1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
|
/* Copyright (C) 2001-2006 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied, modified
or distributed except as expressly authorized under the terms of that
license. Refer to licensing information at http://www.artifex.com/
or contact Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134,
San Rafael, CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* $Id$ */
/* Additional PostScript Level 1 path routines for Ghostscript library */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsstruct.h"
#include "gxfixed.h"
#include "gxfarith.h"
#include "gxmatrix.h"
#include "gzstate.h"
#include "gspath.h"
#include "gzpath.h"
#include "gscoord.h" /* gs_itransform prototype */
/* ------ Arcs ------ */
/* Conversion parameters */
#define degrees_to_radians (M_PI / 180.0)
typedef enum {
arc_nothing,
arc_moveto,
arc_lineto
} arc_action;
typedef struct arc_curve_params_s {
/* The following are set once. */
gx_path *ppath;
gs_imager_state *pis;
gs_point center; /* (not used by arc_add) */
double radius;
/* The following may be updated dynamically. */
arc_action action;
segment_notes notes;
gs_point p0, p3, pt;
gs_sincos_t sincos; /* (not used by arc_add) */
double angle; /* (not used by arc_add) */
int fast_quadrant; /* 0 = not calculated, -1 = not fast, */
/* 1 = fast (only used for quadrants) */
/* The following are set once iff fast_quadrant > 0. */
fixed scaled_radius; /* radius * CTM scale */
fixed quadrant_delta; /* scaled_radius * quarter_arc_fraction */
} arc_curve_params_t;
/* Forward declarations */
static int arc_add(const arc_curve_params_t *arc, bool is_quadrant);
static int gs_imager_arc_add(gx_path * ppath, gs_imager_state * pis, bool clockwise,
floatp axc, floatp ayc, floatp arad, floatp aang1, floatp aang2,
bool add_line, gs_point *p3);
int
gx_setcurrentpoint_from_path(gs_imager_state *pis, gx_path *path)
{
gs_point pt;
pt.x = fixed2float(path->position.x);
pt.y = fixed2float(path->position.y);
gx_setcurrentpoint(pis, pt.x, pt.y);
pis->current_point_valid = true;
return 0;
}
static inline int
gs_arc_add_inline(gs_state *pgs, bool cw, floatp xc, floatp yc, floatp rad,
floatp a1, floatp a2, bool add)
{
gs_point p3;
int code = gs_imager_arc_add(pgs->path, (gs_imager_state *)pgs, cw, xc, yc, rad, a1, a2, add, &p3);
if (code < 0)
return code;
#if !PRECISE_CURRENTPOINT
return gx_setcurrentpoint_from_path((gs_imager_state *)pgs, pgs->path);
#else
pgs->current_point_valid = true;
return gs_point_transform(p3.x, p3.y, &ctm_only(pgs), &pgs->current_point);
#endif
}
int
gs_arc(gs_state * pgs,
floatp xc, floatp yc, floatp r, floatp ang1, floatp ang2)
{
return gs_arc_add_inline(pgs, false, xc, yc, r, ang1, ang2, true);
}
int
gs_arcn(gs_state * pgs,
floatp xc, floatp yc, floatp r, floatp ang1, floatp ang2)
{
return gs_arc_add_inline(pgs, true, xc, yc, r, ang1, ang2, true);
}
int
gs_arc_add(gs_state * pgs, bool clockwise, floatp axc, floatp ayc,
floatp arad, floatp aang1, floatp aang2, bool add_line)
{
return gs_arc_add_inline(pgs, clockwise, axc, ayc, arad,
aang1, aang2, add_line);
}
/* Compute the next curve as part of an arc. */
static int
next_arc_curve(arc_curve_params_t * arc, double anext)
{
double x0 = arc->p0.x = arc->p3.x;
double y0 = arc->p0.y = arc->p3.y;
double trad = arc->radius *
tan((anext - arc->angle) *
(degrees_to_radians / 2));
arc->pt.x = x0 - trad * arc->sincos.sin;
arc->pt.y = y0 + trad * arc->sincos.cos;
gs_sincos_degrees(anext, &arc->sincos);
arc->p3.x = arc->center.x + arc->radius * arc->sincos.cos;
arc->p3.y = arc->center.y + arc->radius * arc->sincos.sin;
arc->angle = anext;
return arc_add(arc, false);
}
/*
* Use this when both arc.angle and anext are multiples of 90 degrees,
* and anext = arc.angle +/- 90.
