summaryrefslogtreecommitdiff
path: root/src/libm
diff options
context:
space:
mode:
authorSam Lantinga <slouken@libsdl.org>2008-09-15 06:46:23 +0000
committerSam Lantinga <slouken@libsdl.org>2008-09-15 06:46:23 +0000
commit2188a0fac621886ea27f17aa0f8f8ffeb5cd5a95 (patch)
tree3383a66590e89cb15a08c58d2bea0effc7b36d56 /src/libm
parent9a334b7a8d3d148832f52c048527ecbd7e19c0a2 (diff)
Whoops, missed a file...
--HG-- extra : convert_revision : svn%3Ac70aab31-4412-0410-b14c-859654838e24/trunk%403213
Diffstat (limited to 'src/libm')
-rw-r--r--src/libm/k_rem_pio2.c358
1 files changed, 358 insertions, 0 deletions
diff --git a/src/libm/k_rem_pio2.c b/src/libm/k_rem_pio2.c
new file mode 100644
index 00000000..692b2270
--- /dev/null
+++ b/src/libm/k_rem_pio2.c
@@ -0,0 +1,358 @@
+/* @(#)k_rem_pio2.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] =
+ "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $";
+#endif
+
+/*
+ * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
+ * double x[],y[]; int e0,nx,prec; int ipio2[];
+ *
+ * __kernel_rem_pio2 return the last three digits of N with
+ * y = x - N*pi/2
+ * so that |y| < pi/2.
+ *
+ * The method is to compute the integer (mod 8) and fraction parts of
+ * (2/pi)*x without doing the full multiplication. In general we
+ * skip the part of the product that are known to be a huge integer (
+ * more accurately, = 0 mod 8 ). Thus the number of operations are
+ * independent of the exponent of the input.
+ *
+ * (2/pi) is represented by an array of 24-bit integers in ipio2[].
+ *
+ * Input parameters:
+ * x[] The input value (must be positive) is broken into nx
+ * pieces of 24-bit integers in double precision format.
+ * x[i] will be the i-th 24 bit of x. The scaled exponent
+ * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
+ * match x's up to 24 bits.
+ *
+ * Example of breaking a double positive z into x[0]+x[1]+x[2]:
+ * e0 = ilogb(z)-23
+ * z = scalbn(z,-e0)
+ * for i = 0,1,2
+ * x[i] = floor(z)
+ * z = (z-x[i])*2**24
+ *
+ *
+ * y[] ouput result in an array of double precision numbers.
+ * The dimension of y[] is:
+ * 24-bit precision 1
+ * 53-bit precision 2
+ * 64-bit precision 2
+ * 113-bit precision 3
+ * The actual value is the sum of them. Thus for 113-bit
+ * precison, one may have to do something like:
+ *
+ * long double t,w,r_head, r_tail;
+ * t = (long double)y[2] + (long double)y[1];
+ * w = (long double)y[0];
+ * r_head = t+w;
+ * r_tail = w - (r_head - t);
+ *
+ * e0 The exponent of x[0]
+ *
+ * nx dimension of x[]
+ *
+ * prec an integer indicating the precision:
+ * 0 24 bits (single)
+ * 1 53 bits (double)
+ * 2 64 bits (extended)
+ * 3 113 bits (quad)
+ *
+ * ipio2[]
+ * integer array, contains the (24*i)-th to (24*i+23)-th
+ * bit of 2/pi after binary point. The corresponding
+ * floating value is
+ *
+ * ipio2[i] * 2^(-24(i+1)).
+ *
+ * External function:
+ * double scalbn(), floor();
+ *
+ *
+ * Here is the description of some local variables:
+ *
+ * jk jk+1 is the initial number of terms of ipio2[] needed
+ * in the computation. The recommended value is 2,3,4,
+ * 6 for single, double, extended,and quad.
+ *
+ * jz local integer variable indicating the number of
+ * terms of ipio2[] used.
