1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
/* @(#)s_sin.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static const char rcsid[] =
"$NetBSD: s_sin.c,v 1.7 1995/05/10 20:48:15 jtc Exp $";
#endif
/* sin(x)
* Return sine function of x.
*
* kernel function:
* __kernel_sin ... sine function on [-pi/4,pi/4]
* __kernel_cos ... cose function on [-pi/4,pi/4]
* __ieee754_rem_pio2 ... argument reduction routine
*
* Method.
* Let S,C and T denote the sin, cos and tan respectively on
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
* in [-pi/4 , +pi/4], and let n = k mod 4.
* We have
*
* n sin(x) cos(x) tan(x)
* ----------------------------------------------------------
* 0 S C T
* 1 C -S -1/T
* 2 -S -C T
* 3 -C S -1/T
* ----------------------------------------------------------
*
* Special cases:
* Let trig be any of sin, cos, or tan.
* trig(+-INF) is NaN, with signals;
* trig(NaN) is that NaN;
*
* Accuracy:
* TRIG(x) returns trig(x) nearly rounded
*/
#include "math.h"
#include "math_private.h"
libm_hidden_proto(sin)
#ifdef __STDC__
double sin(double x)
#else
double sin(x)
double x;
#endif
{
double y[2], z = 0.0;
int32_t n, ix;
/* High word of x. */
GET_HIGH_WORD(ix, x);
/* |x| ~< pi/4 */
ix &= 0x7fffffff;
if (ix <= 0x3fe921fb)
return __kernel_sin(x, z, 0);
/* sin(Inf or NaN) is NaN */
else if (ix >= 0x7ff00000)
return x - x;
/* argument reduction needed */
else {
n = __ieee754_rem_pio2(x, y);
switch (n & 3) {
case 0:
return __kernel_sin(y[0], y[1], 1);
case 1:
return __kernel_cos(y[0], y[1]);
case 2:
return -__kernel_sin(y[0], y[1], 1);
default:
return -__kernel_cos(y[0], y[1]);
}
}
}
libm_hidden_def(sin)
|