*/
static int
next_arc_quadrant(arc_curve_params_t * arc, double anext)
{
double x0 = arc->p0.x = arc->p3.x;
double y0 = arc->p0.y = arc->p3.y;
if (!arc->fast_quadrant) {
/*
* If the CTM is well-behaved, we can pre-calculate the delta
* from the arc points to the control points.
*/
const gs_imager_state *pis = arc->pis;
double scale = 0; /* Quiet gcc warning. */
if (is_fzero2(pis->ctm.xy, pis->ctm.yx) ?
(scale = fabs(pis->ctm.xx)) == fabs(pis->ctm.yy) :
is_fzero2(pis->ctm.xx, pis->ctm.yy) ?
(scale = fabs(pis->ctm.xy)) == fabs(pis->ctm.yx) :
0
) {
double scaled_radius = arc->radius * scale;
arc->scaled_radius = float2fixed(scaled_radius);
arc->quadrant_delta =
float2fixed(scaled_radius * quarter_arc_fraction);
arc->fast_quadrant = 1;
} else {
arc->fast_quadrant = -1;
}
}
/*
* We know that anext is a multiple of 90 (as a fixed); we want
* (anext / 90) & 3. The following is much faster than a division.
*/
switch (((int)anext >> 1) & 3) {
case 0:
arc->sincos.sin = 0, arc->sincos.cos = 1;
arc->p3.x = x0 = arc->center.x + arc->radius;
arc->p3.y = arc->center.y;
break;
case 1:
arc->sincos.sin = 1, arc->sincos.cos = 0;
arc->p3.x = arc->center.x;
arc->p3.y = y0 = arc->center.y + arc->radius;
break;
case 2:
arc->sincos.sin = 0, arc->sincos.cos = -1;
arc->p3.x = x0 = arc->center.x - arc->radius;
arc->p3.y = arc->center.y;
break;
case 3:
arc->sincos.sin = -1, arc->sincos.cos = 0;
arc->p3.x = arc->center.x;
arc->p3.y = y0 = arc->center.y - arc->radius;
break;
}
arc->pt.x = x0, arc->pt.y = y0;
arc->angle = anext;
return arc_add(arc, true);
}
static int
gs_imager_arc_add(gx_path * ppath, gs_imager_state * pis, bool clockwise,
floatp axc, floatp ayc, floatp arad, floatp aang1, floatp aang2,
bool add_line, gs_point *p3)
{
double ar = arad;
double ang1 = aang1, ang2 = aang2, anext;
double ang1r; /* reduced angle */
arc_curve_params_t arc;
int code;
arc.ppath = ppath;
arc.pis = pis;
arc.center.x = axc;
arc.center.y = ayc;
if (ar < 0) {
ang1 += 180;
ang2 += 180;
ar = -ar;
}
arc.radius = ar;
arc.action = (add_line ? arc_lineto : arc_moveto);
arc.notes = sn_none;
arc.fast_quadrant = 0;
ang1r = fmod(ang1, 360);
gs_sincos_degrees(ang1r, &arc.sincos);
arc.p3.x = axc + ar * arc.sincos.cos;
arc.p3.y = ayc + ar * arc.sincos.sin;
if (clockwise) {
while (ang1 < ang2)
ang2 -= 360;
if (ang2 < 0) {
double adjust = ceil(-ang2 / 360) * 360;
ang1 += adjust, ang2 += adjust;
}
arc.angle = ang1;
if (ang1 == ang2)
goto last;
/* Do the first part, up to a multiple of 90 degrees. */
if (!arc.sincos.orthogonal) {
anext = floor(arc.angle / 90) * 90;
if (anext < ang2)
goto last;
code = next_arc_curve(&arc, anext);
if (code < 0)
return code;
arc.action = arc_nothing;
arc.notes = sn_not_first;
}
/* Do multiples of 90 degrees. Invariant: ang1 >= ang2 >= 0. */
while ((anext = arc.angle - 90) >= ang2) {
code = next_arc_quadrant(&arc, anext);
if (code < 0)
return code;
arc.action = arc_nothing;
arc.notes = sn_not_first;
}
} else {
while (ang2 < ang1)
ang2 += 360;
if (ang1 < 0) {
double adjust = ceil(-ang1 / 360) * 360;
ang1 += adjust, ang2 += adjust;
}
arc.angle = ang1;
if (ang1 == ang2) {
code = next_arc_curve(&arc, ang2);
if (code < 0)
return code;
*p3 = arc.p3;
}
/* Do the first part, up to a multiple of 90 degrees. */
if (!arc.sincos.orthogonal) {
anext = ceil(arc.angle / 90) * 90;
if (anext > ang2)
goto last;
code = next_arc_curve(&arc, anext);
if (code < 0)
return code;
arc.action = arc_nothing;
arc.notes = sn_not_first;
}
/* Do multiples of 90 degrees. Invariant: 0 <= ang1 <= ang2. */
while ((anext = arc.angle + 90) <= ang2) {
code = next_arc_quadrant(&arc, anext);
if (code < 0)
return code;
arc.action = arc_nothing;
arc.notes = sn_not_first;
}
}
/*
* Do the last curve of the arc, if any.
