1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
|
/* Copyright (C) 2001-2006 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied, modified
or distributed except as expressly authorized under the terms of that
license. Refer to licensing information at http://www.artifex.com/
or contact Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134,
San Rafael, CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* $Id$ */
/* Generic "memory" (stored bitmap) device */
#include "memory_.h"
#include "gx.h"
#include "gsdevice.h"
#include "gserrors.h"
#include "gsrect.h"
#include "gsstruct.h"
#include "gxarith.h"
#include "gxdevice.h"
#include "gxgetbit.h"
#include "gxdevmem.h" /* semi-public definitions */
#include "gdevmem.h" /* private definitions */
#include "gstrans.h"
/* Structure descriptor */
public_st_device_memory();
/* GC procedures */
static
ENUM_PTRS_WITH(device_memory_enum_ptrs, gx_device_memory *mptr)
{
return ENUM_USING(st_device_forward, vptr, sizeof(gx_device_forward), index - 3);
}
case 0: ENUM_RETURN((mptr->foreign_bits ? NULL : (void *)mptr->base));
case 1: ENUM_RETURN((mptr->foreign_line_pointers ? NULL : (void *)mptr->line_ptrs));
ENUM_STRING_PTR(2, gx_device_memory, palette);
ENUM_PTRS_END
static
RELOC_PTRS_WITH(device_memory_reloc_ptrs, gx_device_memory *mptr)
{
if (!mptr->foreign_bits) {
byte *base_old = mptr->base;
long reloc;
int y;
RELOC_PTR(gx_device_memory, base);
reloc = base_old - mptr->base;
for (y = 0; y < mptr->height; y++)
mptr->line_ptrs[y] -= reloc;
/* Relocate line_ptrs, which also points into the data area. */
mptr->line_ptrs = (byte **) ((byte *) mptr->line_ptrs - reloc);
} else if (!mptr->foreign_line_pointers) {
RELOC_PTR(gx_device_memory, line_ptrs);
}
RELOC_CONST_STRING_PTR(gx_device_memory, palette);
RELOC_USING(st_device_forward, vptr, sizeof(gx_device_forward));
}
RELOC_PTRS_END
/* Define the palettes for monobit devices. */
static const byte b_w_palette_string[6] = {
0xff, 0xff, 0xff, 0, 0, 0
};
const gs_const_string mem_mono_b_w_palette = {
b_w_palette_string, 6
};
static const byte w_b_palette_string[6] = {
0, 0, 0, 0xff, 0xff, 0xff
};
const gs_const_string mem_mono_w_b_palette = {
w_b_palette_string, 6
};
/* ------ Generic code ------ */
/* Return the appropriate memory device for a given */
/* number of bits per pixel (0 if none suitable). */
static const gx_device_memory *const mem_devices[65] = {
0, &mem_mono_device, &mem_mapped2_device, 0, &mem_mapped4_device,
0, 0, 0, &mem_mapped8_device,
0, 0, 0, 0, 0, 0, 0, &mem_true16_device,
0, 0, 0, 0, 0, 0, 0, &mem_true24_device,
0, 0, 0, 0, 0, 0, 0, &mem_true32_device,
0, 0, 0, 0, 0, 0, 0, &mem_true40_device,
0, 0, 0, 0, 0, 0, 0, &mem_true48_device,
0, 0, 0, 0, 0, 0, 0, &mem_true56_device,
0, 0, 0, 0, 0, 0, 0, &mem_true64_device
};
const gx_device_memory *
gdev_mem_device_for_bits(int bits_per_pixel)
{
return ((uint)bits_per_pixel > 64 ? (const gx_device_memory *)0 :
mem_devices[bits_per_pixel]);
}
/* Do the same for a word-oriented device. */
static const gx_device_memory *const mem_word_devices[65] = {
0, &mem_mono_device, &mem_mapped2_word_device, 0, &mem_mapped4_word_device,
0, 0, 0, &mem_mapped8_word_device,
0, 0, 0, 0, 0, 0, 0, 0 /*no 16-bit word device*/,
0, 0, 0, 0, 0, 0, 0, &mem_true24_word_device,
0, 0, 0, 0, 0, 0, 0, &mem_true32_word_device,
0, 0, 0, 0, 0, 0, 0, &mem_true40_word_device,
0, 0, 0, 0, 0, 0, 0, &mem_true48_word_device,
0, 0, 0, 0, 0, 0, 0, &mem_true56_word_device,
0, 0, 0, 0, 0, 0, 0, &mem_true64_word_device
};
const gx_device_memory *
gdev_mem_word_device_for_bits(int bits_per_pixel)
{
return ((uint)bits_per_pixel > 64 ? (const gx_device_memory *)0 :
mem_word_devices[bits_per_pixel]);
}
/* Test whether a device is a memory device */
bool
gs_device_is_memory(const gx_device * dev)
{
/*
* We use the draw_thin_line procedure to mark memory devices.
