1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
|
/***
This file is part of PulseAudio.
Copyright 2004-2006 Lennart Poettering
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <string.h>
#ifdef HAVE_LIBSAMPLERATE
#include <samplerate.h>
#endif
#ifdef HAVE_SPEEX
#include <speex/speex_resampler.h>
#endif
#include <pulse/xmalloc.h>
#include <pulsecore/sconv.h>
#include <pulsecore/log.h>
#include <pulsecore/macro.h>
#include <pulsecore/strbuf.h>
#include <pulsecore/remap.h>
#include <pulsecore/once.h>
#include <pulsecore/core-util.h>
#include "ffmpeg/avcodec.h"
#include "resampler.h"
/* Number of samples of extra space we allow the resamplers to return */
#define EXTRA_FRAMES 128
struct pa_resampler {
pa_resample_method_t method;
pa_resample_flags_t flags;
pa_sample_spec i_ss, o_ss;
pa_channel_map i_cm, o_cm;
size_t i_fz, o_fz, w_fz, w_sz;
pa_mempool *mempool;
pa_memchunk to_work_format_buf;
pa_memchunk remap_buf;
pa_memchunk resample_buf;
pa_memchunk from_work_format_buf;
size_t to_work_format_buf_size;
size_t remap_buf_size;
size_t resample_buf_size;
size_t from_work_format_buf_size;
/* points to buffer before resampling stage, remap or to_work */
pa_memchunk *leftover_buf;
size_t *leftover_buf_size;
/* have_leftover points to leftover_in_remap or leftover_in_to_work */
bool *have_leftover;
bool leftover_in_remap;
bool leftover_in_to_work;
pa_sample_format_t work_format;
uint8_t work_channels;
pa_convert_func_t to_work_format_func;
pa_convert_func_t from_work_format_func;
pa_remap_t remap;
bool map_required;
pa_resampler_impl impl;
};
struct trivial_data { /* data specific to the trivial resampler */
unsigned o_counter;
unsigned i_counter;
};
struct peaks_data { /* data specific to the peak finder pseudo resampler */
unsigned o_counter;
unsigned i_counter;
float max_f[PA_CHANNELS_MAX];
int16_t max_i[PA_CHANNELS_MAX];
};
struct ffmpeg_data { /* data specific to ffmpeg */
struct AVResampleContext *state;
};
static int copy_init(pa_resampler *r);
static int trivial_init(pa_resampler*r);
#ifdef HAVE_SPEEX
static int speex_init(pa_resampler*r);
#endif
static int ffmpeg_init(pa_resampler*r);
static int peaks_init(pa_resampler*r);
#ifdef HAVE_LIBSAMPLERATE
static int libsamplerate_init(pa_resampler*r);
#endif
static void setup_remap(const pa_resampler *r, pa_remap_t *m);
static void free_remap(pa_remap_t *m);
static int (* const init_table[])(pa_resampler*r) = {
#ifdef HAVE_LIBSAMPLERATE
[PA_RESAMPLER_SRC_SINC_BEST_QUALITY] = libsamplerate_init,
[PA_RESAMPLER_SRC_SINC_MEDIUM_QUALITY] = libsamplerate_init,
[PA_RESAMPLER_SRC_SINC_FASTEST] = libsamplerate_init,
[PA_RESAMPLER_SRC_ZERO_ORDER_HOLD] = libsamplerate_init,
[PA_RESAMPLER_SRC_LINEAR] = libsamplerate_init,
#else
[PA_RESAMPLER_SRC_SINC_BEST_QUALITY] = NULL,
[PA_RESAMPLER_SRC_SINC_MEDIUM_QUALITY] = NULL,
[PA_RESAMPLER_SRC_SINC_FASTEST] = NULL,
[PA_RESAMPLER_SRC_ZERO_ORDER_HOLD] = NULL,
[PA_RESAMPLER_SRC_LINEAR] = NULL,
#endif
[PA_RESAMPLER_TRIVIAL] = trivial_init,
#ifdef HAVE_SPEEX
[PA_RESAMPLER_SPEEX_FLOAT_BASE+0] = speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+1] = speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+2] = speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+3] = speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+4] = speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+5] = speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+6] = speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+7] = speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+8] = speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+9] = speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+10] = speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+0] = speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+1] = speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+2] = speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+3] = speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+4] = speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+5] = speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+6] = speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+7] = speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+8] = speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+9] = speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+10] = speex_init,
#else
[PA_RESAMPLER_SPEEX_FLOAT_BASE+0] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+1] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+2] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+3] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+4] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+5] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+6] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+7] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+8] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+9] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+10] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+0] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+1] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+2] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+3] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+4] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+5] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+6] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+7] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+8] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+9] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+10] = NULL,
#endif
[PA_RESAMPLER_FFMPEG] = ffmpeg_init,
[PA_RESAMPLER_AUTO] = NULL,
[PA_RESAMPLER_COPY] = copy_init,
[PA_RESAMPLER_PEAKS] = peaks_init,
};
static bool speex_is_fixed_point(void);
static pa_resample_method_t choose_auto_resampler(pa_resample_flags_t flags) {
pa_resample_method_t method;
if (pa_resample_method_supported(PA_RESAMPLER_SPEEX_FLOAT_BASE + 1))
method = PA_RESAMPLER_SPEEX_FLOAT_BASE + 1;
else if (flags & PA_RESAMPLER_VARIABLE_RATE)
method = PA_RESAMPLER_TRIVIAL;
else
method = PA_RESAMPLER_FFMPEG;
return method;
}
static pa_resample_method_t pa_resampler_fix_method(
pa_resample_flags_t flags,
pa_resample_method_t method,
const uint32_t rate_a,
const uint32_t rate_b) {
pa_assert(pa_sample_rate_valid(rate_a));
pa_assert(pa_sample_rate_valid(rate_b));
pa_assert(method >= 0);
pa_assert(method < PA_RESAMPLER_MAX);
if (!(flags & PA_RESAMPLER_VARIABLE_RATE) && rate_a == rate_b) {
pa_log_info("Forcing resampler 'copy', because of fixed, identical sample rates.");
method = PA_RESAMPLER_COPY;
}
if (!pa_resample_method_supported(method)) {
pa_log_warn("Support for resampler '%s' not compiled in, reverting to 'auto'.", pa_resample_method_to_string(method));
method = PA_RESAMPLER_AUTO;
}
switch (method) {
case PA_RESAMPLER_COPY:
if (rate_a != rate_b) {
pa_log_info("Resampler 'copy' cannot change sampling rate, reverting to resampler 'auto'.");
method = PA_RESAMPLER_AUTO;
break;
}
/* Else fall through */
case PA_RESAMPLER_FFMPEG:
if (flags & PA_RESAMPLER_VARIABLE_RATE) {
pa_log_info("Resampler '%s' cannot do variable rate, reverting to resampler 'auto'.", pa_resample_method_to_string(method));
method = PA_RESAMPLER_AUTO;
}
break;
/* The Peaks resampler only supports downsampling.
* Revert to auto if we are upsampling */
case PA_RESAMPLER_PEAKS:
if (rate_a < rate_b) {
pa_log_warn("The 'peaks' resampler only supports downsampling, reverting to resampler 'auto'.");
method = PA_RESAMPLER_AUTO;
}
break;
default:
break;
}
if (method == PA_RESAMPLER_AUTO)
method = choose_auto_resampler(flags);
/* At this point, method is supported in the sense that it
* has an init function and supports the required flags. However,
* speex-float implementation in PulseAudio relies on the
* assumption that is invalid if speex has been compiled with
* --enable-fixed-point. Besides, speex-fixed is more efficient
* in this configuration. So use it instead.
