1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
|
/* Copyright (C) 2001-2006 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied, modified
or distributed except as expressly authorized under the terms of that
license. Refer to licensing information at http://www.artifex.com/
or contact Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134,
San Rafael, CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* $Id$ */
/* Generate (bounded) Huffman code definitions from frequencies, */
/* and tables from definitions. */
#include "memory_.h"
#include "stdio_.h"
#include <stdlib.h> /* for qsort */
#include "gdebug.h"
#include "gserror.h"
#include "gserrors.h"
#include "gsmemory.h"
#include "scommon.h"
#include "shc.h"
#include "shcgen.h"
/* ------ Frequency -> definition procedure ------ */
/* Define a node for the Huffman code tree. */
typedef struct count_node_s count_node;
struct count_node_s {
long freq; /* frequency of value */
uint value; /* data value being encoded */
uint code_length; /* length of Huffman code */
count_node *next; /* next node in freq-sorted list */
count_node *left; /* left child in tree (smaller code_length) */
count_node *right; /* right child in tree (greater code_length) */
};
#ifdef DEBUG
# define debug_print_nodes(nodes, n, tag, lengths)\
if ( gs_debug_c('W') ) print_nodes_proc(nodes, n, tag, lengths);
static void
print_nodes_proc(const count_node * nodes, int n, const char *tag, int lengths)
{
int i;
dlprintf1("[w]---------------- %s ----------------\n", tag);
for (i = 0; i < n; ++i)
dlprintf7("[w]node %d: f=%ld v=%d len=%d N=%d L=%d R=%d\n",
i, nodes[i].freq, nodes[i].value, nodes[i].code_length,
(nodes[i].next == 0 ? -1 : (int)(nodes[i].next - nodes)),
(nodes[i].left == 0 ? -1 : (int)(nodes[i].left - nodes)),
(nodes[i].right == 0 ? -1 : (int)(nodes[i].right - nodes)));
for (i = lengths; i > 0;) {
int j = i;
int len = nodes[--j].code_length;
while (j > 0 && nodes[j - 1].code_length == len)
--j;
dlprintf2("[w]%d codes of length %d\n", i - j, len);
i = j;
}
}
#else
# define debug_print_nodes(nodes, n, tag, lengths) DO_NOTHING
#endif
/* Node comparison procedures for sorting. */
#define pn1 ((const count_node *)p1)
#define pn2 ((const count_node *)p2)
/* Sort by decreasing frequency. */
static int
compare_freqs(const void *p1, const void *p2)
{
long diff = pn2->freq - pn1->freq;
return (diff < 0 ? -1 : diff > 0 ? 1 : 0);
}
/* Sort by increasing code length, and secondarily by decreasing frequency. */
static int
compare_code_lengths(const void *p1, const void *p2)
{
int diff = pn1->code_length - pn2->code_length;
return (diff < 0 ? -1 : diff > 0 ? 1 : compare_freqs(p1, p2));
}
/* Sort by increasing code value. */
static int
compare_values(const void *p1, const void *p2)
{
return (pn1->value < pn2->value ? -1 :
pn1->value > pn2->value ? 1 : 0);
}
#undef pn1
#undef pn2
/* Adjust code lengths so that none of them exceeds max_length. */
/* We break this out just to help organize the code; it's only called */
/* from one place in hc_compute. */
static void
hc_limit_code_lengths(count_node * nodes, uint num_values, int max_length)
{
int needed; /* # of max_length codes we need to free up */
count_node *longest = nodes + num_values;
{ /* Compute the number of additional max_length codes */
/* we need to make available. */
int length = longest[-1].code_length;
int next_length;
int avail = 0;
while ((next_length = longest[-1].code_length) > max_length) {
avail >>= length - next_length;
length = next_length;
(--longest)->code_length = max_length;
++avail;
}
needed = (nodes + num_values - longest) -
(avail >>= (length - max_length));
if_debug2('W', "[w]avail=%d, needed=%d\n",
avail, needed);
}
/* Skip over all max_length codes. */
while (longest[-1].code_length == max_length)
--longest;
/*
* To make available a code of length N, suppose that the next
* shortest used code is of length M.
* We take the lowest-frequency code of length M and change it
* to M+1; we then have to compensate by reducing the length of
* some of the highest-frequency codes of length N, as follows:
* M new lengths for codes of length N
* --- -----------
* N-1 (none)
* N-2 N-1
* <N-2 M+2, M+2, N-1
* In the present situation, N = max_length.