*/
if (arc.angle == ang2) {
*p3 = arc.p3;
return 0;
}
last:
code = next_arc_curve(&arc, ang2);
if (code < 0)
return code;
*p3 = arc.p3;
return 0;
}
int
gs_arcto(gs_state * pgs,
floatp ax1, floatp ay1, floatp ax2, floatp ay2, floatp arad, float retxy[4])
{
double xt0, yt0, xt2, yt2;
gs_point up0;
#define ax0 up0.x
#define ay0 up0.y
/* Transform the current point back into user coordinates. */
int code = gs_currentpoint(pgs, &up0);
if (code < 0)
return code;
{
double dx0, dy0, dx2, dy2, sql0, sql2;
/* Now we have to compute the tangent points. */
/* Basically, the idea is to compute the tangent */
/* of the bisector by using tan(x+y) and tan(z/2) */
/* formulas, without ever using any trig. */
dx0 = ax0 - ax1; dy0 = ay0 - ay1;
dx2 = ax2 - ax1; dy2 = ay2 - ay1;
/* Compute the squared lengths from p1 to p0 and p2. */
sql0 = dx0 * dx0 + dy0 * dy0;
sql2 = dx2 * dx2 + dy2 * dy2;
if (sql0 == 0. || sql2 == 0.)
return_error(gs_error_undefinedresult); /* for CET 11-04 */
/* Check for collinear points. */
if (dx0*dy2 == dy0*dx2) {
code = gs_lineto(pgs, ax1, ay1);
xt0 = xt2 = ax1;
yt0 = yt2 = ay1;
} else { /* not collinear */
/* Compute the distance from p1 to the tangent points. */
/* This is the only messy part. */
double num = dy0 * dx2 - dy2 * dx0;
double denom = sqrt(sql0 * sql2) - (dx0 * dx2 + dy0 * dy2);
double dist = fabs(arad * num / denom);
double l0 = dist / sqrt(sql0), l2 = dist / sqrt(sql2);
arc_curve_params_t arc;
arc.ppath = pgs->path;
arc.pis = (gs_imager_state *) pgs;
arc.radius = arad;
arc.action = arc_lineto;
arc.notes = sn_none;
if (arad < 0)
l0 = -l0, l2 = -l2;
arc.p0.x = xt0 = ax1 + dx0 * l0;
arc.p0.y = yt0 = ay1 + dy0 * l0;
arc.p3.x = xt2 = ax1 + dx2 * l2;
arc.p3.y = yt2 = ay1 + dy2 * l2;
arc.pt.x = ax1;
arc.pt.y = ay1;
code = arc_add(&arc, false);
if (code == 0)
code = gx_setcurrentpoint_from_path((gs_imager_state *)pgs, pgs->path);
}
}
if (retxy != 0) {
retxy[0] = xt0;
retxy[1] = yt0;
retxy[2] = xt2;
retxy[3] = yt2;
}
return code;
}
/* Internal routine for adding an arc to the path. */
static int
arc_add(const arc_curve_params_t * arc, bool is_quadrant)
{
gx_path *path = arc->ppath;
gs_imager_state *pis = arc->pis;
double x0 = arc->p0.x, y0 = arc->p0.y;
double xt = arc->pt.x, yt = arc->pt.y;
floatp fraction;
gs_fixed_point p0, p2, p3, pt;
int code;
if ((arc->action != arc_nothing &&
#if !PRECISE_CURRENTPOINT
(code = gs_point_transform2fixed(&pis->ctm, x0, y0, &p0)) < 0) ||
(code = gs_point_transform2fixed(&pis->ctm, xt, yt, &pt)) < 0 ||
(code = gs_point_transform2fixed(&pis->ctm, arc->p3.x, arc->p3.y, &p3)) < 0
#else
(code = gs_point_transform2fixed_rounding(&pis->ctm, x0, y0, &p0)) < 0) ||
(code = gs_point_transform2fixed_rounding(&pis->ctm, xt, yt, &pt)) < 0 ||
(code = gs_point_transform2fixed_rounding(&pis->ctm, arc->p3.x, arc->p3.y, &p3)) < 0
#endif
)
return code;
#if PRECISE_CURRENTPOINT
if (!path_position_valid(path))
gs_point_transform(arc->p0.x, arc->p0.y, &ctm_only(arc->pis), &pis->subpath_start);
#endif
code = (arc->action == arc_nothing ?
