall to half integers, we subtract 0.5
in the image space and add 0.5 in the device space.
*/
int dst_y_offset_fraction_num = (int)((int64_t)src_y_offset * dst_size % src_size) * 2 <= src_size
? -(int)((int64_t)src_y_offset * dst_size % src_size)
: src_size - (int)((int64_t)src_y_offset * dst_size % src_size);
int center_denom = dst_size * 2;
int64_t center_num = /* center * center_denom * 2 = */
(starting_output_index + i) * src_size * 2 + src_size + dst_y_offset_fraction_num * 2 - dst_size;
int left = (int)ceil((center_num - WidthIn * center_denom) / center_denom);
int right = (int)floor((center_num + WidthIn * center_denom) / center_denom);
double center = (double)center_num / center_denom;
#define clamp_pixel(j) (j < 0 ? 0 : j >= limit ? limit - 1 : j)
int first_pixel = clamp_pixel(left);
int last_pixel = clamp_pixel(right);
CONTRIB *p;
if_debug4('w', "[w]i=%d, i+offset=%lg scale=%lg center=%lg : ", starting_output_index + i,
starting_output_index + i + (double)src_y_offset / src_size * dst_size, scale, center);
if (last_pixel > last_index)
last_index = last_pixel;
contrib[i].first_pixel = (first_pixel % modulus) * stride;
contrib[i].n = last_pixel - first_pixel + 1;
contrib[i].index = i * npixels;
p = items + contrib[i].index;
for (j = 0; j < npixels; ++j)
p[j].weight = 0;
if (squeeze) {
double sum = 0;
for (j = left; j <= right; ++j)
sum += fproc((center - j) / fscale) / fscale;
for (j = left; j <= right; ++j) {
double weight = fproc((center - j) / fscale) / fscale / sum;
int n = clamp_pixel(j);
int k = n - first_pixel;
p[k].weight +=
(float) (weight * rescale_factor);
if_debug2('w', " %d %f", k, (float)p[k].weight);
}
} else {
double sum = 0;
for (j = left; j <= right; ++j)
sum += fproc(center - j);
for (j = left; j <= right; ++j) {
double weight = fproc(center - j) / sum;
int n = clamp_pixel(j);
int k = n - first_pixel;
p[k].weight +=
(float) (weight * rescale_factor);
if_debug2('w', " %d %f", k, (float)p[k].weight);
}
}
if_debug0('w', "\n");
}
return last_index;
}
/* Apply filter to zoom horizontally from src to tmp. */
static void
zoom_x(byte * tmp, const void /*PixelIn */ *src, int sizeofPixelIn,
int tmp_width, int WidthIn, int Colors, const CLIST * contrib,
const CONTRIB * items)
{
int c, i;
for (c = 0; c < Colors; ++c) {
byte *tp = tmp + c;
const CLIST *clp = contrib;
if_debug1('W', "[W]zoom_x color %d:", c);
if (sizeofPixelIn == 1) {
const byte *raster = (const byte *)src + c;
for ( i = 0; i < tmp_width; tp += Colors, ++clp, ++i ) {
double weight = 0;
int pixel, j = clp->n;
const byte *pp = raster + clp->first_pixel;
const CONTRIB *cp = items + clp->index;
switch ( Colors ) {
case 1:
for ( ; j > 0; pp += 1, ++cp, --j )
weight += *pp * cp->weight;
break;
case 3:
for ( ; j > 0; pp += 3, ++cp, --j )
weight += *pp * cp->weight;
break;
default:
for ( ; j > 0; pp += Colors, ++cp, --j )
weight += *pp * cp->weight;
}
pixel = (int)(weight + 0.5);
if_debug1('W', " %g", weight);
*tp = (byte)CLAMP(pixel, 0, 255);
}
} else { /* sizeofPixelIn == 2 */
const bits16 *raster = (const bits16 *)src + c;
for ( i = 0; i < tmp_width; tp += Colors, ++clp, ++i ) {
double weight = 0;
int pixel, j = clp->n;
const bits16 *pp = raster + clp->first_pixel;
const CONTRIB *cp = items + clp->index;
switch ( Colors ) {
case 1:
for ( ; j > 0; pp += 1, ++cp, --j )
weight += *pp * cp->weight;
break;
case 3:
for ( ; j > 0; pp += 3, ++cp, --j )
weight += *pp * cp->weight;
break;
default:
for ( ; j > 0; pp += Colors, ++cp, --j )
weight += *pp * cp->weight;
}
pixel = (int)(weight + 0.5);
if_debug1('W', " %g", weight);
*tp = (byte)CLAMP(pixel, 0, 255);
}
}
if_debug0('W', "\n");
}
}
/*
* Apply filter to zoom vertically from tmp to dst.