* See gdevmem.h.
*/
int bits_per_pixel = dev->color_info.depth;
const gx_device_memory *mdproto;
if ((uint)bits_per_pixel > 64)
return false;
mdproto = mem_devices[bits_per_pixel];
if (mdproto != 0 && dev_proc(dev, draw_thin_line) == dev_proc(mdproto, draw_thin_line))
return true;
mdproto = mem_word_devices[bits_per_pixel];
return (mdproto != 0 && dev_proc(dev, draw_thin_line) == dev_proc(mdproto, draw_thin_line));
}
/* Make a memory device. */
/* Note that the default for monobit devices is white = 0, black = 1. */
void
gs_make_mem_device(gx_device_memory * dev, const gx_device_memory * mdproto,
gs_memory_t * mem, int page_device, gx_device * target)
{
gx_device_init((gx_device *) dev, (const gx_device *)mdproto,
mem, true);
dev->stype = &st_device_memory;
switch (page_device) {
case -1:
set_dev_proc(dev, get_page_device, gx_default_get_page_device);
break;
case 1:
set_dev_proc(dev, get_page_device, gx_page_device_get_page_device);
break;
}
/* Preload the black and white cache. */
if (target == 0) {
if (dev->color_info.depth == 1) {
/* The default for black-and-white devices is inverted. */
dev->cached_colors.black = 1;
dev->cached_colors.white = 0;
} else {
dev->cached_colors.black = 0;
dev->cached_colors.white = (1 << dev->color_info.depth) - 1;
}
} else {
gx_device_set_target((gx_device_forward *)dev, target);
/* Forward the color mapping operations to the target. */
gx_device_forward_color_procs((gx_device_forward *) dev);
gx_device_copy_color_procs((gx_device *)dev, target);
dev->cached_colors = target->cached_colors;
}
if (dev->color_info.depth == 1) {
gx_color_value cv[3];
cv[0] = cv[1] = cv[2] = 0;
gdev_mem_mono_set_inverted(dev, (target == 0 ||
(*dev_proc(dev, map_rgb_color))((gx_device *)dev, cv) != 0));
}
check_device_separable((gx_device *)dev);
gx_device_fill_in_procs((gx_device *)dev);
dev->band_y = 0;
}
/* Make a memory device using copydevice, this should replace gs_make_mem_device. */
/* Note that the default for monobit devices is white = 0, black = 1. */
int
gs_make_mem_device_with_copydevice(gx_device_memory ** ppdev,
const gx_device_memory * mdproto,
gs_memory_t * mem,
int page_device,
gx_device * target)
{
int code;
gx_device_memory *pdev;
if (mem == 0)
return -1;
code = gs_copydevice((gx_device **)&pdev,
(const gx_device *)mdproto,
mem);
if (code < 0)
return code;
switch (page_device) {
case -1:
set_dev_proc(pdev, get_page_device, gx_default_get_page_device);
break;
case 1:
set_dev_proc(pdev, get_page_device, gx_page_device_get_page_device);
break;
}
/* Preload the black and white cache. */
if (target == 0) {
if (pdev->color_info.depth == 1) {
/* The default for black-and-white devices is inverted. */
pdev->cached_colors.black = 1;
pdev->cached_colors.white = 0;
} else {
pdev->cached_colors.black = 0;
pdev->cached_colors.white = (1 << pdev->color_info.depth) - 1;
}
} else {
gx_device_set_target((gx_device_forward *)pdev, target);
/* Forward the color mapping operations to the target. */
gx_device_forward_color_procs((gx_device_forward *) pdev);
gx_device_copy_color_procs((gx_device *)pdev, target);
pdev->cached_colors = target->cached_colors;
}
if (pdev->color_info.depth == 1) {
gx_color_value cv[3];
cv[0] = cv[1] = cv[2] = 0;
gdev_mem_mono_set_inverted(pdev, (target == 0 ||