*/
if (method >= PA_RESAMPLER_SPEEX_FLOAT_BASE && method <= PA_RESAMPLER_SPEEX_FLOAT_MAX) {
if (speex_is_fixed_point()) {
pa_log_info("Speex appears to be compiled with --enable-fixed-point. "
"Switching to a fixed-point resampler because it should be faster.");
method = method - PA_RESAMPLER_SPEEX_FLOAT_BASE + PA_RESAMPLER_SPEEX_FIXED_BASE;
}
}
return method;
}
/* Return true if a is a more precise sample format than b, else return false */
static bool sample_format_more_precise(pa_sample_format_t a, pa_sample_format_t b) {
pa_assert(pa_sample_format_valid(a));
pa_assert(pa_sample_format_valid(b));
switch (a) {
case PA_SAMPLE_U8:
case PA_SAMPLE_ALAW:
case PA_SAMPLE_ULAW:
return false;
break;
case PA_SAMPLE_S16LE:
case PA_SAMPLE_S16BE:
if (b == PA_SAMPLE_ULAW || b == PA_SAMPLE_ALAW || b == PA_SAMPLE_U8)
return true;
else
return false;
break;
case PA_SAMPLE_S24LE:
case PA_SAMPLE_S24BE:
case PA_SAMPLE_S24_32LE:
case PA_SAMPLE_S24_32BE:
if (b == PA_SAMPLE_ULAW || b == PA_SAMPLE_ALAW || b == PA_SAMPLE_U8 ||
b == PA_SAMPLE_S16LE || b == PA_SAMPLE_S16BE)
return true;
else
return false;
break;
case PA_SAMPLE_FLOAT32LE:
case PA_SAMPLE_FLOAT32BE:
case PA_SAMPLE_S32LE:
case PA_SAMPLE_S32BE:
if (b == PA_SAMPLE_FLOAT32LE || b == PA_SAMPLE_FLOAT32BE ||
b == PA_SAMPLE_S32LE || b == PA_SAMPLE_FLOAT32BE)
return false;
else
return true;
break;
default:
return false;
}
}
static pa_sample_format_t pa_resampler_choose_work_format(
pa_resample_method_t method,
pa_sample_format_t a,
pa_sample_format_t b,
bool map_required) {
pa_sample_format_t work_format;
pa_assert(pa_sample_format_valid(a));
pa_assert(pa_sample_format_valid(b));
pa_assert(method >= 0);
pa_assert(method < PA_RESAMPLER_MAX);
if (method >= PA_RESAMPLER_SPEEX_FIXED_BASE && method <= PA_RESAMPLER_SPEEX_FIXED_MAX)
method = PA_RESAMPLER_SPEEX_FIXED_BASE;
switch (method) {
/* This block is for resampling functions that only
* support the S16 sample format. */
case PA_RESAMPLER_SPEEX_FIXED_BASE: /* fall through */
case PA_RESAMPLER_FFMPEG:
work_format = PA_SAMPLE_S16NE;
break;
/* This block is for resampling functions that support
* any sample format. */
case PA_RESAMPLER_COPY: /* fall through */
case PA_RESAMPLER_TRIVIAL:
if (!map_required && a == b) {
work_format = a;
break;
}
/* Else fall trough */
case PA_RESAMPLER_PEAKS:
if (a == PA_SAMPLE_S16NE || b == PA_SAMPLE_S16NE)
work_format = PA_SAMPLE_S16NE;
else if (sample_format_more_precise(a, PA_SAMPLE_S16NE) ||
sample_format_more_precise(b, PA_SAMPLE_S16NE))
work_format = PA_SAMPLE_FLOAT32NE;
else
work_format = PA_SAMPLE_S16NE;
break;
default:
work_format = PA_SAMPLE_FLOAT32NE;
}
return work_format;
}
pa_resampler* pa_resampler_new(
pa_mempool *pool,
const pa_sample_spec *a,
const pa_channel_map *am,
const pa_sample_spec *b,
const pa_channel_map *bm,
pa_resample_method_t method,
pa_resample_flags_t flags) {
pa_resampler *r = NULL;
pa_assert(pool);
pa_assert(a);
pa_assert(b);
pa_assert(pa_sample_spec_valid(a));
pa_assert(pa_sample_spec_valid(b));
pa_assert(method >= 0);
pa_assert(method < PA_RESAMPLER_MAX);
method = pa_resampler_fix_method(flags, method, a->rate, b->rate);
r = pa_xnew0(pa_resampler, 1);
r->mempool = pool;
r->method = method;
r->flags = flags;
/* Fill sample specs */
r->i_ss = *a;
r->o_ss = *b;
if (am)
r->i_cm = *am;
else if (!pa_channel_map_init_auto(&r->i_cm, r->i_ss.channels, PA_CHANNEL_MAP_DEFAULT))
goto fail;
if (bm)
r->o_cm = *bm;
else if (!pa_channel_map_init_auto(&r->o_cm, r->o_ss.channels, PA_CHANNEL_MAP_DEFAULT))
goto fail;
r->i_fz = pa_frame_size(a);
r->o_fz = pa_frame_size(b);
r->map_required = (r->i_ss.channels != r->o_ss.channels || (!(r->flags & PA_RESAMPLER_NO_REMAP) &&
!pa_channel_map_equal(&r->i_cm, &r->o_cm)));
r->work_format = pa_resampler_choose_work_format(method, a->format, b->format, r->map_required);
r->w_sz = pa_sample_size_of_format(r->work_format);
if (r->i_ss.format != r->work_format) {
if (r->work_format == PA_SAMPLE_FLOAT32NE) {
if (!(r->to_work_format_func = pa_get_convert_to_float32ne_function(r->i_ss.format)))
goto fail;
} else {
pa_assert(r->work_format == PA_SAMPLE_S16NE);
if (!(r->to_work_format_func = pa_get_convert_to_s16ne_function(r->i_ss.format)))
goto fail;
}
}
if (r->o_ss.format != r->work_format) {
if (r->work_format == PA_SAMPLE_FLOAT32NE) {
if (!(r->from_work_format_func = pa_get_convert_from_float32ne_function(r->o_ss.format)))
goto fail;
} else {
pa_assert(r->work_format == PA_SAMPLE_S16NE);
if (!(r->from_work_format_func = pa_get_convert_from_s16ne_function(r->o_ss.format)))
goto fail;
}
}
if (r->o_ss.channels <= r->i_ss.channels) {
/* pipeline is: format conv. -> remap -> resample -> format conv. */
r->work_channels = r->o_ss.channels;
/* leftover buffer is remap output buffer (before resampling) */
r->leftover_buf = &r->remap_buf;
r->leftover_buf_size = &r->remap_buf_size;
r->have_leftover = &r->leftover_in_remap;
} else {
/* pipeline is: format conv. -> resample -> remap -> format conv. */
r->work_channels = r->i_ss.channels;
/* leftover buffer is to_work output buffer (before resampling) */
r->leftover_buf = &r->to_work_format_buf;
r->leftover_buf_size = &r->to_work_format_buf_size;
r->have_leftover = &r->leftover_in_to_work;
}
r->w_fz = pa_sample_size_of_format(r->work_format) * r->work_channels;
pa_log_debug("Resampler:");
pa_log_debug(" rate %d -> %d (method %s)", a->rate, b->rate, pa_resample_method_to_string(r->method));
pa_log_debug(" format %s -> %s (intermediate %s)", pa_sample_format_to_string(a->format),
pa_sample_format_to_string(b->format), pa_sample_format_to_string(r->work_format));
pa_log_debug(" channels %d -> %d (resampling %d)", a->channels, b->channels, r->work_channels);
/* set up the remap structure */
if (r->map_required)
setup_remap(r, &r->remap);
/* initialize implementation */
if (init_table[method](r) < 0)
goto fail;
return r;
fail:
pa_xfree(r);
return NULL;
}
void pa_resampler_free(pa_resampler *r) {
pa_assert(r);
if (r->impl.free)
r->impl.free(r);
else
pa_xfree(r->impl.data);
if (r->to_work_format_buf.memblock)
pa_memblock_unref(r->to_work_format_buf.memblock);
if (r->remap_buf.memblock)
pa_memblock_unref(r->remap_buf.memblock);
if (r->resample_buf.memblock)
pa_memblock_unref(r->resample_buf.memblock);
if (r->from_work_format_buf.memblock)
pa_memblock_unref(r->from_work_format_buf.memblock);
free_remap(&r->remap);
pa_xfree(r);
}
void pa_resampler_set_input_rate(pa_resampler *r, uint32_t rate) {
pa_assert(r);
pa_assert(rate > 0);
pa_assert(r->impl.update_rates);
if (r->i_ss.rate == rate)
return;
r->i_ss.rate = rate;
r->impl.update_rates(r);
}
void pa_resampler_set_output_rate(pa_resampler *r, uint32_t rate) {
pa_assert(r);
pa_assert(rate > 0);
pa_assert(r->impl.update_rates);
if (r->o_ss.rate == rate)
return;
r->o_ss.rate = rate;
r->impl.update_rates(r);
}
size_t pa_resampler_request(pa_resampler *r, size_t out_length) {
pa_assert(r);
/* Let's round up here to make it more likely that the caller will get at
* least out_length amount of data from pa_resampler_run().
