summaryrefslogtreecommitdiff
path: root/tests/intel/xe_exec_basic.c
blob: 23acdd4346274f6912874036741cf394d54e6189 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2021 Intel Corporation
 */

/**
 * TEST: Basic tests for execbuf functionality
 * Category: Hardware building block
 * Sub-category: execbuf
 * Functionality: exec_queues
 */

#include "igt.h"
#include "lib/igt_syncobj.h"
#include "lib/intel_reg.h"
#include "xe_drm.h"

#include "xe/xe_ioctl.h"
#include "xe/xe_query.h"
#include <string.h>

#define MAX_N_EXEC_QUEUES 16
#define USERPTR			(0x1 << 0)
#define REBIND			(0x1 << 1)
#define INVALIDATE		(0x1 << 2)
#define RACE			(0x1 << 3)
#define BIND_EXEC_QUEUE	(0x1 << 4)
#define DEFER_ALLOC		(0x1 << 5)
#define DEFER_BIND		(0x1 << 6)
#define SPARSE			(0x1 << 7)

/**
 * SUBTEST: once-%s
 * Description: Run %arg[1] test only once
 * Test category: functionality test
 *
 * SUBTEST: many-%s
 * Description: Run %arg[1] test many times
 * Test category: stress test
 *
 * SUBTEST: many-execqueues-%s
 * Description: Run %arg[1] test on many exec_queues
 * Test category: stress test
 *
 * SUBTEST: many-execqueues-many-vm-%s
 * Description: Run %arg[1] test on many exec_queues and many VMs
 * Test category: stress test
 *
 * SUBTEST: twice-%s
 * Description: Run %arg[1] test twice
 * Test category: functionality test
 *
 * SUBTEST: no-exec-%s
 * Description: Run no-exec %arg[1] test
 * Test category: functionality test
 *
 * arg[1]:
 *
 * @basic:				basic
 * @basic-defer-mmap:			basic defer mmap
 * @basic-defer-bind:			basic defer bind
 * @userptr:				userptr
 * @rebind:				rebind
 * @userptr-rebind:			userptr rebind
 * @userptr-invalidate:			userptr invalidate
 * @userptr-invalidate-race:		userptr invalidate racy
 * @bindexecqueue:				bind exec_queue
 * @bindexecqueue-userptr:			bind exec_queue userptr description
 * @bindexecqueue-rebind:			bind exec_queue rebind description
 * @bindexecqueue-userptr-rebind:		bind exec_queue userptr rebind
 * @bindexecqueue-userptr-invalidate:	bind exec_queue userptr invalidate
 * @bindexecqueue-userptr-invalidate-race:	bind exec_queue userptr invalidate racy
 * @null:				null
 * @null-defer-mmap:			null defer mmap
 * @null-defer-bind:			null defer bind
 * @null-rebind:			null rebind
 */

static void
test_exec(int fd, struct drm_xe_engine_class_instance *eci,
	  int n_exec_queues, int n_execs, int n_vm, unsigned int flags)
{
	struct drm_xe_sync sync[2] = {
		{ .flags = DRM_XE_SYNC_FLAG_SYNCOBJ | DRM_XE_SYNC_FLAG_SIGNAL, },
		{ .flags = DRM_XE_SYNC_FLAG_SYNCOBJ | DRM_XE_SYNC_FLAG_SIGNAL, },
	};
	struct drm_xe_exec exec = {
		.num_batch_buffer = 1,
		.num_syncs = 2,
		.syncs = to_user_pointer(sync),
	};
	uint64_t addr[MAX_N_EXEC_QUEUES];
	uint64_t sparse_addr[MAX_N_EXEC_QUEUES];
	uint32_t vm[MAX_N_EXEC_QUEUES];
	uint32_t exec_queues[MAX_N_EXEC_QUEUES];
	uint32_t bind_exec_queues[MAX_N_EXEC_QUEUES];
	uint32_t syncobjs[MAX_N_EXEC_QUEUES];
	uint32_t bind_syncobjs[MAX_N_EXEC_QUEUES];
	size_t bo_size;
	uint32_t bo = 0;
	struct {
		uint32_t batch[16];
		uint64_t pad;
		uint32_t data;
	} *data;
	int i, b;