(*dev_proc(pdev, map_rgb_color))((gx_device *)pdev, cv) != 0));
}
check_device_separable((gx_device *)pdev);
gx_device_fill_in_procs((gx_device *)pdev);
pdev->band_y = 0;
*ppdev = pdev;
return 0;
}
/* Make a monobit memory device using copydevice */
int
gs_make_mem_mono_device_with_copydevice(gx_device_memory ** ppdev, gs_memory_t * mem,
gx_device * target)
{
int code;
gx_device_memory *pdev;
if (mem == 0)
return -1;
code = gs_copydevice((gx_device **)&pdev,
(const gx_device *)&mem_mono_device,
mem);
if (code < 0)
return code;
set_dev_proc(pdev, get_page_device, gx_default_get_page_device);
gx_device_set_target((gx_device_forward *)pdev, target);
gdev_mem_mono_set_inverted(pdev, true);
check_device_separable((gx_device *)pdev);
gx_device_fill_in_procs((gx_device *)pdev);
*ppdev = pdev;
return 0;
}
/* Make a monobit memory device. This is never a page device. */
/* Note that white=0, black=1. */
void
gs_make_mem_mono_device(gx_device_memory * dev, gs_memory_t * mem,
gx_device * target)
{
gx_device_init((gx_device *)dev, (const gx_device *)&mem_mono_device,
mem, true);
set_dev_proc(dev, get_page_device, gx_default_get_page_device);
gx_device_set_target((gx_device_forward *)dev, target);
gdev_mem_mono_set_inverted(dev, true);
check_device_separable((gx_device *)dev);
gx_device_fill_in_procs((gx_device *)dev);
}
/* Define whether a monobit memory device is inverted (black=1). */
void
gdev_mem_mono_set_inverted(gx_device_memory * dev, bool black_is_1)
{
if (black_is_1)
dev->palette = mem_mono_b_w_palette;
else
dev->palette = mem_mono_w_b_palette;
}
/*
* Compute the size of the bitmap storage, including the space for the scan
* line pointer table. Note that scan lines are padded to a multiple of
* align_bitmap_mod bytes, and additional padding may be needed if the
* pointer table must be aligned to an even larger modulus.
*
* The computation for planar devices is a little messier. Each plane
* must pad its scan lines, and then we must pad again for the pointer
* tables (one table per plane).
*
* Return VMerror if the size exceeds max ulong
*/
int
gdev_mem_bits_size(const gx_device_memory * dev, int width, int height, ulong *psize)
{
int num_planes = dev->num_planes;
gx_render_plane_t plane1;
const gx_render_plane_t *planes;
ulong size;
int pi;
if (num_planes)
planes = dev->planes;
else
planes = &plane1, plane1.depth = dev->color_info.depth, num_planes = 1;
for (size = 0, pi = 0; pi < num_planes; ++pi)
size += bitmap_raster(width * planes[pi].depth);
if (height != 0)
if (size > (max_ulong - ARCH_ALIGN_PTR_MOD) / (ulong)height)
return_error(gs_error_VMerror);
*psize = ROUND_UP(size * height, ARCH_ALIGN_PTR_MOD);
return 0;
}
ulong
gdev_mem_line_ptrs_size(const gx_device_memory * dev, int width, int height)
{
return (ulong)height * sizeof(byte *) * max(dev->num_planes, 1);
}
int
gdev_mem_data_size(const gx_device_memory * dev, int width, int height, ulong *psize)
{
ulong bits_size;
ulong line_ptrs_size = gdev_mem_line_ptrs_size(dev, width, height);
if (gdev_mem_bits_size(dev, width, height, &bits_size) < 0 ||
bits_size > max_ulong - line_ptrs_size)
return_error(gs_error_VMerror);
*psize = bits_size + line_ptrs_size;
return 0;
}
/*
* Do the inverse computation: given a width (in pixels) and a buffer size,
* compute the maximum height.