*
* We don't take the leftover into account here. If we did, then it might
* be in theory possible that this function would return 0 and
* pa_resampler_run() would also return 0. That could lead to infinite
* loops. When the leftover is ignored here, such loops would eventually
* terminate, because the leftover would grow each round, finally
* surpassing the minimum input threshold of the resampler. */
return ((((uint64_t) ((out_length + r->o_fz-1) / r->o_fz) * r->i_ss.rate) + r->o_ss.rate-1) / r->o_ss.rate) * r->i_fz;
}
size_t pa_resampler_result(pa_resampler *r, size_t in_length) {
size_t frames;
pa_assert(r);
/* Let's round up here to ensure that the caller will always allocate big
* enough output buffer. */
frames = (in_length + r->i_fz - 1) / r->i_fz;
if (*r->have_leftover)
frames += r->leftover_buf->length / r->w_fz;
return (((uint64_t) frames * r->o_ss.rate + r->i_ss.rate - 1) / r->i_ss.rate) * r->o_fz;
}
size_t pa_resampler_max_block_size(pa_resampler *r) {
size_t block_size_max;
pa_sample_spec max_ss;
size_t max_fs;
size_t frames;
pa_assert(r);
block_size_max = pa_mempool_block_size_max(r->mempool);
/* We deduce the "largest" sample spec we're using during the
* conversion */
max_ss.channels = (uint8_t) (PA_MAX(r->i_ss.channels, r->o_ss.channels));
/* We silently assume that the format enum is ordered by size */
max_ss.format = PA_MAX(r->i_ss.format, r->o_ss.format);
max_ss.format = PA_MAX(max_ss.format, r->work_format);
max_ss.rate = PA_MAX(r->i_ss.rate, r->o_ss.rate);
max_fs = pa_frame_size(&max_ss);
frames = block_size_max / max_fs - EXTRA_FRAMES;
pa_assert(frames >= (r->leftover_buf->length / r->w_fz));
if (*r->have_leftover)
frames -= r->leftover_buf->length / r->w_fz;
block_size_max = ((uint64_t) frames * r->i_ss.rate / max_ss.rate) * r->i_fz;
if (block_size_max > 0)
return block_size_max;
else
/* A single input frame may result in so much output that it doesn't
* fit in one standard memblock (e.g. converting 1 Hz to 44100 Hz). In
* this case the max block size will be set to one frame, and some
* memory will be probably be allocated with malloc() instead of using
* the memory pool.
*
* XXX: Should we support this case at all? We could also refuse to
* create resamplers whose max block size would exceed the memory pool
* block size. In this case also updating the resampler rate should
* fail if the new rate would cause an excessive max block size (in
* which case the stream would probably have to be killed). */
return r->i_fz;
}
void pa_resampler_reset(pa_resampler *r) {
pa_assert(r);
if (r->impl.reset)
r->impl.reset(r);
*r->have_leftover = false;
}
pa_resample_method_t pa_resampler_get_method(pa_resampler *r) {
pa_assert(r);
return r->method;
}
const pa_channel_map* pa_resampler_input_channel_map(pa_resampler *r) {
pa_assert(r);
return &r->i_cm;
}
const pa_sample_spec* pa_resampler_input_sample_spec(pa_resampler *r) {
pa_assert(r);
return &r->i_ss;
}
const pa_channel_map* pa_resampler_output_channel_map(pa_resampler *r) {
pa_assert(r);
return &r->o_cm;
}
const pa_sample_spec* pa_resampler_output_sample_spec(pa_resampler *r) {
pa_assert(r);
return &r->o_ss;
}
static const char * const resample_methods[] = {
"src-sinc-best-quality",
"src-sinc-medium-quality",
"src-sinc-fastest",
"src-zero-order-hold",
"src-linear",
"trivial",
"speex-float-0",
"speex-float-1",
"speex-float-2",
"speex-float-3",
"speex-float-4",
"speex-float-5",
"speex-float-6",
"speex-float-7",
"speex-float-8",
"speex-float-9",
"speex-float-10",
"speex-fixed-0",
"speex-fixed-1",
"speex-fixed-2",
"speex-fixed-3",
"speex-fixed-4",
"speex-fixed-5",
"speex-fixed-6",
"speex-fixed-7",
"speex-fixed-8",
"speex-fixed-9",
"speex-fixed-10",
"ffmpeg",
"auto",
"copy",
"peaks"
};
const char *pa_resample_method_to_string(pa_resample_method_t m) {
if (m < 0 || m >= PA_RESAMPLER_MAX)
return NULL;
return resample_methods[m];
}
int pa_resample_method_supported(pa_resample_method_t m) {
if (m < 0 || m >= PA_RESAMPLER_MAX)
return 0;
#ifndef HAVE_LIBSAMPLERATE
if (m <= PA_RESAMPLER_SRC_LINEAR)
return 0;
#endif
#ifndef HAVE_SPEEX
if (m >= PA_RESAMPLER_SPEEX_FLOAT_BASE && m <= PA_RESAMPLER_SPEEX_FLOAT_MAX)
return 0;
if (m >= PA_RESAMPLER_SPEEX_FIXED_BASE && m <= PA_RESAMPLER_SPEEX_FIXED_MAX)
return 0;
#endif
return 1;
}
pa_resample_method_t pa_parse_resample_method(const char *string) {
pa_resample_method_t m;
pa_assert(string);
for (m = 0; m < PA_RESAMPLER_MAX; m++)
if (pa_streq(string, resample_methods[m]))
return m;
if (pa_streq(string, "speex-fixed"))
return PA_RESAMPLER_SPEEX_FIXED_BASE + 1;
if (pa_streq(string, "speex-float"))
return PA_RESAMPLER_SPEEX_FLOAT_BASE + 1;
return PA_RESAMPLER_INVALID;
}
static bool on_left(pa_channel_position_t p) {
return
p == PA_CHANNEL_POSITION_FRONT_LEFT ||
p == PA_CHANNEL_POSITION_REAR_LEFT ||
p == PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER ||
p == PA_CHANNEL_POSITION_SIDE_LEFT ||
p == PA_CHANNEL_POSITION_TOP_FRONT_LEFT ||
p == PA_CHANNEL_POSITION_TOP_REAR_LEFT;
}
static bool on_right(pa_channel_position_t p) {
return
p == PA_CHANNEL_POSITION_FRONT_RIGHT ||
p == PA_CHANNEL_POSITION_REAR_RIGHT ||
p == PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER ||
p == PA_CHANNEL_POSITION_SIDE_RIGHT ||
p == PA_CHANNEL_POSITION_TOP_FRONT_RIGHT ||
p == PA_CHANNEL_POSITION_TOP_REAR_RIGHT;
}
static bool on_center(pa_channel_position_t p) {
return
p == PA_CHANNEL_POSITION_FRONT_CENTER ||
p == PA_CHANNEL_POSITION_REAR_CENTER ||
p == PA_CHANNEL_POSITION_TOP_CENTER ||
p == PA_CHANNEL_POSITION_TOP_FRONT_CENTER ||
p == PA_CHANNEL_POSITION_TOP_REAR_CENTER;
}
static bool on_lfe(pa_channel_position_t p) {
return
p == PA_CHANNEL_POSITION_LFE;
}
static bool on_front(pa_channel_position_t p) {
