1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
|
<chapter id="chapter-pads" xreflabel="Pads and capabilities">
<title>Pads and capabilities</title>
<para>
As we have seen in <xref linkend="chapter-elements"/>, the pads are
the element's interface to the outside world. Data streams from one
element's source pad to another element's sink pad. The specific
type of media that the element can handle will be exposed by the
pad's capabilities. We will talk more on capabilities later in this
chapter (see <xref linkend="section-caps"/>).
</para>
<sect1 id="section-pads">
<title>Pads</title>
<para>
A pad type is defined by two properties: its direction and its
availability. As we've mentioned before, &GStreamer; defines two
pad directions: source pads and sink pads. This terminology is
defined from the view of within the element: elements receive data
on their sink pads and generate data on their source pads.
Schematically, sink pads are drawn on the left side of an element,
whereas source pads are drawn on the right side of an element. In
such graphs, data flows from left to right.
<footnote>
<para>
In reality, there is no objection to data flowing from a
source pad to the sink pad of an element upstream (to the
left of this element in drawings). Data will, however, always
flow from a source pad of one element to the sink pad of
another.
</para>
</footnote>
</para>
<para>
Pad directions are very simple compared to pad availability. A pad
can have any of three availabilities: always, sometimes and on
request. The meaning of those three types is exactly as it says:
always pads always exist, sometimes pad exist only in certain
cases (and can disappear randomly), and on-request pads appear
only if explicitely requested by applications.
</para>
<sect2 id="section-pads-dynamic">
<title>Dynamic (or sometimes) pads</title>
<para>
Some elements might not have all of their pads when the element is
created. This can happen, for example, with an Ogg demuxer element.
The element will read the Ogg stream and create dynamic pads for
each contained elementary stream (vorbis, theora) when it detects
such a stream in the Ogg stream. Likewise, it will delete the pad
when the stream ends. This principle is very useful for demuxer
elements, for example.
</para>
<para>
Running <application>gst-inspect oggdemux</application> will show
that the element has only one pad: a sink pad called 'sink'. The
other pads are <quote>dormant</quote>. You can see this in the pad
template because there is an <quote>Exists: Sometimes</quote>
property. Depending on the type of Ogg file you play, the pads will
be created. We will see that this is very important when you are
going to create dynamic pipelines. You can attach a signal handler
to an element to inform you when the element has created a new pad
from one of its <quote>sometimes</quote> pad templates. The
following piece of code is an example of how to do this:
</para>
<programlisting><!-- example-begin pad.c a -->
#include <gst/gst.h>
static void
cb_new_pad (GstElement *element,
GstPad *pad,
gpointer data)
{
gchar *name;
name = gst_pad_get_name (pad);
g_print ("A new pad %s was created\n", name);
g_free (name);
/* here, you would setup a new pad link for the newly created pad */
<!-- example-end pad.c a -->[..]
<!-- example-begin pad.c b -->
}
int
main (int argc,
char *argv[])
{
GstElement *pipeline, *source, *demux;
GMainLoop *loop;
/* init */
gst_init (&argc, &argv);
/* create elements */
pipeline = gst_pipeline_new ("my_pipeline");
source = gst_element_factory_make ("filesrc", "source");
g_object_set (source, "location", argv[1], NULL);
demux = gst_element_factory_make ("oggdemux", "demuxer");
/* you would normally check that the elements were created properly */
/* put together a pipeline */
gst_bin_add_many (GST_BIN (pipeline), source, demux, NULL);
gst_element_link_pads (source, "src", demux, "sink");
/* listen for newly created pads */
g_signal_connect (demux, "pad-added", G_CALLBACK (cb_new_pad), NULL);
/* start the pipeline */
gst_element_set_state (GST_ELEMENT (pipeline), GST_STATE_PLAYING);
loop = g_main_loop_new (NULL, FALSE);
g_main_loop_run (loop);
<!--example-end pad.c b -->
[..]<!-- example-begin pad.c c --><!--
return 0;
--><!-- example-end pad.c c -->
<!-- example-begin pad.c d -->
}
<!-- example-end pad.c d --></programlisting>
</sect2>
<sect2 id="section-pads-request">
<title>Request pads</title>
<para>
An element can also have request pads. These pads are not created
automatically but are only created on demand. This is very useful
for multiplexers, aggregators and tee elements. Aggregators are
elements that merge the content of several input streams together
into one output stream. Tee elements are the reverse: they are
elements that have one input stream and copy this stream to each
of their output pads, which are created on request. Whenever an
application needs another copy of the stream, it can simply request
a new output pad from the tee element.