*/
int
gdev_mem_max_height(const gx_device_memory * dev, int width, ulong size,
bool page_uses_transparency)
{
int height;
ulong max_height;
ulong data_size;
if (page_uses_transparency) {
/*
* If the device is using PDF 1.4 transparency then we will need to
* also allocate image buffers for doing the blending operations.
* We can only estimate the space requirements. However since it
* is only an estimate, we may exceed our desired buffer space while
* processing the file.
*/
max_height = size / (bitmap_raster(width
* dev->color_info.depth + ESTIMATED_PDF14_ROW_SPACE(width))
+ sizeof(byte *) * max(dev->num_planes, 1));
height = (int)min(max_height, max_int);
} else {
/* For non PDF 1.4 transparency, we can do an exact calculation */
max_height = size /
(bitmap_raster(width * dev->color_info.depth) +
sizeof(byte *) * max(dev->num_planes, 1));
height = (int)min(max_height, max_int);
/*
* Because of alignment rounding, the just-computed height might
* be too large by a small amount. Adjust it the easy way.
*/
do {
gdev_mem_data_size(dev, width, height, &data_size);
if (data_size <= size)
break;
--height;
} while (data_size > size);
}
return height;
}
/* Open a memory device, allocating the data area if appropriate, */
/* and create the scan line table. */
int
mem_open(gx_device * dev)
{
gx_device_memory *const mdev = (gx_device_memory *)dev;
/* Check that we aren't trying to open a planar device as chunky. */
if (mdev->num_planes)
return_error(gs_error_rangecheck);
return gdev_mem_open_scan_lines(mdev, dev->height);
}
int
gdev_mem_open_scan_lines(gx_device_memory *mdev, int setup_height)
{
bool line_pointers_adjacent = true;
ulong size;
if (setup_height < 0 || setup_height > mdev->height)
return_error(gs_error_rangecheck);
if (mdev->bitmap_memory != 0) {
/* Allocate the data now. */
if (gdev_mem_bitmap_size(mdev, &size) < 0)
return_error(gs_error_VMerror);
if ((uint) size != size) /* ulong may be bigger than uint */
return_error(gs_error_limitcheck);
mdev->base = gs_alloc_bytes(mdev->bitmap_memory, (uint)size,
"mem_open");
if (mdev->base == 0)
return_error(gs_error_VMerror);
mdev->foreign_bits = false;
} else if (mdev->line_pointer_memory != 0) {
/* Allocate the line pointers now. */
mdev->line_ptrs = (byte **)
gs_alloc_byte_array(mdev->line_pointer_memory, mdev->height,
sizeof(byte *) * max(mdev->num_planes, 1),
"gdev_mem_open_scan_lines");
if (mdev->line_ptrs == 0)
return_error(gs_error_VMerror);
mdev->foreign_line_pointers = false;
line_pointers_adjacent = false;
}
if (line_pointers_adjacent) {
gdev_mem_bits_size(mdev, mdev->width, mdev->height, &size);
mdev->line_ptrs = (byte **)(mdev->base + size);
}
mdev->raster = gdev_mem_raster(mdev);
return gdev_mem_set_line_ptrs(mdev, NULL, 0, NULL, setup_height);
}
/*
* Set up the scan line pointers of a memory device.
* See gxdevmem.h for the detailed specification.
* Sets or uses line_ptrs, base, raster; uses width, color_info.depth,
* num_planes, plane_depths, plane_depth.