return
p == PA_CHANNEL_POSITION_FRONT_LEFT ||
p == PA_CHANNEL_POSITION_FRONT_RIGHT ||
p == PA_CHANNEL_POSITION_FRONT_CENTER ||
p == PA_CHANNEL_POSITION_TOP_FRONT_LEFT ||
p == PA_CHANNEL_POSITION_TOP_FRONT_RIGHT ||
p == PA_CHANNEL_POSITION_TOP_FRONT_CENTER ||
p == PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER ||
p == PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER;
}
static bool on_rear(pa_channel_position_t p) {
return
p == PA_CHANNEL_POSITION_REAR_LEFT ||
p == PA_CHANNEL_POSITION_REAR_RIGHT ||
p == PA_CHANNEL_POSITION_REAR_CENTER ||
p == PA_CHANNEL_POSITION_TOP_REAR_LEFT ||
p == PA_CHANNEL_POSITION_TOP_REAR_RIGHT ||
p == PA_CHANNEL_POSITION_TOP_REAR_CENTER;
}
static bool on_side(pa_channel_position_t p) {
return
p == PA_CHANNEL_POSITION_SIDE_LEFT ||
p == PA_CHANNEL_POSITION_SIDE_RIGHT ||
p == PA_CHANNEL_POSITION_TOP_CENTER;
}
enum {
ON_FRONT,
ON_REAR,
ON_SIDE,
ON_OTHER
};
static int front_rear_side(pa_channel_position_t p) {
if (on_front(p))
return ON_FRONT;
if (on_rear(p))
return ON_REAR;
if (on_side(p))
return ON_SIDE;
return ON_OTHER;
}
static void setup_remap(const pa_resampler *r, pa_remap_t *m) {
unsigned oc, ic;
unsigned n_oc, n_ic;
bool ic_connected[PA_CHANNELS_MAX];
bool remix;
pa_strbuf *s;
char *t;
pa_assert(r);
pa_assert(m);
n_oc = r->o_ss.channels;
n_ic = r->i_ss.channels;
m->format = r->work_format;
m->i_ss = r->i_ss;
m->o_ss = r->o_ss;
memset(m->map_table_f, 0, sizeof(m->map_table_f));
memset(m->map_table_i, 0, sizeof(m->map_table_i));
memset(ic_connected, 0, sizeof(ic_connected));
remix = (r->flags & (PA_RESAMPLER_NO_REMAP | PA_RESAMPLER_NO_REMIX)) == 0;
if (r->flags & PA_RESAMPLER_NO_REMAP) {
pa_assert(!remix);
for (oc = 0; oc < PA_MIN(n_ic, n_oc); oc++)
m->map_table_f[oc][oc] = 1.0f;
} else if (r->flags & PA_RESAMPLER_NO_REMIX) {
pa_assert(!remix);
for (oc = 0; oc < n_oc; oc++) {
pa_channel_position_t b = r->o_cm.map[oc];
for (ic = 0; ic < n_ic; ic++) {
pa_channel_position_t a = r->i_cm.map[ic];
/* We shall not do any remixing. Hence, just check by name */
if (a == b)
m->map_table_f[oc][ic] = 1.0f;
}
}
} else {
/* OK, we shall do the full monty: upmixing and downmixing. Our
* algorithm is relatively simple, does not do spacialization, delay
* elements or apply lowpass filters for LFE. Patches are always
* welcome, though. Oh, and it doesn't do any matrix decoding. (Which
* probably wouldn't make any sense anyway.)
*
* This code is not idempotent: downmixing an upmixed stereo stream is
* not identical to the original. The volume will not match, and the
* two channels will be a linear combination of both.
*
* This is loosely based on random suggestions found on the Internet,
* such as this:
* http://www.halfgaar.net/surround-sound-in-linux and the alsa upmix
* plugin.
*
* The algorithm works basically like this:
*
* 1) Connect all channels with matching names.
*
* 2) Mono Handling:
* S:Mono: Copy into all D:channels
* D:Mono: Avg all S:channels
*
* 3) Mix D:Left, D:Right:
* D:Left: If not connected, avg all S:Left
* D:Right: If not connected, avg all S:Right
*
* 4) Mix D:Center
* If not connected, avg all S:Center
* If still not connected, avg all S:Left, S:Right
*
* 5) Mix D:LFE
* If not connected, avg all S:*
*
* 6) Make sure S:Left/S:Right is used: S:Left/S:Right: If not
* connected, mix into all D:left and all D:right channels. Gain is
* 1/9.
*
* 7) Make sure S:Center, S:LFE is used:
*
* S:Center, S:LFE: If not connected, mix into all D:left, all
* D:right, all D:center channels. Gain is 0.5 for center and 0.375
* for LFE. C-front is only mixed into L-front/R-front if available,
* otherwise into all L/R channels. Similarly for C-rear.
*
* 8) Normalize each row in the matrix such that the sum for each row is
* not larger than 1.0 in order to avoid clipping.
*
* S: and D: shall relate to the source resp. destination channels.
*
* Rationale: 1, 2 are probably obvious. For 3: this copies front to
* rear if needed. For 4: we try to find some suitable C source for C,
* if we don't find any, we avg L and R. For 5: LFE is mixed from all
* channels. For 6: the rear channels should not be dropped entirely,
* however have only minimal impact. For 7: movies usually encode
* speech on the center channel. Thus we have to make sure this channel
* is distributed to L and R if not available in the output. Also, LFE
* is used to achieve a greater dynamic range, and thus we should try
* to do our best to pass it to L+R.
*/
unsigned
ic_left = 0,
ic_right = 0,
ic_center = 0,
ic_unconnected_left = 0,
ic_unconnected_right = 0,
ic_unconnected_center = 0,
ic_unconnected_lfe = 0;
bool ic_unconnected_center_mixed_in = 0;
pa_assert(remix);
for (ic = 0; ic < n_ic; ic++) {
if (on_left(r->i_cm.map[ic]))
ic_left++;
if (on_right(r->i_cm.map[ic]))
ic_right++;
if (on_center(r->i_cm.map[ic]))
ic_center++;
}
for (oc = 0; oc < n_oc; oc++) {
bool oc_connected = false;
pa_channel_position_t b = r->o_cm.map[oc];
for (ic = 0; ic < n_ic; ic++) {
pa_channel_position_t a = r->i_cm.map[ic];
if (a == b || a == PA_CHANNEL_POSITION_MONO) {
m->map_table_f[oc][ic] = 1.0f;
oc_connected = true;
ic_connected[ic] = true;
}
else if (b == PA_CHANNEL_POSITION_MONO) {
m->map_table_f[oc][ic] = 1.0f / (float) n_ic;
oc_connected = true;
ic_connected[ic] = true;
}
}
if (!oc_connected) {
/* Try to find matching input ports for this output port */
if (on_left(b)) {
/* We are not connected and on the left side, let's
* average all left side input channels. */
if (ic_left > 0)
for (ic = 0; ic < n_ic; ic++)
if (on_left(r->i_cm.map[ic])) {
m->map_table_f[oc][ic] = 1.0f / (float) ic_left;
ic_connected[ic] = true;
}
/* We ignore the case where there is no left input channel.