	igt_assert(n_exec_queues <= MAX_N_EXEC_QUEUES);
	igt_assert(n_vm <= MAX_N_EXEC_QUEUES);

	for (i = 0; i < n_vm; ++i)
		vm[i] = xe_vm_create(fd, DRM_XE_VM_CREATE_FLAG_ASYNC_DEFAULT, 0);
	bo_size = sizeof(*data) * n_execs;
	bo_size = ALIGN(bo_size + xe_cs_prefetch_size(fd),
			xe_get_default_alignment(fd));

	addr[0] = 0x1a0000;
	sparse_addr[0] = 0x301a0000;
	for (i = 1; i < MAX_N_EXEC_QUEUES; ++i) {
		addr[i] = addr[i - 1] + (0x1ull << 32);
		sparse_addr[i] = sparse_addr[i - 1] + (0x1ull << 32);
	}

	if (flags & USERPTR) {
#define	MAP_ADDRESS	0x00007fadeadbe000
		if (flags & INVALIDATE) {
			data = mmap((void *)MAP_ADDRESS, bo_size, PROT_READ |
				    PROT_WRITE, MAP_SHARED | MAP_FIXED |
				    MAP_ANONYMOUS, -1, 0);
			igt_assert(data != MAP_FAILED);
		} else {
			data = aligned_alloc(xe_get_default_alignment(fd), bo_size);
			igt_assert(data);
		}
		memset(data, 0, bo_size);
	} else {
		uint32_t bo_flags;

		bo_flags = DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM;
		if (flags & DEFER_ALLOC)
			bo_flags |= DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING;

		bo = xe_bo_create(fd, n_vm == 1 ? vm[0] : 0, bo_size,
				  vram_if_possible(fd, eci->gt_id), bo_flags);
		if (!(flags & DEFER_BIND))
			data = xe_bo_map(fd, bo, bo_size);
	}

	for (i = 0; i < n_exec_queues; i++) {
		uint32_t __vm = vm[i % n_vm];

		exec_queues[i] = xe_exec_queue_create(fd, __vm, eci, 0);
		if (flags & BIND_EXEC_QUEUE)
			bind_exec_queues[i] = xe_bind_exec_queue_create(fd,
									__vm, 0,
									true);
		else
			bind_exec_queues[i] = 0;
		syncobjs[i] = syncobj_create(fd, 0);
		bind_syncobjs[i] = syncobj_create(fd, 0);
	};

	for (i = 0; i < n_vm; ++i) {
		sync[0].handle = bind_syncobjs[i];
		if (bo)
			xe_vm_bind_async(fd, vm[i], bind_exec_queues[i], bo, 0,
					 addr[i], bo_size, sync, 1);
		else
			xe_vm_bind_userptr_async(fd, vm[i], bind_exec_queues[i],
						 to_user_pointer(data), addr[i],
						 bo_size, sync, 1);
		if (flags & SPARSE)
			__xe_vm_bind_assert(fd, vm[i], bind_exec_queues[i],
					    0, 0, sparse_addr[i], bo_size,
					    DRM_XE_VM_BIND_OP_MAP,
					    DRM_XE_VM_BIND_FLAG_ASYNC |
					    DRM_XE_VM_BIND_FLAG_NULL, sync,
					    1, 0, 0);
	}

	if (flags & DEFER_BIND)
		data = xe_bo_map(fd, bo, bo_size);

	for (i = 0; i < n_execs; i++) {
		int cur_vm = i % n_vm;
		uint64_t __addr = addr[cur_vm];
		uint64_t batch_offset = (char *)&data[i].batch - (char *)data;
		uint64_t batch_addr = __addr + batch_offset;
		uint64_t sdi_offset = (char *)&data[i].data - (char *)data;
		uint64_t sdi_addr = (flags & SPARSE ? sparse_addr[i % n_vm] :
				     __addr)+ sdi_offset;
		int e = i % n_exec_queues;