*/
int
gdev_mem_set_line_ptrs(gx_device_memory * mdev, byte * base, int raster,
byte **line_ptrs, int setup_height)
{
int num_planes = mdev->num_planes;
gx_render_plane_t plane1;
const gx_render_plane_t *planes;
byte **pline =
(line_ptrs ? (mdev->line_ptrs = line_ptrs) : mdev->line_ptrs);
byte *data =
(base ? (mdev->raster = raster, mdev->base = base) :
(raster = mdev->raster, mdev->base));
int pi;
if (num_planes) {
if (base && !mdev->plane_depth)
return_error(gs_error_rangecheck);
planes = mdev->planes;
} else {
planes = &plane1;
plane1.depth = mdev->color_info.depth;
num_planes = 1;
}
for (pi = 0; pi < num_planes; ++pi) {
int raster = bitmap_raster(mdev->width * planes[pi].depth);
byte **pptr = pline;
byte **pend = pptr + setup_height;
byte *scan_line = data;
while (pptr < pend) {
*pptr++ = scan_line;
scan_line += raster;
}
data += raster * mdev->height;
pline += setup_height; /* not mdev->height, see gxdevmem.h */
}
return 0;
}
/* Return the initial transformation matrix */
void
mem_get_initial_matrix(gx_device * dev, gs_matrix * pmat)
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
pmat->xx = mdev->initial_matrix.xx;
pmat->xy = mdev->initial_matrix.xy;
pmat->yx = mdev->initial_matrix.yx;
pmat->yy = mdev->initial_matrix.yy;
pmat->tx = mdev->initial_matrix.tx;
pmat->ty = mdev->initial_matrix.ty;
}
/* Close a memory device, freeing the data area if appropriate. */
int
mem_close(gx_device * dev)
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
if (mdev->bitmap_memory != 0) {
gs_free_object(mdev->bitmap_memory, mdev->base, "mem_close");
/*
* The following assignment is strictly for the benefit of one
* client that is sloppy about using is_open properly.
*/
mdev->base = 0;
} else if (mdev->line_pointer_memory != 0) {
gs_free_object(mdev->line_pointer_memory, mdev->line_ptrs,
"mem_close");
mdev->line_ptrs = 0; /* ibid. */
}
return 0;
}
/* Copy bits to a client. */
#undef chunk
#define chunk byte
int
mem_get_bits_rectangle(gx_device * dev, const gs_int_rect * prect,
gs_get_bits_params_t * params, gs_int_rect ** unread)
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
gs_get_bits_options_t options = params->options;
int x = prect->p.x, w = prect->q.x - x, y = prect->p.y, h = prect->q.y - y;
if (options == 0) {
params->options =
(GB_ALIGN_STANDARD | GB_ALIGN_ANY) |
(GB_RETURN_COPY | GB_RETURN_POINTER) |
(GB_OFFSET_0 | GB_OFFSET_SPECIFIED | GB_OFFSET_ANY) |
(GB_RASTER_STANDARD | GB_RASTER_SPECIFIED | GB_RASTER_ANY) |
GB_PACKING_CHUNKY | GB_COLORS_NATIVE | GB_ALPHA_NONE;
return_error(gs_error_rangecheck);
}
if ((w <= 0) | (h <= 0)) {
if ((w | h) < 0)
return_error(gs_error_rangecheck);
return 0;
}
if (x < 0 || w > dev->width - x ||
y < 0 || h > dev->height - y
)
return_error(gs_error_rangecheck);
{
gs_get_bits_params_t copy_params;
byte *base = scan_line_base(mdev, y);
int code;
copy_params.options =
GB_COLORS_NATIVE | GB_PACKING_CHUNKY | GB_ALPHA_NONE |
(mdev->raster ==
bitmap_raster(mdev->width * mdev->color_info.depth) ?
GB_RASTER_STANDARD : GB_RASTER_SPECIFIED);
copy_params.raster = mdev->raster;
code = gx_get_bits_return_pointer(dev, x, h, params,
©_params, base);
if (code >= 0)
return code;
return gx_get_bits_copy(dev, x, w, h, params, ©_params, base,
gx_device_raster(dev, true));
}
}
#if !arch_is_big_endian
/*
* Swap byte order in a rectangular subset of a bitmap. If store = true,
* assume the rectangle will be overwritten, so don't swap any bytes where
* it doesn't matter. The caller has already done a fit_fill or fit_copy.
* Note that the coordinates are specified in bits, not in terms of the
* actual device depth.