* This is simpler because we can treat all columns identically
* without regard to the number of samples per pixel.
*/
static void
zoom_y(void /*PixelOut */ *dst, int sizeofPixelOut, uint MaxValueOut,
const byte * tmp, int WidthOut, int tmp_width,
int Colors, const CLIST * contrib, const CONTRIB * items)
{
int kn = WidthOut * Colors;
int cn = contrib->n;
int first_pixel = contrib->first_pixel;
const CONTRIB *cbp = items + contrib->index;
int kc;
int max_weight = MaxValueOut;
if_debug0('W', "[W]zoom_y: ");
if (sizeofPixelOut == 1) {
for ( kc = 0; kc < kn; ++kc ) {
double weight = 0;
const byte *pp = &tmp[kc + first_pixel];
int pixel, j = cn;
const CONTRIB *cp = cbp;
for ( ; j > 0; pp += kn, ++cp, --j )
weight += *pp * cp->weight;
pixel = (int)(weight + 0.5);
if_debug1('W', " %x", pixel);
((byte *)dst)[kc] = (byte)CLAMP(pixel, 0, max_weight);
}
} else { /* sizeofPixelOut == 2 */
for ( kc = 0; kc < kn; ++kc ) {
double weight = 0;
const byte *pp = &tmp[kc + first_pixel];
int pixel, j = cn;
const CONTRIB *cp = cbp;
for ( ; j > 0; pp += kn, ++cp, --j )
weight += *pp * cp->weight;
pixel = (int)(weight + 0.5);
if_debug1('W', " %x", pixel);
((bits16 *)dst)[kc] = (bits16)CLAMP(pixel, 0, max_weight);
}
}
if_debug0('W', "\n");
}
/* ------ Stream implementation ------ */
/* Forward references */
static void s_IScale_release(stream_state * st);
/* Calculate the weights for an output row. */
static void
calculate_dst_contrib(stream_IScale_state * ss, int y)
{
uint row_size = ss->params.WidthOut * ss->params.Colors;
int last_index =
calculate_contrib(&ss->dst_next_list, ss->dst_items,
(double)ss->params.EntireHeightOut / ss->params.EntireHeightIn,
y, ss->src_y_offset, ss->params.EntireHeightOut, ss->params.EntireHeightIn,
1, ss->params.HeightIn, ss->max_support, row_size,
(double)ss->params.MaxValueOut / 255, ss->filter_width,
ss->filter, ss->min_scale);
int first_index_mod = ss->dst_next_list.first_pixel / row_size;
if_debug2('w', "[W]calculate_dst_contrib for y = %d, y+offset=%d\n", y, y + ss->src_y_offset);
ss->dst_last_index = last_index;
last_index %= ss->max_support;
if (last_index < first_index_mod) { /* Shuffle the indices to account for wraparound. */
CONTRIB *shuffle = &ss->dst_items[ss->max_support];
int i;
for (i = 0; i < ss->max_support; ++i) {
shuffle[i].weight =
(i <= last_index ?
ss->dst_items[i + ss->max_support - first_index_mod].weight :
i >= first_index_mod ?