</para>
<para>
The following piece of code shows how you can request a new output
pad from a <quote>tee</quote> element:
</para>
<programlisting>
static void
some_function (GstElement *tee)
{
GstPad * pad;
gchar *name;
pad = gst_element_get_request_pad (tee, "src%d");
name = gst_pad_get_name (pad);
g_print ("A new pad %s was created\n", name);
g_free (name);
/* here, you would link the pad */
[..]
/* and, after doing that, free our reference */
gst_object_unref (GST_OBJECT (pad));
}
</programlisting>
<para>
The <function>gst_element_get_request_pad ()</function> method
can be used to get a pad from the element based on the name of
the pad template. It is also possible to request a pad that is
compatible with another pad template. This is very useful if
you want to link an element to a multiplexer element and you
need to request a pad that is compatible. The method
<function>gst_element_get_compatible_pad ()</function> can be
used to request a compatible pad, as shown in the next example.
It will request a compatible pad from an Ogg multiplexer from
any input.
</para>
<programlisting>
static void
link_to_multiplexer (GstPad *tolink_pad,
GstElement *mux)
{
GstPad *pad;
gchar *srcname, *sinkname;
srcname = gst_pad_get_name (tolink_pad);
pad = gst_element_get_compatible_pad (mux, tolink_pad);
gst_pad_link (tolinkpad, pad);
sinkname = gst_pad_get_name (pad);
gst_object_unref (GST_OBJECT (pad));
g_print ("A new pad %s was created and linked to %s\n", srcname, sinkname);
g_free (sinkname);
g_free (srcname);
}
</programlisting>
</sect2>
</sect1>
<sect1 id="section-caps">
<title>Capabilities of a pad</title>
<para>
Since the pads play a very important role in how the element is
viewed by the outside world, a mechanism is implemented to describe
the data that can flow or currently flows through the pad by using
capabilities. Here, we will briefly describe what capabilities are
and how to use them, enough to get an understanding of the concept.
For an in-depth look into capabilities and a list of all capabilities
defined in &GStreamer;, see the <ulink type="http"
url="http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html">Plugin
Writers Guide</ulink>.
</para>
<para>
Capabilities are attached to pad templates and to pads. For pad
templates, it will describe the types of media that may stream
over a pad created from this template. For pads, it can either
be a list of possible caps (usually a copy of the pad template's
capabilities), in which case the pad is not yet negotiated, or it
is the type of media that currently streams over this pad, in
which case the pad has been negotiated already.
</para>
<sect2 id="section-caps-structure">
<title>Dissecting capabilities</title>
<para>
A pads capabilities are described in a <classname>GstCaps</classname>
object. Internally, a <ulink type="http"
url="../../gstreamer/html/gstreamer-GstCaps.html"><classname>GstCaps</classname></ulink>
will contain one or more <ulink type="http"
url="../../gstreamer/html/gstreamer-GstStructure.html"><classname>GstStructure</classname></ulink>
that will describe one media type. A negotiated pad will have
capabilities set that contain exactly <emphasis>one</emphasis>
structure. Also, this structure will contain only
<emphasis>fixed</emphasis> values. These constraints are not
true for unnegotiated pads or pad templates.
</para>
<para>
As an example, below is a dump of the capabilities of the
<quote>vorbisdec</quote> element, which you will get by running
<command>gst-inspect vorbisdec</command>. You will see two pads:
a source and a sink pad. Both of these pads are always available,
and both have capabilities attached to them. The sink pad will
accept vorbis-encoded audio data, with the mime-type
<quote>audio/x-vorbis</quote>. The source pad will be used
to send raw (decoded) audio samples to the next element, with
a raw audio mime-type (in this case,
<quote>audio/x-raw-int</quote>) The source pad will also
contain properties for the audio samplerate and the amount of
channels, plus some more that you don't need to worry about
for now.