* Something is really wrong in this case anyway. */
} else if (on_right(b)) {
/* We are not connected and on the right side, let's
* average all right side input channels. */
if (ic_right > 0)
for (ic = 0; ic < n_ic; ic++)
if (on_right(r->i_cm.map[ic])) {
m->map_table_f[oc][ic] = 1.0f / (float) ic_right;
ic_connected[ic] = true;
}
/* We ignore the case where there is no right input
* channel. Something is really wrong in this case anyway.
* */
} else if (on_center(b)) {
if (ic_center > 0) {
/* We are not connected and at the center. Let's average
* all center input channels. */
for (ic = 0; ic < n_ic; ic++)
if (on_center(r->i_cm.map[ic])) {
m->map_table_f[oc][ic] = 1.0f / (float) ic_center;
ic_connected[ic] = true;
}
} else if (ic_left + ic_right > 0) {
/* Hmm, no center channel around, let's synthesize it
* by mixing L and R.*/
for (ic = 0; ic < n_ic; ic++)
if (on_left(r->i_cm.map[ic]) || on_right(r->i_cm.map[ic])) {
m->map_table_f[oc][ic] = 1.0f / (float) (ic_left + ic_right);
ic_connected[ic] = true;
}
}
/* We ignore the case where there is not even a left or
* right input channel. Something is really wrong in this
* case anyway. */
} else if (on_lfe(b) && !(r->flags & PA_RESAMPLER_NO_LFE)) {
/* We are not connected and an LFE. Let's average all
* channels for LFE. */
for (ic = 0; ic < n_ic; ic++)
m->map_table_f[oc][ic] = 1.0f / (float) n_ic;
/* Please note that a channel connected to LFE doesn't
* really count as connected. */
}
}
}
for (ic = 0; ic < n_ic; ic++) {
pa_channel_position_t a = r->i_cm.map[ic];
if (ic_connected[ic])
continue;
if (on_left(a))
ic_unconnected_left++;
else if (on_right(a))
ic_unconnected_right++;
else if (on_center(a))
ic_unconnected_center++;
else if (on_lfe(a))
ic_unconnected_lfe++;
}
for (ic = 0; ic < n_ic; ic++) {
pa_channel_position_t a = r->i_cm.map[ic];
if (ic_connected[ic])
continue;
for (oc = 0; oc < n_oc; oc++) {
pa_channel_position_t b = r->o_cm.map[oc];
if (on_left(a) && on_left(b))
m->map_table_f[oc][ic] = (1.f/9.f) / (float) ic_unconnected_left;
else if (on_right(a) && on_right(b))
m->map_table_f[oc][ic] = (1.f/9.f) / (float) ic_unconnected_right;
else if (on_center(a) && on_center(b)) {
m->map_table_f[oc][ic] = (1.f/9.f) / (float) ic_unconnected_center;
ic_unconnected_center_mixed_in = true;
} else if (on_lfe(a) && !(r->flags & PA_RESAMPLER_NO_LFE))
m->map_table_f[oc][ic] = .375f / (float) ic_unconnected_lfe;
}
}
if (ic_unconnected_center > 0 && !ic_unconnected_center_mixed_in) {
unsigned ncenter[PA_CHANNELS_MAX];
bool found_frs[PA_CHANNELS_MAX];
memset(ncenter, 0, sizeof(ncenter));
memset(found_frs, 0, sizeof(found_frs));
/* Hmm, as it appears there was no center channel we
could mix our center channel in. In this case, mix it into
left and right. Using .5 as the factor. */
for (ic = 0; ic < n_ic; ic++) {
if (ic_connected[ic])
continue;
if (!on_center(r->i_cm.map[ic]))
continue;
for (oc = 0; oc < n_oc; oc++) {
if (!on_left(r->o_cm.map[oc]) && !on_right(r->o_cm.map[oc]))
continue;
if (front_rear_side(r->i_cm.map[ic]) == front_rear_side(r->o_cm.map[oc])) {
found_frs[ic] = true;
break;
}
}
for (oc = 0; oc < n_oc; oc++) {
if (!on_left(r->o_cm.map[oc]) && !on_right(r->o_cm.map[oc]))
continue;
if (!found_frs[ic] || front_rear_side(r->i_cm.map[ic]) == front_rear_side(r->o_cm.map[oc]))
ncenter[oc]++;
}
}
for (oc = 0; oc < n_oc; oc++) {
if (!on_left(r->o_cm.map[oc]) && !on_right(r->o_cm.map[oc]))
continue;
if (ncenter[oc] <= 0)
continue;
for (ic = 0; ic < n_ic; ic++) {
if (!on_center(r->i_cm.map[ic]))
continue;
if (!found_frs[ic] || front_rear_side(r->i_cm.map[ic]) == front_rear_side(r->o_cm.map[oc]))
m->map_table_f[oc][ic] = .5f / (float) ncenter[oc];
}
}
}
}
for (oc = 0; oc < n_oc; oc++) {
float sum = 0.0f;
for (ic = 0; ic < n_ic; ic++)
sum += m->map_table_f[oc][ic];
if (sum > 1.0f)
for (ic = 0; ic < n_ic; ic++)
m->map_table_f[oc][ic] /= sum;
}
/* make an 16:16 int version of the matrix */
for (oc = 0; oc < n_oc; oc++)
for (ic = 0; ic < n_ic; ic++)
m->map_table_i[oc][ic] = (int32_t) (m->map_table_f[oc][ic] * 0x10000);
s = pa_strbuf_new();
pa_strbuf_printf(s, " ");
for (ic = 0; ic < n_ic; ic++)
pa_strbuf_printf(s, " I%02u ", ic);
pa_strbuf_puts(s, "\n +");
for (ic = 0; ic < n_ic; ic++)
pa_strbuf_printf(s, "------");
pa_strbuf_puts(s, "\n");
for (oc = 0; oc < n_oc; oc++) {
pa_strbuf_printf(s, "O%02u |", oc);
for (ic = 0; ic < n_ic; ic++)
pa_strbuf_printf(s, " %1.3f", m->map_table_f[oc][ic]);
pa_strbuf_puts(s, "\n");
}
pa_log_debug("Channel matrix:\n%s", t = pa_strbuf_tostring_free(s));
pa_xfree(t);
/* initialize the remapping function */
pa_init_remap_func(m);
}
static void free_remap(pa_remap_t *m) {
pa_assert(m);
pa_xfree(m->state);
}
/* check if buf's memblock is large enough to hold 'len' bytes; create a
* new memblock if necessary and optionally preserve 'copy' data bytes */
static void fit_buf(pa_resampler *r, pa_memchunk *buf, size_t len, size_t *size, size_t copy) {
pa_assert(size);
if (!buf->memblock || len > *size) {
pa_memblock *new_block = pa_memblock_new(r->mempool, len);
if (buf->memblock) {
if (copy > 0) {
void *src = pa_memblock_acquire(buf->memblock);
void *dst = pa_memblock_acquire(new_block);
pa_assert(copy <= len);
memcpy(dst, src, copy);
pa_memblock_release(new_block);
pa_memblock_release(buf->memblock);
}
pa_memblock_unref(buf->memblock);
}
buf->memblock = new_block;
*size = len;
}
buf->length = len;
}
static pa_memchunk* convert_to_work_format(pa_resampler *r, pa_memchunk *input) {
unsigned in_n_samples, out_n_samples;
void *src, *dst;
bool have_leftover;
size_t leftover_length = 0;
pa_assert(r);
pa_assert(input);
pa_assert(input->memblock);
/* Convert the incoming sample into the work sample format and place them
* in to_work_format_buf. The leftover data is already converted, so it's
* part of the output buffer. */
have_leftover = r->leftover_in_to_work;
r->leftover_in_to_work = false;
if (!have_leftover && (!r->to_work_format_func || !input->length))
return input;
else if (input->length <= 0)
return &r->to_work_format_buf;
in_n_samples = out_n_samples = (unsigned) ((input->length / r->i_fz) * r->i_ss.channels);