ss->dst_items[i - first_index_mod].weight :
0);
if_debug1('W', " %f", shuffle[i].weight);
}
memcpy(ss->dst_items, shuffle, ss->max_support * sizeof(CONTRIB));
ss->dst_next_list.n = ss->max_support;
ss->dst_next_list.first_pixel = 0;
}
if_debug0('W', "\n");
}
/* Set default parameter values (actually, just clear pointers). */
static void
s_IScale_set_defaults(stream_state * st)
{
stream_IScale_state *const ss = (stream_IScale_state *) st;
ss->src = 0;
ss->dst = 0;
ss->tmp = 0;
ss->contrib = 0;
ss->items = 0;
}
typedef struct filter_defn_s {
double (*filter)(double);
int filter_width;
int (*contrib_pixels)(double scale);
double min_scale;
} filter_defn_s;
/* Initialize the filter. */
static int
do_init(stream_state *st,
const filter_defn_s *horiz,
const filter_defn_s *vert)
{
stream_IScale_state *const ss = (stream_IScale_state *) st;
gs_memory_t *mem = ss->memory;
ss->sizeofPixelIn = ss->params.BitsPerComponentIn / 8;
ss->sizeofPixelOut = ss->params.BitsPerComponentOut / 8;
ss->src_y = 0;
ss->src_size = ss->params.WidthIn * ss->sizeofPixelIn * ss->params.Colors;
ss->src_offset = 0;
ss->dst_y = 0;
ss->src_y_offset = ss->params.src_y_offset;
ss->dst_size = ss->params.WidthOut * ss->sizeofPixelOut * ss->params.Colors;
ss->dst_offset = 0;
/* create intermediate image to hold horizontal zoom */
ss->max_support = vert->contrib_pixels((double)ss->params.EntireHeightOut/
ss->params.EntireHeightIn);
ss->filter_width = vert->filter_width;
ss->filter = vert->filter;
ss->min_scale = vert->min_scale;
ss->tmp = (byte *) gs_alloc_byte_array(mem,
ss->max_support,
(ss->params.WidthOut *
ss->params.Colors * sizeof(float)),
"image_scale tmp");
ss->contrib = (CLIST *) gs_alloc_byte_array(mem,
max(ss->params.WidthOut,
ss->params.HeightOut),
sizeof(CLIST),
"image_scale contrib");
ss->items = (CONTRIB *)
gs_alloc_byte_array(mem,
(horiz->contrib_pixels(
(double)ss->params.EntireWidthOut /
ss->params.EntireWidthIn) *
ss->params.WidthOut),
sizeof(CONTRIB),
"image_scale contrib[*]");
ss->dst_items = (CONTRIB *) gs_alloc_byte_array(mem,
ss->max_support*2,
sizeof(CONTRIB), "image_scale contrib_dst[*]");
/* Allocate buffers for 1 row of source and destination. */
ss->dst = gs_alloc_byte_array(mem, ss->params.WidthOut * ss->params.Colors,
ss->sizeofPixelOut, "image_scale dst");
ss->src = gs_alloc_byte_array(mem, ss->params.WidthIn * ss->params.Colors,
ss->sizeofPixelIn, "image_scale src");
if (ss->tmp == 0 || ss->contrib == 0 || ss->items == 0 ||
ss->dst_items == 0 || ss->dst == 0 || ss->src == 0
) {
s_IScale_release(st);
return ERRC;
/****** WRONG ******/
}
/* Pre-calculate filter contributions for a row. */
calculate_contrib(ss->contrib, ss->items,
(double)ss->params.EntireWidthOut / ss->params.EntireWidthIn,
0, 0, ss->params.WidthOut, ss->params.WidthIn,
ss->params.WidthOut, ss->params.WidthIn, ss->params.WidthIn,
ss->params.Colors, 255. / ss->params.MaxValueIn,
horiz->filter_width, horiz->filter, horiz->min_scale);
/* Prepare the weights for the first output row. */
calculate_dst_contrib(ss, 0);
return 0;
}
static const filter_defn_s Mitchell_defn =
{
Mitchell_filter,
Mitchell_support,
Mitchell_contrib_pixels,
Mitchell_min_scale
};
static const filter_defn_s Interp_defn =
{
Interp_filter,
Interp_support,
Interp_contrib_pixels,
Interp_min_scale
};
static int
s_IScale_init(stream_state * st)
{
stream_IScale_state *const ss = (stream_IScale_state *) st;
const filter_defn_s *horiz = &Mitchell_defn;
const filter_defn_s *vert = &Mitchell_defn;
/* By default we use the mitchell filter, but if we are scaling down
* (either on the horizontal or the vertical axis) then use the simple
* interpolation filter for that axis. */
if (ss->params.EntireWidthOut < ss->params.EntireWidthIn)