</para>
<programlisting>
Pad Templates:
SRC template: 'src'
Availability: Always
Capabilities:
audio/x-raw-float
rate: [ 8000, 50000 ]
channels: [ 1, 2 ]
endianness: 1234
width: 32
buffer-frames: 0
SINK template: 'sink'
Availability: Always
Capabilities:
audio/x-vorbis
</programlisting>
</sect2>
<sect2 id="section-caps-props">
<title>Properties and values</title>
<para>
Properties are used to describe extra information for
capabilities. A property consists of a key (a string) and
a value. There are different possible value types that can be used:
</para>
<itemizedlist>
<listitem>
<para>
Basic types, this can be pretty much any
<classname>GType</classname> registered with Glib. Those
properties indicate a specific, non-dynamic value for this
property. Examples include:
</para>
<itemizedlist>
<listitem>
<para>
An integer value (<classname>G_TYPE_INT</classname>):
the property has this exact value.
</para>
</listitem>
<listitem>
<para>
A boolean value (<classname>G_TYPE_BOOLEAN</classname>):
the property is either TRUE or FALSE.
</para>
</listitem>
<listitem>
<para>
A float value (<classname>G_TYPE_FLOAT</classname>):
the property has this exact floating point value.
</para>
</listitem>
<listitem>
<para>
A string value (<classname>G_TYPE_STRING</classname>):
the property contains a UTF-8 string.
</para>
</listitem>
<listitem>
<para>
A fraction value (<classname>GST_TYPE_FRACTION</classname>):
contains a fraction expressed by an integer numerator and
denominator.
</para>
</listitem>
</itemizedlist>
</listitem>
<listitem>
<para>
Range types are <classname>GType</classname>s registered by
&GStreamer; to indicate a range of possible values. They are
used for indicating allowed audio samplerate values or
supported video sizes. The two types defined in &GStreamer;
are:
</para>
<itemizedlist>
<listitem>
<para>
An integer range value
(<classname>GST_TYPE_INT_RANGE</classname>): the property
denotes a range of possible integers, with a lower and an
upper boundary. The <quote>vorbisdec</quote> element, for
example, has a rate property that can be between 8000 and
50000.
</para>
</listitem>
<listitem>
<para>
A float range value
(<classname>GST_TYPE_FLOAT_RANGE</classname>): the property
denotes a range of possible floating point values, with a
lower and an upper boundary.
</para>
</listitem>
<listitem>
<para>
A fraction range value
(<classname>GST_TYPE_FRACTION_RANGE</classname>): the property
denotes a range of possible fraction values, with a
lower and an upper boundary.
</para>
</listitem>
</itemizedlist>
</listitem>
<listitem>
<para>
A list value (<classname>GST_TYPE_LIST</classname>): the
property can take any value from a list of basic values
given in this list.
</para>
<para>
Example: caps that express that either
a sample rate of 44100 Hz and a sample rate of 48000 Hz
is supported would use a list of integer values, with
one value being 44100 and one value being 48000.
</para>
</listitem>
<listitem>
<para>
An array value (<classname>GST_TYPE_ARRAY</classname>): the
property is an array of values. Each value in the array is a
full value on its own, too. All values in the array should be
of the same elementary type. This means that an array can
contain any combination of integers, lists of integers, integer
ranges together, and the same for floats or strings, but it can
not contain both floats and ints at the same time.
</para>
<para>
Example: for audio where there are more than two channels involved
the channel layout needs to be specified (for one and two channel
audio the channel layout is implicit unless stated otherwise in the
caps). So the channel layout would be an array of integer enum
values where each enum value represents a loudspeaker position.
Unlike a <classname>GST_TYPE_LIST</classname>, the values in an
array will be interpreted as a whole.
</para>
</listitem>
</itemizedlist>
</sect2>
</sect1>
<sect1 id="section-caps-api">
<title>What capabilities are used for</title>
<para>
Capabilities (short: caps) describe the type of data that is streamed
between two pads, or that one pad (template) supports. This makes them
very useful for various purposes:
</para>
<itemizedlist>
<listitem>
<para>
Autoplugging: automatically finding elements to link to a
pad based on its capabilities. All autopluggers use this
method.
</para>
</listitem>
<listitem>
<para>
Compatibility detection: when two pads are linked, &GStreamer;
can verify if the two pads are talking about the same media
type. The process of linking two pads and checking if they
are compatible is called <quote>caps negotiation</quote>.
</para>
</listitem>
<listitem>
<para>
Metadata: by reading the capabilities from a pad, applications
can provide information about the type of media that is being
streamed over the pad, which is information about the stream
that is currently being played back.