(p0.x = path->position.x, p0.y = path->position.y, 0) :
arc->action == arc_lineto && path_position_valid(path) ?
gx_path_add_line(path, p0.x, p0.y) :
/* action == arc_moveto, or lineto with no current point */
gx_path_add_point(path, p0.x, p0.y));
if (code < 0)
return code;
/* Compute the fraction coefficient for the curve. */
/* See gx_path_add_partial_arc for details. */
if (is_quadrant) {
/* one of |dx| and |dy| is r, the other is zero */
fraction = quarter_arc_fraction;
if (arc->fast_quadrant > 0) {
/*
* The CTM is well-behaved, and we have pre-calculated the delta
* from the circumference points to the control points.
*/
fixed delta = arc->quadrant_delta;
if (pt.x != p0.x)
p0.x = (pt.x > p0.x ? p0.x + delta : p0.x - delta);
if (pt.y != p0.y)
p0.y = (pt.y > p0.y ? p0.y + delta : p0.y - delta);
p2.x = (pt.x == p3.x ? p3.x :
pt.x > p3.x ? p3.x + delta : p3.x - delta);
p2.y = (pt.y == p3.y ? p3.y :
pt.y > p3.y ? p3.y + delta : p3.y - delta);
goto add;
}
} else {
double r = arc->radius;
floatp dx = xt - x0, dy = yt - y0;
double dist = dx * dx + dy * dy;
double r2 = r * r;
if (dist >= r2 * 1.0e8) /* almost zero radius; */
/* the >= catches dist == r == 0 */
fraction = 0.0;
else
fraction = (4.0 / 3.0) / (1 + sqrt(1 + dist / r2));
}
p0.x += (fixed)((pt.x - p0.x) * fraction);
p0.y += (fixed)((pt.y - p0.y) * fraction);
p2.x = p3.x + (fixed)((pt.x - p3.x) * fraction);
p2.y = p3.y + (fixed)((pt.y - p3.y) * fraction);
add:
if_debug8('r',
"[r]Arc f=%f p0=(%f,%f) pt=(%f,%f) p3=(%f,%f) action=%d\n",
fraction, x0, y0, xt, yt, arc->p3.x, arc->p3.y,
(int)arc->action);
/* Open-code gx_path_add_partial_arc_notes */
return gx_path_add_curve_notes(path, p0.x, p0.y, p2.x, p2.y, p3.x, p3.y,
arc->notes | sn_from_arc);
}
void
make_quadrant_arc(gs_point *p, const gs_point *c,
const gs_point *p0, const gs_point *p1, double r)
{
p[0].x = c->x + p0->x * r;
p[0].y = c->y + p0->y * r;
p[1].x = c->x + p0->x * r + p1->x * r * quarter_arc_fraction;
p[1].y = c->y + p0->y * r + p1->y * r * quarter_arc_fraction;
p[2].x = c->x + p0->x * r * quarter_arc_fraction + p1->x * r;
p[2].y = c->y + p0->y * r * quarter_arc_fraction + p1->y * r;
p[3].x = c->x + p1->x * r;
p[3].y = c->y + p1->y * r;
}
/* ------ Path transformers ------ */
int
gs_dashpath(gs_state * pgs)
{
gx_path *ppath;
gx_path fpath;
int code;
if (gs_currentdash_length(pgs) == 0)
return 0; /* no dash pattern */
code = gs_flattenpath(pgs);
if (code < 0)
return code;
ppath = pgs->path;
gx_path_init_local(&fpath, ppath->memory);
code = gx_path_add_dash_expansion(ppath, &fpath, (gs_imager_state *)pgs);
if (code < 0) {
gx_path_free(&fpath, "gs_dashpath");
return code;
}
gx_path_assign_free(pgs->path, &fpath);
return 0;
}
int
gs_flattenpath(gs_state * pgs)
{
gx_path *ppath = pgs->path;
gx_path fpath;
int code;
if (!gx_path_has_curves(ppath))
return 0; /* nothing to do */
gx_path_init_local(&fpath, ppath->memory);
code = gx_path_add_flattened_accurate(ppath, &fpath, pgs->flatness,
pgs->accurate_curves);
if (code < 0) {
gx_path_free(&fpath, "gs_flattenpath");
return code;
}
gx_path_assign_free(ppath, &fpath);
return 0;
}
int
gs_reversepath(gs_state * pgs)
{
gx_path *ppath = pgs->path;
gx_path rpath;