if (have_leftover) {
leftover_length = r->to_work_format_buf.length;
out_n_samples += (unsigned) (leftover_length / r->w_sz);
}
fit_buf(r, &r->to_work_format_buf, r->w_sz * out_n_samples, &r->to_work_format_buf_size, leftover_length);
src = pa_memblock_acquire_chunk(input);
dst = (uint8_t *) pa_memblock_acquire(r->to_work_format_buf.memblock) + leftover_length;
if (r->to_work_format_func)
r->to_work_format_func(in_n_samples, src, dst);
else
memcpy(dst, src, input->length);
pa_memblock_release(input->memblock);
pa_memblock_release(r->to_work_format_buf.memblock);
return &r->to_work_format_buf;
}
static pa_memchunk *remap_channels(pa_resampler *r, pa_memchunk *input) {
unsigned in_n_samples, out_n_samples, in_n_frames, out_n_frames;
void *src, *dst;
size_t leftover_length = 0;
bool have_leftover;
pa_assert(r);
pa_assert(input);
pa_assert(input->memblock);
/* Remap channels and place the result in remap_buf. There may be leftover
* data in the beginning of remap_buf. The leftover data is already
* remapped, so it's not part of the input, it's part of the output. */
have_leftover = r->leftover_in_remap;
r->leftover_in_remap = false;
if (!have_leftover && (!r->map_required || input->length <= 0))
return input;
else if (input->length <= 0)
return &r->remap_buf;
in_n_samples = (unsigned) (input->length / r->w_sz);
in_n_frames = out_n_frames = in_n_samples / r->i_ss.channels;
if (have_leftover) {
leftover_length = r->remap_buf.length;
out_n_frames += leftover_length / r->w_fz;
}
out_n_samples = out_n_frames * r->o_ss.channels;
fit_buf(r, &r->remap_buf, out_n_samples * r->w_sz, &r->remap_buf_size, leftover_length);
src = pa_memblock_acquire_chunk(input);
dst = (uint8_t *) pa_memblock_acquire(r->remap_buf.memblock) + leftover_length;
if (r->map_required) {
pa_remap_t *remap = &r->remap;
pa_assert(remap->do_remap);
remap->do_remap(remap, dst, src, in_n_frames);
} else
memcpy(dst, src, input->length);
pa_memblock_release(input->memblock);
pa_memblock_release(r->remap_buf.memblock);
return &r->remap_buf;
}
static void save_leftover(pa_resampler *r, void *buf, size_t len) {
void *dst;
pa_assert(r);
pa_assert(buf);
pa_assert(len > 0);
/* Store the leftover data. */
fit_buf(r, r->leftover_buf, len, r->leftover_buf_size, 0);
*r->have_leftover = true;
dst = pa_memblock_acquire(r->leftover_buf->memblock);
memmove(dst, buf, len);
pa_memblock_release(r->leftover_buf->memblock);
}
static pa_memchunk *resample(pa_resampler *r, pa_memchunk *input) {
unsigned in_n_frames, out_n_frames, leftover_n_frames;
pa_assert(r);
pa_assert(input);
/* Resample the data and place the result in resample_buf. */
if (!r->impl.resample || !input->length)
return input;
in_n_frames = (unsigned) (input->length / r->w_fz);
out_n_frames = ((in_n_frames*r->o_ss.rate)/r->i_ss.rate)+EXTRA_FRAMES;
fit_buf(r, &r->resample_buf, r->w_fz * out_n_frames, &r->resample_buf_size, 0);
leftover_n_frames = r->impl.resample(r, input, in_n_frames, &r->resample_buf, &out_n_frames);
if (leftover_n_frames > 0) {
void *leftover_data = (uint8_t *) pa_memblock_acquire_chunk(input) + (in_n_frames - leftover_n_frames) * r->w_fz;
save_leftover(r, leftover_data, leftover_n_frames * r->w_fz);
pa_memblock_release(input->memblock);
}
r->resample_buf.length = out_n_frames * r->w_fz;
return &r->resample_buf;
}
static pa_memchunk *convert_from_work_format(pa_resampler *r, pa_memchunk *input) {
unsigned n_samples, n_frames;
void *src, *dst;
pa_assert(r);
pa_assert(input);
/* Convert the data into the correct sample type and place the result in
* from_work_format_buf. */
if (!r->from_work_format_func || !input->length)
return input;
n_samples = (unsigned) (input->length / r->w_sz);
n_frames = n_samples / r->o_ss.channels;
fit_buf(r, &r->from_work_format_buf, r->o_fz * n_frames, &r->from_work_format_buf_size, 0);
src = pa_memblock_acquire_chunk(input);
dst = pa_memblock_acquire(r->from_work_format_buf.memblock);
r->from_work_format_func(n_samples, src, dst);
pa_memblock_release(input->memblock);
pa_memblock_release(r->from_work_format_buf.memblock);
return &r->from_work_format_buf;
}
void pa_resampler_run(pa_resampler *r, const pa_memchunk *in, pa_memchunk *out) {
pa_memchunk *buf;
pa_assert(r);
pa_assert(in);
pa_assert(out);
pa_assert(in->length);
pa_assert(in->memblock);
pa_assert(in->length % r->i_fz == 0);
buf = (pa_memchunk*) in;
buf = convert_to_work_format(r, buf);
/* Try to save resampling effort: if we have more output channels than
* input channels, do resampling first, then remapping. */
if (r->o_ss.channels <= r->i_ss.channels) {
buf = remap_channels(r, buf);
buf = resample(r, buf);
} else {
buf = resample(r, buf);
buf = remap_channels(r, buf);
}
if (buf->length) {
buf = convert_from_work_format(r, buf);
*out = *buf;
if (buf == in)
pa_memblock_ref(buf->memblock);
else
pa_memchunk_reset(buf);
} else
pa_memchunk_reset(out);
}
/*** libsamplerate based implementation ***/
#ifdef HAVE_LIBSAMPLERATE
static unsigned libsamplerate_resample(pa_resampler *r, const pa_memchunk *input, unsigned in_n_frames, pa_memchunk *output, unsigned *out_n_frames) {
SRC_DATA data;
SRC_STATE *state;
pa_assert(r);
pa_assert(input);
pa_assert(output);
pa_assert(out_n_frames);
state = r->impl.data;
memset(&data, 0, sizeof(data));
data.data_in = pa_memblock_acquire_chunk(input);
data.input_frames = (long int) in_n_frames;
data.data_out = pa_memblock_acquire_chunk(output);
data.output_frames = (long int) *out_n_frames;
data.src_ratio = (double) r->o_ss.rate / r->i_ss.rate;
data.end_of_input = 0;
pa_assert_se(src_process(state, &data) == 0);
pa_memblock_release(input->memblock);
pa_memblock_release(output->memblock);
*out_n_frames = (unsigned) data.output_frames_gen;
return in_n_frames - data.input_frames_used;
}
static void libsamplerate_update_rates(pa_resampler *r) {
SRC_STATE *state;
pa_assert(r);
state = r->impl.data;
pa_assert_se(src_set_ratio(state, (double) r->o_ss.rate / r->i_ss.rate) == 0);
}
static void libsamplerate_reset(pa_resampler *r) {
SRC_STATE *state;
pa_assert(r);
state = r->impl.data;