+ *
+ * jx nx - 1
+ *
+ * jv index for pointing to the suitable ipio2[] for the
+ * computation. In general, we want
+ * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
+ * is an integer. Thus
+ * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
+ * Hence jv = max(0,(e0-3)/24).
+ *
+ * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
+ *
+ * q[] double array with integral value, representing the
+ * 24-bits chunk of the product of x and 2/pi.
+ *
+ * q0 the corresponding exponent of q[0]. Note that the
+ * exponent for q[i] would be q0-24*i.
+ *
+ * PIo2[] double precision array, obtained by cutting pi/2
+ * into 24 bits chunks.
+ *
+ * f[] ipio2[] in floating point
+ *
+ * iq[] integer array by breaking up q[] in 24-bits chunk.
+ *
+ * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
+ *
+ * ih integer. If >0 it indicates q[] is >= 0.5, hence
+ * it also indicates the *sign* of the result.
+ *
+ */
+
+
+/*
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+libm_hidden_proto(scalbn)
+ libm_hidden_proto(floor)
+#ifdef __STDC__
+ static const int init_jk[] = { 2, 3, 4, 6 }; /* initial value for jk */
+#else
+ static int init_jk[] = { 2, 3, 4, 6 };
+#endif
+
+#ifdef __STDC__
+static const double PIo2[] = {
+#else
+static double PIo2[] = {
+#endif
+ 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
+ 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
+ 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
+ 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
+ 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
+ 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
+ 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
+ 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
+};
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+ zero = 0.0, one = 1.0, two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
+ twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
+
+#ifdef __STDC__
+int attribute_hidden
+__kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec,
+ const int32_t * ipio2)
+#else
+int attribute_hidden
+__kernel_rem_pio2(x, y, e0, nx, prec, ipio2)
+ double x[], y[];
+ int e0, nx, prec;
+ int32_t ipio2[];
+#endif
+{
+ int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih;
+ double z, fw, f[20], fq[20], q[20];
+
+ /* initialize jk */
+ jk = init_jk[prec];
+ jp = jk;
+
+ /* determine jx,jv,q0, note that 3>q0 */
+ jx = nx - 1;
+ jv = (e0 - 3) / 24;
+ if (jv < 0)
+ jv = 0;
+ q0 = e0 - 24 * (jv + 1);
+
+ /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
+ j = jv - jx;
+ m = jx + jk;
+ for (i = 0; i <= m; i++, j++)
+ f[i] = (j < 0) ? zero : (double) ipio2[j];
+
+ /* compute q[0],q[1],...q[jk] */
+ for (i = 0; i <= jk; i++) {
+ for (j = 0, fw = 0.0; j <= jx; j++)
+ fw += x[j] * f[jx + i - j];
+ q[i] = fw;
+ }
+
+ jz = jk;
+ recompute:
+ /* distill q[] into iq[] reversingly */
+ for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) {