horiz = &Interp_defn;
if (ss->params.EntireHeightOut < ss->params.EntireHeightIn)
vert = &Interp_defn;
return do_init(st, horiz, vert);
}
/* Process a buffer. Note that this handles Encode and Decode identically. */
static int
s_IScale_process(stream_state * st, stream_cursor_read * pr,
stream_cursor_write * pw, bool last)
{
stream_IScale_state *const ss = (stream_IScale_state *) st;
/* Check whether we need to deliver any output. */
top:while (ss->src_y > ss->dst_last_index) { /* We have enough horizontally scaled temporary rows */
/* to generate a vertically scaled output row. */
uint wleft = pw->limit - pw->ptr;
if (ss->dst_y == ss->params.HeightOut)
return EOFC;
if (wleft == 0)
return 1;
if (ss->dst_offset == 0) {
byte *row;
if (wleft >= ss->dst_size) { /* We can scale the row directly into the output. */
row = pw->ptr + 1;
pw->ptr += ss->dst_size;
} else { /* We'll have to buffer the row. */
row = ss->dst;
}
/* Apply filter to zoom vertically from tmp to dst. */
zoom_y(row, ss->sizeofPixelOut, ss->params.MaxValueOut, ss->tmp,
ss->params.WidthOut, ss->params.WidthOut, ss->params.Colors,
&ss->dst_next_list, ss->dst_items);
/* Idiotic C coercion rules allow T* and void* to be */
/* inter-assigned freely, but not compared! */
if ((void *)row != ss->dst) /* no buffering */
goto adv;
}
{ /* We're delivering a buffered output row. */
uint wcount = ss->dst_size - ss->dst_offset;
uint ncopy = min(wleft, wcount);
memcpy(pw->ptr + 1, (byte *) ss->dst + ss->dst_offset, ncopy);
pw->ptr += ncopy;
ss->dst_offset += ncopy;
if (ncopy != wcount)
return 1;
ss->dst_offset = 0;
}
/* Advance to the next output row. */
adv:++ss->dst_y;
if (ss->dst_y != ss->params.HeightOut)
calculate_dst_contrib(ss, ss->dst_y);
}
/* Read input data and scale horizontally into tmp. */
{
uint rleft = pr->limit - pr->ptr;
uint rcount = ss->src_size - ss->src_offset;
if (rleft == 0)
return 0; /* need more input */
if (ss->src_y >= ss->params.HeightIn)
return ERRC;
if (rleft >= rcount) { /* We're going to fill up a row. */
const byte *row;
if (ss->src_offset == 0) { /* We have a complete row. Read the data */
/* directly from the input. */
row = pr->ptr + 1;
} else { /* We're buffering a row in src. */
row = ss->src;
memcpy((byte *) ss->src + ss->src_offset, pr->ptr + 1,
rcount);
ss->src_offset = 0;
}
/* Apply filter to zoom horizontally from src to tmp. */
if_debug2('w', "[w]zoom_x y = %d to tmp row %d\n",
ss->src_y, (ss->src_y % ss->max_support));
zoom_x(ss->tmp + (ss->src_y % ss->max_support) *
ss->params.WidthOut * ss->params.Colors, row,
ss->sizeofPixelIn, ss->params.WidthOut, ss->params.WidthIn,
ss->params.Colors, ss->contrib, ss->items);
pr->ptr += rcount;
++(ss->src_y);
goto top;
} else { /* We don't have a complete row. Copy data to src buffer. */
memcpy((byte *) ss->src + ss->src_offset, pr->ptr + 1, rleft);
ss->src_offset += rleft;
pr->ptr += rleft;
return 0;
}
}
}
/* Release the filter's storage. */
static void
s_IScale_release(stream_state * st)
{
stream_IScale_state *const ss = (stream_IScale_state *) st;
gs_memory_t *mem = ss->memory;
gs_free_object(mem, (void *)ss->src, "image_scale src"); /* no longer const */
ss->src = 0;
gs_free_object(mem, ss->dst, "image_scale dst");
ss->dst = 0;
gs_free_object(mem, ss->items, "image_scale contrib[*]");
ss->items = 0;
gs_free_object(mem, ss->items, "image_scale contrib_dst[*]");
ss->dst_items = 0;
gs_free_object(mem, ss->contrib, "image_scale contrib");
ss->contrib = 0;
gs_free_object(mem, ss->tmp, "image_scale tmp");
ss->tmp = 0;
}
/* Stream template */
const stream_template s_IScale_template = {
&st_IScale_state, s_IScale_init, s_IScale_process, 1, 1,
s_IScale_release, s_IScale_set_defaults
};
|