pa_assert_se(src_reset(state) == 0);
}
static void libsamplerate_free(pa_resampler *r) {
SRC_STATE *state;
pa_assert(r);
state = r->impl.data;
if (state)
src_delete(state);
}
static int libsamplerate_init(pa_resampler *r) {
int err;
SRC_STATE *state;
pa_assert(r);
if (!(state = src_new(r->method, r->work_channels, &err)))
return -1;
r->impl.free = libsamplerate_free;
r->impl.update_rates = libsamplerate_update_rates;
r->impl.resample = libsamplerate_resample;
r->impl.reset = libsamplerate_reset;
r->impl.data = state;
return 0;
}
#endif
/*** speex based implementation ***/
static bool speex_is_fixed_point(void) {
static bool result = false;
#ifdef HAVE_SPEEX
PA_ONCE_BEGIN {
float f_out = -1.0f, f_in = 1.0f;
spx_uint32_t in_len = 1, out_len = 1;
SpeexResamplerState *s;
pa_assert_se(s = speex_resampler_init(1, 1, 1,
SPEEX_RESAMPLER_QUALITY_MIN, NULL));
/* feed one sample that is too soft for fixed-point speex */
pa_assert_se(speex_resampler_process_float(s, 0, &f_in, &in_len,
&f_out, &out_len) == RESAMPLER_ERR_SUCCESS);
/* expecting sample has been processed, one sample output */
pa_assert_se(in_len == 1 && out_len == 1);
/* speex compiled with --enable-fixed-point will output 0.0 due to insufficient precision */
if (fabsf(f_out) < 0.00001f)
result = true;
speex_resampler_destroy(s);
} PA_ONCE_END;
#endif
return result;
}
#ifdef HAVE_SPEEX
static unsigned speex_resample_float(pa_resampler *r, const pa_memchunk *input, unsigned in_n_frames, pa_memchunk *output, unsigned *out_n_frames) {
float *in, *out;
uint32_t inf = in_n_frames, outf = *out_n_frames;
SpeexResamplerState *state;
pa_assert(r);
pa_assert(input);
pa_assert(output);
pa_assert(out_n_frames);
state = r->impl.data;
in = pa_memblock_acquire_chunk(input);
out = pa_memblock_acquire_chunk(output);
/* Strictly speaking, speex resampler expects its input
* to be normalized to the [-32768.0 .. 32767.0] range.
* This matters if speex has been compiled with --enable-fixed-point,
* because such speex will round the samples to the nearest
* integer. speex with --enable-fixed-point is therefore incompatible
* with PulseAudio's floating-point sample range [-1 .. 1]. speex
* without --enable-fixed-point works fine with this range.
* Care has been taken to call speex_resample_float() only
* for speex compiled without --enable-fixed-point.
*/
pa_assert_se(speex_resampler_process_interleaved_float(state, in, &inf, out, &outf) == 0);
pa_memblock_release(input->memblock);
pa_memblock_release(output->memblock);
pa_assert(inf == in_n_frames);
*out_n_frames = outf;
return 0;
}
static unsigned speex_resample_int(pa_resampler *r, const pa_memchunk *input, unsigned in_n_frames, pa_memchunk *output, unsigned *out_n_frames) {
int16_t *in, *out;
uint32_t inf = in_n_frames, outf = *out_n_frames;
SpeexResamplerState *state;
pa_assert(r);
pa_assert(input);
pa_assert(output);
pa_assert(out_n_frames);
state = r->impl.data;
in = pa_memblock_acquire_chunk(input);
out = pa_memblock_acquire_chunk(output);
pa_assert_se(speex_resampler_process_interleaved_int(state, in, &inf, out, &outf) == 0);
pa_memblock_release(input->memblock);
pa_memblock_release(output->memblock);
pa_assert(inf == in_n_frames);
*out_n_frames = outf;
return 0;
}
static void speex_update_rates(pa_resampler *r) {
SpeexResamplerState *state;
pa_assert(r);
state = r->impl.data;
pa_assert_se(speex_resampler_set_rate(state, r->i_ss.rate, r->o_ss.rate) == 0);
}
static void speex_reset(pa_resampler *r) {
SpeexResamplerState *state;
pa_assert(r);
state = r->impl.data;
pa_assert_se(speex_resampler_reset_mem(state) == 0);
}
static void speex_free(pa_resampler *r) {
SpeexResamplerState *state;
pa_assert(r);
state = r->impl.data;
if (!state)
return;
speex_resampler_destroy(state);
}
static int speex_init(pa_resampler *r) {
int q, err;
SpeexResamplerState *state;
pa_assert(r);
r->impl.free = speex_free;
r->impl.update_rates = speex_update_rates;
r->impl.reset = speex_reset;
if (r->method >= PA_RESAMPLER_SPEEX_FIXED_BASE && r->method <= PA_RESAMPLER_SPEEX_FIXED_MAX) {
q = r->method - PA_RESAMPLER_SPEEX_FIXED_BASE;
r->impl.resample = speex_resample_int;
} else {
pa_assert(r->method >= PA_RESAMPLER_SPEEX_FLOAT_BASE && r->method <= PA_RESAMPLER_SPEEX_FLOAT_MAX);
q = r->method - PA_RESAMPLER_SPEEX_FLOAT_BASE;
r->impl.resample = speex_resample_float;
}
pa_log_info("Choosing speex quality setting %i.", q);
if (!(state = speex_resampler_init(r->work_channels, r->i_ss.rate, r->o_ss.rate, q, &err)))
return -1;
r->impl.data = state;
return 0;
}
#endif
/* Trivial implementation */
static unsigned trivial_resample(pa_resampler *r, const pa_memchunk *input, unsigned in_n_frames, pa_memchunk *output, unsigned *out_n_frames) {
unsigned i_index, o_index;
void *src, *dst;
struct trivial_data *trivial_data;
pa_assert(r);
pa_assert(input);
pa_assert(output);
pa_assert(out_n_frames);
trivial_data = r->impl.data;
src = pa_memblock_acquire_chunk(input);
dst = pa_memblock_acquire_chunk(output);
for (o_index = 0;; o_index++, trivial_data->o_counter++) {
i_index = ((uint64_t) trivial_data->o_counter * r->i_ss.rate) / r->o_ss.rate;
i_index = i_index > trivial_data->i_counter ? i_index - trivial_data->i_counter : 0;
if (i_index >= in_n_frames)
break;
pa_assert_fp(o_index * r->w_fz < pa_memblock_get_length(output->memblock));
memcpy((uint8_t*) dst + r->w_fz * o_index, (uint8_t*) src + r->w_fz * i_index, (int) r->w_fz);
}
pa_memblock_release(input->memblock);
pa_memblock_release(output->memblock);
*out_n_frames = o_index;
trivial_data->i_counter += in_n_frames;
/* Normalize counters */
while (trivial_data->i_counter >= r->i_ss.rate) {
pa_assert(trivial_data->o_counter >= r->o_ss.rate);
trivial_data->i_counter -= r->i_ss.rate;
trivial_data->o_counter -= r->o_ss.rate;
}
return 0;
}
static void trivial_update_rates_or_reset(pa_resampler *r) {
struct trivial_data *trivial_data;
pa_assert(r);
trivial_data = r->impl.data;
trivial_data->i_counter = 0;
trivial_data->o_counter = 0;
}
static int trivial_init(pa_resampler*r) {
struct trivial_data *trivial_data;
pa_assert(r);