*/
void
mem_swap_byte_rect(byte * base, uint raster, int x, int w, int h, bool store)
{
int xbit = x & 31;
if (store) {
if (xbit + w > 64) { /* Operation spans multiple words. */
/* Just swap the words at the left and right edges. */
if (xbit != 0)
mem_swap_byte_rect(base, raster, x, 1, h, false);
x += w - 1;
xbit = x & 31;
if (xbit == 31)
return;
w = 1;
}
}
/* Swap the entire rectangle (or what's left of it). */
{
byte *row = base + ((x >> 5) << 2);
int nw = (xbit + w + 31) >> 5;
int ny;
for (ny = h; ny > 0; row += raster, --ny) {
int nx = nw;
bits32 *pw = (bits32 *) row;
do {
bits32 w = *pw;
*pw++ = (w >> 24) + ((w >> 8) & 0xff00) +
((w & 0xff00) << 8) + (w << 24);
}
while (--nx);
}
}
}
/* Copy a word-oriented rectangle to the client, swapping bytes as needed. */
int
mem_word_get_bits_rectangle(gx_device * dev, const gs_int_rect * prect,
gs_get_bits_params_t * params, gs_int_rect ** unread)
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
byte *src;
uint dev_raster = gx_device_raster(dev, 1);
int x = prect->p.x;
int w = prect->q.x - x;
int y = prect->p.y;
int h = prect->q.y - y;
int bit_x, bit_w;
int code;
fit_fill_xywh(dev, x, y, w, h);
if (w <= 0 || h <= 0) {
/*
* It's easiest to just keep going with an empty rectangle.
* We pass the original rectangle to mem_get_bits_rectangle,
* so unread will be filled in correctly.
*/
x = y = w = h = 0;
}
bit_x = x * dev->color_info.depth;
bit_w = w * dev->color_info.depth;
src = scan_line_base(mdev, y);
mem_swap_byte_rect(src, dev_raster, bit_x, bit_w, h, false);
code = mem_get_bits_rectangle(dev, prect, params, unread);
mem_swap_byte_rect(src, dev_raster, bit_x, bit_w, h, false);
return code;
}
#endif /* !arch_is_big_endian */
/* Map a r-g-b color to a color index for a mapped color memory device */
/* (2, 4, or 8 bits per pixel.) */
/* This requires searching the palette. */
gx_color_index
mem_mapped_map_rgb_color(gx_device * dev, const gx_color_value cv[])
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
byte br = gx_color_value_to_byte(cv[0]);
register const byte *pptr = mdev->palette.data;
int cnt = mdev->palette.size;
const byte *which = 0; /* initialized only to pacify gcc */
int best = 256 * 3;
if (mdev->color_info.num_components != 1) {
/* not 1 component, assume three */
/* The comparison is rather simplistic, treating differences in */
/* all components as equal. Better choices would be 'distance' */
/* in HLS space or other, but these would be much slower. */
/* At least exact matches will be found. */
byte bg = gx_color_value_to_byte(cv[1]);
byte bb = gx_color_value_to_byte(cv[2]);
while ((cnt -= 3) >= 0) {
register int diff = *pptr - br;
if (diff < 0)
diff = -diff;
if (diff < best) { /* quick rejection */
int dg = pptr[1] - bg;
if (dg < 0)
dg = -dg;
if ((diff += dg) < best) { /* quick rejection */
int db = pptr[2] - bb;
if (db < 0)
db = -db;
if ((diff += db) < best)
which = pptr, best = diff;
}
}
if (diff == 0) /* can't get any better than 0 diff */
break;
pptr += 3;
}
} else {
/* Gray scale conversion. The palette is made of three equal */
/* components, so this case is simpler. */
while ((cnt -= 3) >= 0) {
register int diff = *pptr - br;
if (diff < 0)
diff = -diff;
if (diff < best) { /* quick rejection */
which = pptr, best = diff;
}
if (diff == 0)
break;
pptr += 3;
}
}
return (gx_color_index) ((which - mdev->palette.data) / 3);
}
/* Map a color index to a r-g-b color for a mapped color memory device. */
int
mem_mapped_map_color_rgb(gx_device * dev, gx_color_index color,
gx_color_value prgb[3])
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
const byte *pptr = mdev->palette.data + (int)color * 3;
prgb[0] = gx_color_value_from_byte(pptr[0]);
prgb[1] = gx_color_value_from_byte(pptr[1]);
prgb[2] = gx_color_value_from_byte(pptr[2]);
return 0;
}
/*
* Implement draw_thin_line using a distinguished procedure that serves
* as the common marker for all memory devices.
*/
int
mem_draw_thin_line(gx_device *dev, fixed fx0, fixed fy0, fixed fx1, fixed fy1,
const gx_drawing_color *pdcolor,
gs_logical_operation_t lop,
fixed adjustx, fixed adjusty)
{
return gx_default_draw_thin_line(dev, fx0, fy0, fx1, fy1, pdcolor, lop,
adjustx, adjusty);
}
|