*/
for (; needed > 0; --needed) { /* longest points to the first code of length max_length. */
/* Since codes are sorted by increasing code length, */
/* longest-1 is the desired code of length M. */
int M1 = ++(longest[-1].code_length);
switch (max_length - M1) {
case 0: /* M == N-1 */
--longest;
break;
case 1: /* M == N-2 */
longest++->code_length = M1;
break;
default:
longest->code_length = M1 + 1;
longest[1].code_length = M1 + 1;
longest[2].code_length--;
longest += 3;
}
}
}
/* Compute an optimal Huffman code from an input data set. */
/* The client must have set all the elements of *def. */
int
hc_compute(hc_definition * def, const long *freqs, gs_memory_t * mem)
{
uint num_values = def->num_values;
count_node *nodes =
(count_node *) gs_alloc_byte_array(mem, num_values * 2 - 1,
sizeof(count_node), "hc_compute");
int i;
count_node *lowest;
count_node *comb;
if (nodes == 0)
return_error(gs_error_VMerror);
/* Create leaf nodes for the input data. */
for (i = 0; i < num_values; ++i)
nodes[i].freq = freqs[i], nodes[i].value = i;
/* Create a list sorted by increasing frequency. */
/* Also initialize the tree structure. */
qsort(nodes, num_values, sizeof(count_node), compare_freqs);
for (i = 0; i < num_values; ++i)
nodes[i].next = &nodes[i - 1],
nodes[i].code_length = 0,
nodes[i].left = nodes[i].right = 0;
nodes[0].next = 0;
debug_print_nodes(nodes, num_values, "after sort", 0);
/* Construct the Huffman code tree. */
for (lowest = &nodes[num_values - 1], comb = &nodes[num_values];;
++comb
) {
count_node *pn1 = lowest;
count_node *pn2 = pn1->next;
long freq = pn1->freq + pn2->freq;
/* Create a parent for the two lowest-frequency nodes. */
lowest = pn2->next;
comb->freq = freq;
if (pn1->code_length <= pn2->code_length)
comb->left = pn1, comb->right = pn2,
comb->code_length = pn2->code_length + 1;
else
comb->left = pn2, comb->right = pn1,
comb->code_length = pn1->code_length + 1;
if (lowest == 0) /* no nodes left to combine */
break;
/* Insert comb in the sorted list. */
if (freq < lowest->freq)
comb->next = lowest, lowest = comb;
else {
count_node *here = lowest;
while (here->next != 0 && freq >= here->next->freq)
here = here->next;
comb->next = here->next;
here->next = comb;
}
}
/* comb (i.e., &nodes[num_values * 2 - 2] is the root of the tree. */
/* Note that the left and right children of an interior node */
/* were constructed before, and therefore have lower indices */
/* in the nodes array than, the parent node. Thus we can assign */
/* the code lengths (node depths) in a single descending-order */
/* sweep. */
comb++->code_length = 0;
while (comb > nodes + num_values) {
--comb;
comb->left->code_length = comb->right->code_length =
comb->code_length + 1;
}
debug_print_nodes(nodes, num_values * 2 - 1, "after combine", 0);
/* Sort the leaves again by code length. */
qsort(nodes, num_values, sizeof(count_node), compare_code_lengths);
debug_print_nodes(nodes, num_values, "after re-sort", num_values);
/* Limit the code length to def->num_counts. */
hc_limit_code_lengths(nodes, num_values, def->num_counts);
debug_print_nodes(nodes, num_values, "after limit", num_values);
/* Sort within each code length by increasing code value. */
/* This doesn't affect data compression, but it makes */
/* the code definition itself compress better using our */
/* incremental encoding. */
for (i = num_values; i > 0;) {
int j = i;
int len = nodes[--j].code_length;
while (j > 0 && nodes[j - 1].code_length == len)
--j;
qsort(&nodes[j], i - j, sizeof(count_node), compare_values);
i = j;
}
/* Extract the definition from the nodes. */
memset(def->counts, 0, sizeof(*def->counts) * (def->num_counts + 1));
for (i = 0; i < num_values; ++i) {
def->values[i] = nodes[i].value;
def->counts[nodes[i].code_length]++;
}
/* All done, release working storage. */
gs_free_object(mem, nodes, "hc_compute");
return 0;
}
/* ------ Byte string <-> definition procedures ------ */
/*
* We define a compressed representation for (well-behaved) definitions
* as a byte string. A "well-behaved" definition is one where if
* code values A and B have the same code length and A < B,
* A precedes B in the values table of the definition, and hence
* A's encoding lexicographically precedes B's.
*
* The successive bytes in the compressed string give the code lengths for
* runs of decoded values, in the form nnnnllll where nnnn is the number of
* consecutive values -1 and llll is the code length -1.