</para>
</listitem>
<listitem>
<para>
Filtering: an application can use capabilities to limit the
possible media types that can stream between two pads to a
specific subset of their supported stream types. An application
can, for example, use <quote>filtered caps</quote> to set a
specific (fixed or non-fixed) video size that should stream
between two pads. You will see an example of filtered caps
later in this manual, in <xref linkend="section-data-spoof"/>.
You can do caps filtering by inserting a capsfilter element into
your pipeline and setting its <quote>caps</quote> property. Caps
filters are often placed after converter elements like audioconvert,
audioresample, ffmpegcolorspace or videoscale to force those
converters to convert data to a specific output format at a
certain point in a stream.
</para>
</listitem>
</itemizedlist>
<sect2 id="section-caps-metadata">
<title>Using capabilities for metadata</title>
<para>
A pad can have a set (i.e. one or more) of capabilities attached
to it. Capabilities (<classname>GstCaps</classname>) are represented
as an array of one or more <classname>GstStructure</classname>s, and
each <classname>GstStructure</classname> is an array of fields where
each field consists of a field name string (e.g. "width") and a
typed value (e.g. <classname>G_TYPE_INT</classname> or
<classname>GST_TYPE_INT_RANGE</classname>).
</para>
<para>
Note that there is a distinct difference between the
<emphasis>possible</emphasis> capabilities of a pad (ie. usually what
you find as caps of pad templates as they are shown in gst-inspect),
the <emphasis>allowed</emphasis> caps of a pad (can be the same as
the pad's template caps or a subset of them, depending on the possible
caps of the peer pad) and lastly <emphasis>negotiated</emphasis> caps
(these describe the exact format of a stream or buffer and contain
exactly one structure and have no variable bits like ranges or lists,
ie. they are fixed caps).
</para>
<para>
You can get values of properties in a set of capabilities
by querying individual properties of one structure. You can get
a structure from a caps using
<function>gst_caps_get_structure ()</function> and the number of
structures in a <classname>GstCaps</classname> using
<function>gst_caps_get_size ()</function>.
</para>
<para>
Caps are called <emphasis>simple caps</emphasis> when they contain
only one structure, and <emphasis>fixed caps</emphasis> when they
contain only one structure and have no variable field types (like
ranges or lists of possible values). Two other special types of caps
are <emphasis>ANY caps</emphasis> and <emphasis>empty caps</emphasis>.
</para>
<para>
Here is an example of how to extract the width and height from
a set of fixed video caps:
<programlisting>
static void
read_video_props (GstCaps *caps)
{
gint width, height;
const GstStructure *str;
g_return_if_fail (gst_caps_is_fixed (caps));
str = gst_caps_get_structure (caps, 0);
if (!gst_structure_get_int (str, "width", &width) ||
!gst_structure_get_int (str, "height", &height)) {
g_print ("No width/height available\n");
return;
}
g_print ("The video size of this set of capabilities is %dx%d\n",
width, height);
}
</programlisting>
</para>
</sect2>
<sect2 id="section-caps-filter">
<title>Creating capabilities for filtering</title>
<para>
While capabilities are mainly used inside a plugin to describe the
media type of the pads, the application programmer often also has
to have basic understanding of capabilities in order to interface
with the plugins, especially when using filtered caps. When you're
using filtered caps or fixation, you're limiting the allowed types of
media that can stream between two pads to a subset of their supported
media types. You do this using a <classname>capsfilter</classname>
element in your pipeline. In order to do this, you also need to
create your own <classname>GstCaps</classname>. The easiest way to
do this is by using the convenience function
<function>gst_caps_new_simple ()</function>:
</para>
<para>
<programlisting>
static gboolean
link_elements_with_filter (GstElement *element1, GstElement *element2)
{
gboolean link_ok;
GstCaps *caps;
caps = gst_caps_new_simple ("video/x-raw-yuv",
"format", GST_TYPE_FOURCC, GST_MAKE_FOURCC ('I', '4', '2', '0'),
"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", GST_TYPE_FRACTION, 25, 1,
NULL);
link_ok = gst_element_link_filtered (element1, element2, caps);
gst_caps_unref (caps);
if (!link_ok) {
g_warning ("Failed to link element1 and element2!");
}
return link_ok;
}
</programlisting>
This will force the data flow between those two elements to a
a certain video format, width, height and framerate (or the linking
will fail if that cannot be achieved in the context of the elments
involved). Keep in mind that when you use <function>
gst_element_link_filtered ()</function> it will automatically create
a <classname>capsfilter</classname> element for you and insert it into
your bin or pipeline between the two elements you want to connect (this
is important if you ever want to disconnect those elements).