int code;
gx_path_init_local(&rpath, ppath->memory);
code = gx_path_copy_reversed(ppath, &rpath);
if (code < 0) {
gx_path_free(&rpath, "gs_reversepath");
return code;
}
if (pgs->current_point_valid) {
/* Not empty. */
gx_setcurrentpoint(pgs, fixed2float(rpath.position.x),
fixed2float(rpath.position.y));
if (rpath.first_subpath != 0) {
pgs->subpath_start.x = fixed2float(rpath.segments->contents.subpath_current->pt.x);
pgs->subpath_start.y = fixed2float(rpath.segments->contents.subpath_current->pt.y);
}
}
gx_path_assign_free(ppath, &rpath);
return 0;
}
/* ------ Accessors ------ */
int
gs_upathbbox(gs_state * pgs, gs_rect * pbox, bool include_moveto)
{
gs_fixed_rect fbox; /* box in device coordinates */
gs_rect dbox;
int code = gx_path_bbox_set(pgs->path, &fbox);
if (code < 0)
return code;
/* If the path ends with a moveto and include_moveto is true, */
/* include the moveto in the bounding box. */
if (path_last_is_moveto(pgs->path) && include_moveto) {
gs_fixed_point pt;
code = gx_path_current_point_inline(pgs, &pt);
if (code < 0)
return code;
if (pt.x < fbox.p.x)
fbox.p.x = pt.x;
if (pt.y < fbox.p.y)
fbox.p.y = pt.y;
if (pt.x > fbox.q.x)
fbox.q.x = pt.x;
if (pt.y > fbox.q.y)
fbox.q.y = pt.y;
}
/* Transform the result back to user coordinates. */
dbox.p.x = fixed2float(fbox.p.x);
dbox.p.y = fixed2float(fbox.p.y);
dbox.q.x = fixed2float(fbox.q.x);
dbox.q.y = fixed2float(fbox.q.y);
return gs_bbox_transform_inverse(&dbox, &ctm_only(pgs), pbox);
}
/* ------ Enumerators ------ */
/* Start enumerating a path */
int
gs_path_enum_copy_init(gs_path_enum * penum, const gs_state * pgs, bool copy)
{
gs_memory_t *mem = pgs->memory;
if (copy) {
gx_path *copied_path =
gx_path_alloc(mem, "gs_path_enum_init");
int code;
if (copied_path == 0)
return_error(gs_error_VMerror);
code = gx_path_copy(pgs->path, copied_path);
if (code < 0) {
gx_path_free(copied_path, "gs_path_enum_init");
return code;
}
gx_path_enum_init(penum, copied_path);
penum->copied_path = copied_path;
} else {
gx_path_enum_init(penum, pgs->path);
}
penum->memory = mem;
gs_currentmatrix(pgs, &penum->mat);
return 0;
}
/* Enumerate the next element of a path. */
/* If the path is finished, return 0; */
/* otherwise, return the element type. */
int
gs_path_enum_next(gs_path_enum * penum, gs_point ppts[3])
{
gs_fixed_point fpts[3];
int pe_op = gx_path_enum_next(penum, fpts);
int code;
switch (pe_op) {
case 0: /* all done */
case gs_pe_closepath:
break;
case gs_pe_curveto:
if ((code = gs_point_transform_inverse(
fixed2float(fpts[1].x),
fixed2float(fpts[1].y),
&penum->mat, &ppts[1])) < 0 ||
(code = gs_point_transform_inverse(
fixed2float(fpts[2].x),
fixed2float(fpts[2].y),
&penum->mat, &ppts[2])) < 0)
return code;
/* falls through */
case gs_pe_moveto:
case gs_pe_lineto:
case gs_pe_gapto:
if ((code = gs_point_transform_inverse(
fixed2float(fpts[0].x),
fixed2float(fpts[0].y),
&penum->mat, &ppts[0])) < 0)
return code;
default: /* error */
break;
}
return pe_op;
}
/* Clean up after a pathforall. */
void
gs_path_enum_cleanup(gs_path_enum * penum)
{
if (penum->copied_path != 0) {
gx_path_free(penum->copied_path, "gs_path_enum_cleanup");
penum->path = 0;
penum->copied_path = 0;
}
}
|