*/
/* Convert a definition to a byte string. */
/* The caller must provide the byte string, of length def->num_values. */
/* Assume (do not check) that the definition is well-behaved. */
/* Return the actual length of the string. */
int
hc_bytes_from_definition(byte * dbytes, const hc_definition * def)
{
int i, j;
byte *bp = dbytes;
const byte *lp = dbytes;
const byte *end = dbytes + def->num_values;
const ushort *values = def->values;
/* Temporarily use the output string as a map from */
/* values to code lengths. */
for (i = 1; i <= def->num_counts; i++)
for (j = 0; j < def->counts[i]; j++)
bp[*values++] = i;
/* Now construct the actual string. */
while (lp < end) {
const byte *vp;
byte len = *lp;
for (vp = lp + 1; vp < end && vp < lp + 16 && *vp == len;)
vp++;
*bp++ = ((vp - lp - 1) << 4) + (len - 1);
lp = vp;
}
return bp - dbytes;
}
/* Extract num_counts and num_values from a byte string. */
void
hc_sizes_from_bytes(hc_definition * def, const byte * dbytes, int num_bytes)
{
uint num_counts = 0, num_values = 0;
int i;
for (i = 0; i < num_bytes; i++) {
int n = (dbytes[i] >> 4) + 1;
int l = (dbytes[i] & 15) + 1;
if (l > num_counts)
num_counts = l;
num_values += n;
}
def->num_counts = num_counts;
def->num_values = num_values;
}
/* Convert a byte string back to a definition. */
/* The caller must initialize *def, including allocating counts and values. */
void
hc_definition_from_bytes(hc_definition * def, const byte * dbytes)
{
int v, i;
ushort counts[max_hc_length + 1];
/* Make a first pass to set the counts for each code length. */
memset(counts, 0, sizeof(counts[0]) * (def->num_counts + 1));
for (i = 0, v = 0; v < def->num_values; i++) {
int n = (dbytes[i] >> 4) + 1;
int l = (dbytes[i] & 15) + 1;
counts[l] += n;
v += n;
}
/* Now fill in the definition. */
memcpy(def->counts, counts, sizeof(counts[0]) * (def->num_counts + 1));
for (i = 1, v = 0; i <= def->num_counts; i++) {
uint prev = counts[i];
counts[i] = v;
v += prev;
}
for (i = 0, v = 0; v < def->num_values; i++) {
int n = (dbytes[i] >> 4) + 1;
int l = (dbytes[i] & 15) + 1;
int j;
for (j = 0; j < n; n++)
def->values[counts[l]++] = v++;
}
}
/* ------ Definition -> table procedures ------ */
/* Generate the encoding table from the definition. */
/* The size of the encode array is def->num_values. */
void
hc_make_encoding(hce_code * encode, const hc_definition * def)
{
uint next = 0;
const ushort *pvalue = def->values;
uint i, k;
for (i = 1; i <= def->num_counts; i++) {
for (k = 0; k < def->counts[i]; k++, pvalue++, next++) {
hce_code *pce = encode + *pvalue;
pce->code = next;
pce->code_length = i;
}
next <<= 1;
}
}
/* We decode in two steps, first indexing into a table with */
/* a fixed number of bits from the source, and then indexing into */
/* an auxiliary table if necessary. (See shc.h for details.) */
/* Calculate the size of the decoding table. */
uint
hc_sizeof_decoding(const hc_definition * def, int initial_bits)
{
uint size = 1 << initial_bits;
uint carry = 0, mask = (uint) ~ 1;
uint i;
for (i = initial_bits + 1; i <= def->num_counts;
i++, carry <<= 1, mask <<= 1
) {
carry += def->counts[i];
size += carry & mask;
carry &= ~mask;
}
return size;
}
/* Generate the decoding tables. */
void
hc_make_decoding(hcd_code * decode, const hc_definition * def,
int initial_bits)
{ /* Make entries for single-dispatch codes. */
{
hcd_code *pcd = decode;
const ushort *pvalue = def->values;
uint i, k, d;
for (i = 0; i <= initial_bits; i++) {
for (k = 0; k < def->counts[i]; k++, pvalue++) {
for (d = 1 << (initial_bits - i); d > 0;
d--, pcd++
)
pcd->value = *pvalue,
pcd->code_length = i;
}
}
}
/* Make entries for two-dispatch codes. */
/* By working backward, we can do this more easily */
/* in a single pass. */
{
uint dsize = hc_sizeof_decoding(def, initial_bits);
hcd_code *pcd = decode + (1 << initial_bits);
hcd_code *pcd2 = decode + dsize;
const ushort *pvalue = def->values + def->num_values;
uint entries_left = 0, slots_left = 0, mult_shift = 0;
uint i = def->num_counts + 1, j;
for (;;) {
if (slots_left == 0) {
if (entries_left != 0) {
slots_left = 1 << (i - initial_bits);
mult_shift = 0;
continue;
}
if (--i <= initial_bits)
break;
entries_left = def->counts[i];
continue;
}
if (entries_left == 0) {
entries_left = def->counts[--i];
mult_shift++;
continue;
}
--entries_left, --pvalue;
for (j = 1 << mult_shift; j > 0; j--) {
--pcd2;
pcd2->value = *pvalue;
pcd2->code_length = i - initial_bits;
}
if ((slots_left -= 1 << mult_shift) == 0) {
--pcd;
pcd->value = pcd2 - decode;
pcd->code_length = i + mult_shift;
}
}
}
}
|