+ fw = (double) ((int32_t) (twon24 * z));
+ iq[i] = (int32_t) (z - two24 * fw);
+ z = q[j - 1] + fw;
+ }
+
+ /* compute n */
+ z = scalbn(z, q0); /* actual value of z */
+ z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */
+ n = (int32_t) z;
+ z -= (double) n;
+ ih = 0;
+ if (q0 > 0) { /* need iq[jz-1] to determine n */
+ i = (iq[jz - 1] >> (24 - q0));
+ n += i;
+ iq[jz - 1] -= i << (24 - q0);
+ ih = iq[jz - 1] >> (23 - q0);
+ } else if (q0 == 0)
+ ih = iq[jz - 1] >> 23;
+ else if (z >= 0.5)
+ ih = 2;
+
+ if (ih > 0) { /* q > 0.5 */
+ n += 1;
+ carry = 0;
+ for (i = 0; i < jz; i++) { /* compute 1-q */
+ j = iq[i];
+ if (carry == 0) {
+ if (j != 0) {
+ carry = 1;
+ iq[i] = 0x1000000 - j;
+ }
+ } else
+ iq[i] = 0xffffff - j;
+ }
+ if (q0 > 0) { /* rare case: chance is 1 in 12 */
+ switch (q0) {
+ case 1:
+ iq[jz - 1] &= 0x7fffff;
+ break;
+ case 2:
+ iq[jz - 1] &= 0x3fffff;
+ break;
+ }
+ }
+ if (ih == 2) {
+ z = one - z;
+ if (carry != 0)
+ z -= scalbn(one, q0);
+ }
+ }
+
+ /* check if recomputation is needed */
+ if (z == zero) {
+ j = 0;
+ for (i = jz - 1; i >= jk; i--)
+ j |= iq[i];
+ if (j == 0) { /* need recomputation */
+ for (k = 1; iq[jk - k] == 0; k++); /* k = no. of terms needed */
+
+ for (i = jz + 1; i <= jz + k; i++) { /* add q[jz+1] to q[jz+k] */
+ f[jx + i] = (double) ipio2[jv + i];
+ for (j = 0, fw = 0.0; j <= jx; j++)
+ fw += x[j] * f[jx + i - j];
+ q[i] = fw;
+ }
+ jz += k;
+ goto recompute;
+ }
+ }
+
+ /* chop off zero terms */
+ if (z == 0.0) {
+ jz -= 1;
+ q0 -= 24;
+ while (iq[jz] == 0) {
+ jz--;
+ q0 -= 24;
+ }
+ } else { /* break z into 24-bit if necessary */
+ z = scalbn(z, -q0);
+ if (z >= two24) {
+ fw = (double) ((int32_t) (twon24 * z));
+ iq[jz] = (int32_t) (z - two24 * fw);
+ jz += 1;
+ q0 += 24;
+ iq[jz] = (int32_t) fw;
+ } else
+ iq[jz] = (int32_t) z;
+ }
+
+ /* convert integer "bit" chunk to floating-point value */
+ fw = scalbn(one, q0);
+ for (i = jz; i >= 0; i--) {
+ q[i] = fw * (double) iq[i];
+ fw *= twon24;
+ }
+
+ /* compute PIo2[0,...,jp]*q[jz,...,0] */
+ for (i = jz; i >= 0; i--) {
+ for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++)
+ fw += PIo2[k] * q[i + k];
+ fq[jz - i] = fw;
+ }
+
+ /* compress fq[] into y[] */
+ switch (prec) {
+ case 0:
+ fw = 0.0;
+ for (i = jz; i >= 0; i--)
+ fw += fq[i];
+ y[0] = (ih == 0) ? fw : -fw;
+ break;
+ case 1:
+ case 2:
+ fw = 0.0;
+ for (i = jz; i >= 0; i--)
+ fw += fq[i];
+ y[0] = (ih == 0) ? fw : -fw;
+ fw = fq[0] - fw;
+ for (i = 1; i <= jz; i++)
+ fw += fq[i];
+ y[1] = (ih == 0) ? fw : -fw;
+ break;
+ case 3: /* painful */
+ for (i = jz; i > 0; i--) {
+ fw = fq[i - 1] + fq[i];
+ fq[i] += fq[i - 1] - fw;
+ fq[i - 1] = fw;
+ }
+ for (i = jz; i > 1; i--) {
+ fw = fq[i - 1] + fq[i];
+ fq[i] += fq[i - 1] - fw;
+ fq[i - 1] = fw;
+ }
+ for (fw = 0.0, i = jz; i >= 2; i--)
+ fw += fq[i];
+ if (ih == 0) {
+ y[0] = fq[0];
+ y[1] = fq[1];
+ y[2] = fw;
+ } else {
+ y[0] = -fq[0];
+ y[1] = -fq[1];
+ y[2] = -fw;
+ }
+ }
+ return n & 7;
+}