</para>
<para>
In some cases, you will want to create a more elaborate set of
capabilities to filter a link between two pads. Then, this function
is too simplistic and you'll want to use the method
<function>gst_caps_new_full ()</function>:
</para>
<programlisting>
static gboolean
link_elements_with_filter (GstElement *element1, GstElement *element2)
{
gboolean link_ok;
GstCaps *caps;
caps = gst_caps_new_full (
gst_structure_new ("video/x-raw-yuv",
"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", GST_TYPE_FRACTION, 25, 1,
NULL),
gst_structure_new ("video/x-raw-rgb",
"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", GST_TYPE_FRACTION, 25, 1,
NULL),
NULL);
link_ok = gst_element_link_filtered (element1, element2, caps);
gst_caps_unref (caps);
if (!link_ok) {
g_warning ("Failed to link element1 and element2!");
}
return link_ok;
}
</programlisting>
<para>
See the API references for the full API of
<classname>GstStructure</classname> and
<classname>GstCaps</classname>.
</para>
</sect2>
</sect1>
<sect1 id="section-pads-ghost">
<title>Ghost pads</title>
<para>
You can see from <xref linkend="section-bin-noghost-img"/> how a bin
has no pads of its own. This is where "ghost pads" come into play.
</para>
<figure float="1" id="section-bin-noghost-img">
<title>Visualisation of a <ulink type="http"
url="../../gstreamer/html/GstBin.html"><classname>GstBin</classname></ulink>
element without ghost pads</title>
<mediaobject>
<imageobject>
<imagedata fileref="images/bin-element-noghost.ℑ"
format="&IMAGE;"/>
</imageobject>
</mediaobject>
</figure>
<para>
A ghost pad is a pad from some element in the bin that can be
accessed directly from the bin as well. Compare it to a symbolic
link in UNIX filesystems. Using ghost pads on bins, the bin also
has a pad and can transparently be used as an element in other
parts of your code.
</para>
<figure float="1" id="section-bin-ghost-img">
<title>Visualisation of a <ulink type="http"
url="../../gstreamer/html/GstBin.html"><classname>GstBin</classname></ulink>
element with a ghost pad</title>
<mediaobject>
<imageobject>
<imagedata fileref="images/bin-element-ghost.ℑ"
format="&IMAGE;"/>
</imageobject>
</mediaobject>
</figure>
<para>
<xref linkend="section-bin-ghost-img"/> is a representation of a
ghost pad. The sink pad of element one is now also a pad of the bin.
Because ghost pads look and work like any other pads, they can be added
to any type of elements, not just to a <classname>GstBin</classname>,
just like ordinary pads.
</para>
<para>
A ghostpad is created using the function
<function>gst_ghost_pad_new ()</function>:
</para>
<programlisting><!-- example-begin ghostpad.c a -->
#include <gst/gst.h>
int
main (int argc,
char *argv[])
{
GstElement *bin, *sink;
GstPad *pad;
/* init */
gst_init (&argc, &argv);
/* create element, add to bin */
sink = gst_element_factory_make ("fakesink", "sink");
bin = gst_bin_new ("mybin");
gst_bin_add (GST_BIN (bin), sink);
/* add ghostpad */
pad = gst_element_get_pad (sink, "sink");
gst_element_add_pad (bin, gst_ghost_pad_new ("sink", pad));
gst_object_unref (GST_OBJECT (pad));
<!-- example-end ghostpad.c a -->
[..]<!-- example-begin ghostpad.c b --><!--
return 0;
--><!-- example-end ghostpad.c b -->
<!-- example-begin ghostpad.c c -->
}
<!-- example-end ghostpad.c c --></programlisting>
<para>
In the above example, the bin now also has a pad: the pad called
<quote>sink</quote> of the given element. The bin can, from here
on, be used as a substitute for the sink element. You could, for
example, link another element to the bin.
</para>
</sect1>
</chapter>
|