trivial_data = pa_xnew0(struct trivial_data, 1);
r->impl.resample = trivial_resample;
r->impl.update_rates = trivial_update_rates_or_reset;
r->impl.reset = trivial_update_rates_or_reset;
r->impl.data = trivial_data;
return 0;
}
/* Peak finder implementation */
static unsigned peaks_resample(pa_resampler *r, const pa_memchunk *input, unsigned in_n_frames, pa_memchunk *output, unsigned *out_n_frames) {
unsigned c, o_index = 0;
unsigned i, i_end = 0;
void *src, *dst;
struct peaks_data *peaks_data;
pa_assert(r);
pa_assert(input);
pa_assert(output);
pa_assert(out_n_frames);
peaks_data = r->impl.data;
src = pa_memblock_acquire_chunk(input);
dst = pa_memblock_acquire_chunk(output);
i = ((uint64_t) peaks_data->o_counter * r->i_ss.rate) / r->o_ss.rate;
i = i > peaks_data->i_counter ? i - peaks_data->i_counter : 0;
while (i_end < in_n_frames) {
i_end = ((uint64_t) (peaks_data->o_counter + 1) * r->i_ss.rate) / r->o_ss.rate;
i_end = i_end > peaks_data->i_counter ? i_end - peaks_data->i_counter : 0;
pa_assert_fp(o_index * r->w_fz < pa_memblock_get_length(output->memblock));
/* 1ch float is treated separately, because that is the common case */
if (r->work_channels == 1 && r->work_format == PA_SAMPLE_FLOAT32NE) {
float *s = (float*) src + i;
float *d = (float*) dst + o_index;
for (; i < i_end && i < in_n_frames; i++) {
float n = fabsf(*s++);
if (n > peaks_data->max_f[0])
peaks_data->max_f[0] = n;
}
if (i == i_end) {
*d = peaks_data->max_f[0];
peaks_data->max_f[0] = 0;
o_index++, peaks_data->o_counter++;
}
} else if (r->work_format == PA_SAMPLE_S16NE) {
int16_t *s = (int16_t*) src + r->work_channels * i;
int16_t *d = (int16_t*) dst + r->work_channels * o_index;
for (; i < i_end && i < in_n_frames; i++)
for (c = 0; c < r->work_channels; c++) {
int16_t n = abs(*s++);
if (n > peaks_data->max_i[c])
peaks_data->max_i[c] = n;
}
if (i == i_end) {
for (c = 0; c < r->work_channels; c++, d++) {
*d = peaks_data->max_i[c];
peaks_data->max_i[c] = 0;
}
o_index++, peaks_data->o_counter++;
}
} else {
float *s = (float*) src + r->work_channels * i;
float *d = (float*) dst + r->work_channels * o_index;
for (; i < i_end && i < in_n_frames; i++)
for (c = 0; c < r->work_channels; c++) {
float n = fabsf(*s++);
if (n > peaks_data->max_f[c])
peaks_data->max_f[c] = n;
}
if (i == i_end) {
for (c = 0; c < r->work_channels; c++, d++) {
*d = peaks_data->max_f[c];
peaks_data->max_f[c] = 0;
}
o_index++, peaks_data->o_counter++;
}
}
}
pa_memblock_release(input->memblock);
pa_memblock_release(output->memblock);
*out_n_frames = o_index;
peaks_data->i_counter += in_n_frames;
/* Normalize counters */
while (peaks_data->i_counter >= r->i_ss.rate) {
pa_assert(peaks_data->o_counter >= r->o_ss.rate);
peaks_data->i_counter -= r->i_ss.rate;
peaks_data->o_counter -= r->o_ss.rate;
}
return 0;
}
static void peaks_update_rates_or_reset(pa_resampler *r) {
struct peaks_data *peaks_data;
pa_assert(r);
peaks_data = r->impl.data;
peaks_data->i_counter = 0;
peaks_data->o_counter = 0;
}
static int peaks_init(pa_resampler*r) {
struct peaks_data *peaks_data;
pa_assert(r);
pa_assert(r->i_ss.rate >= r->o_ss.rate);
pa_assert(r->work_format == PA_SAMPLE_S16NE || r->work_format == PA_SAMPLE_FLOAT32NE);
peaks_data = pa_xnew0(struct peaks_data, 1);
r->impl.resample = peaks_resample;
r->impl.update_rates = peaks_update_rates_or_reset;
r->impl.reset = peaks_update_rates_or_reset;
r->impl.data = peaks_data;
return 0;
}
/*** ffmpeg based implementation ***/
static unsigned ffmpeg_resample(pa_resampler *r, const pa_memchunk *input, unsigned in_n_frames, pa_memchunk *output, unsigned *out_n_frames) {
unsigned used_frames = 0, c;
int previous_consumed_frames = -1;
struct ffmpeg_data *ffmpeg_data;
pa_assert(r);
pa_assert(input);
pa_assert(output);
pa_assert(out_n_frames);
ffmpeg_data = r->impl.data;
for (c = 0; c < r->work_channels; c++) {
unsigned u;
pa_memblock *b, *w;
int16_t *p, *t, *k, *q, *s;
int consumed_frames;
/* Allocate a new block */
b = pa_memblock_new(r->mempool, in_n_frames * sizeof(int16_t));
p = pa_memblock_acquire(b);
/* Now copy the input data, splitting up channels */
t = (int16_t*) pa_memblock_acquire_chunk(input) + c;
k = p;
for (u = 0; u < in_n_frames; u++) {
*k = *t;
t += r->work_channels;
k ++;
}
pa_memblock_release(input->memblock);
/* Allocate buffer for the result */
w = pa_memblock_new(r->mempool, *out_n_frames * sizeof(int16_t));
q = pa_memblock_acquire(w);
/* Now, resample */
used_frames = (unsigned) av_resample(ffmpeg_data->state,
q, p,
&consumed_frames,
(int) in_n_frames, (int) *out_n_frames,
c >= (unsigned) (r->work_channels-1));
pa_memblock_release(b);
pa_memblock_unref(b);
pa_assert(consumed_frames <= (int) in_n_frames);
pa_assert(previous_consumed_frames == -1 || consumed_frames == previous_consumed_frames);
previous_consumed_frames = consumed_frames;
/* And place the results in the output buffer */
s = (int16_t *) pa_memblock_acquire_chunk(output) + c;
for (u = 0; u < used_frames; u++) {
*s = *q;
q++;
s += r->work_channels;
}
pa_memblock_release(output->memblock);
pa_memblock_release(w);
pa_memblock_unref(w);
}
*out_n_frames = used_frames;
return in_n_frames - previous_consumed_frames;
}
static void ffmpeg_free(pa_resampler *r) {
struct ffmpeg_data *ffmpeg_data;
pa_assert(r);
ffmpeg_data = r->impl.data;
if (ffmpeg_data->state)
av_resample_close(ffmpeg_data->state);
}
static int ffmpeg_init(pa_resampler *r) {
struct ffmpeg_data *ffmpeg_data;
pa_assert(r);
ffmpeg_data = pa_xnew(struct ffmpeg_data, 1);
/* We could probably implement different quality levels by
* adjusting the filter parameters here. However, ffmpeg
* internally only uses these hardcoded values, so let's use them
* here for now as well until ffmpeg makes this configurable. */
if (!(ffmpeg_data->state = av_resample_init((int) r->o_ss.rate, (int) r->i_ss.rate, 16, 10, 0, 0.8)))
return -1;
r->impl.free = ffmpeg_free;
r->impl.resample = ffmpeg_resample;
r->impl.data = (void *) ffmpeg_data;
return 0;
}
/*** copy (noop) implementation ***/
static int copy_init(pa_resampler *r) {
pa_assert(r);
pa_assert(r->o_ss.rate == r->i_ss.rate);
return 0;
}
|