		b = 0;
		data[i].batch[b++] = MI_STORE_DWORD_IMM_GEN4;
		data[i].batch[b++] = sdi_addr;
		data[i].batch[b++] = sdi_addr >> 32;
		data[i].batch[b++] = 0xc0ffee;
		data[i].batch[b++] = MI_BATCH_BUFFER_END;
		igt_assert(b <= ARRAY_SIZE(data[i].batch));

		sync[0].flags &= ~DRM_XE_SYNC_FLAG_SIGNAL;
		sync[0].handle = bind_syncobjs[cur_vm];
		sync[1].flags |= DRM_XE_SYNC_FLAG_SIGNAL;
		sync[1].handle = syncobjs[e];

		exec.exec_queue_id = exec_queues[e];
		exec.address = batch_addr;
		if (e != i)
			 syncobj_reset(fd, &syncobjs[e], 1);
		xe_exec(fd, &exec);

		if (flags & REBIND && i + 1 != n_execs) {
			uint32_t __vm = vm[cur_vm];

			sync[1].flags &= ~DRM_XE_SYNC_FLAG_SIGNAL;
			xe_vm_unbind_async(fd, __vm, bind_exec_queues[e], 0,
					   __addr, bo_size, sync + 1, 1);

			sync[0].flags |= DRM_XE_SYNC_FLAG_SIGNAL;
			addr[i % n_vm] += bo_size;
			__addr = addr[i % n_vm];
			if (bo)
				xe_vm_bind_async(fd, __vm, bind_exec_queues[e], bo,
						 0, __addr, bo_size, sync, 1);
			else
				xe_vm_bind_userptr_async(fd, __vm,
							 bind_exec_queues[e],
							 to_user_pointer(data),
							 __addr, bo_size, sync,
							 1);
		}

		if (flags & INVALIDATE && i + 1 != n_execs) {
			if (!(flags & RACE)) {
				/*
				 * Wait for exec completion and check data as
				 * userptr will likely change to different
				 * physical memory on next mmap call triggering
				 * an invalidate.
				 */
				igt_assert(syncobj_wait(fd, &syncobjs[e], 1,
							INT64_MAX, 0, NULL));
				igt_assert_eq(data[i].data, 0xc0ffee);
			} else if (i * 2 != n_execs) {
				/*
				 * We issue 1 mmap which races against running
				 * jobs. No real check here aside from this test
				 * not faulting on the GPU.
				 */
				continue;
			}

			data = mmap((void *)MAP_ADDRESS, bo_size, PROT_READ |
				    PROT_WRITE, MAP_SHARED | MAP_FIXED |
				    MAP_ANONYMOUS, -1, 0);
			igt_assert(data != MAP_FAILED);
		}
	}

	for (i = 0; i < n_exec_queues && n_execs; i++)
		igt_assert(syncobj_wait(fd, &syncobjs[i], 1, INT64_MAX, 0,
					NULL));

	for (i = 0; i < n_vm; i++)
		igt_assert(syncobj_wait(fd, &bind_syncobjs[i], 1, INT64_MAX, 0,
					NULL));

	sync[0].flags |= DRM_XE_SYNC_FLAG_SIGNAL;
	for (i = 0; i < n_vm; ++i) {
		syncobj_reset(fd, &sync[0].handle, 1);
		xe_vm_unbind_async(fd, vm[i], bind_exec_queues[i], 0, addr[i],
				   bo_size, sync, 1);
		igt_assert(syncobj_wait(fd, &sync[0].handle, 1,
					INT64_MAX, 0, NULL));
	}

	if (!(flags & SPARSE)) {
		for (i = (flags & INVALIDATE && n_execs) ? n_execs - 1 : 0;
		     i < n_execs; i++)
			igt_assert_eq(data[i].data, 0xc0ffee);
	}

	for (i = 0; i < n_exec_queues; i++) {
		syncobj_destroy(fd, syncobjs[i]);
		xe_exec_queue_destroy(fd, exec_queues[i]);
		if (bind_exec_queues[i])
			xe_exec_queue_destroy(fd, bind_exec_queues[i]);
	}

	if (bo) {
		munmap(data, bo_size);
		gem_close(fd, bo);
	} else if (!(flags & INVALIDATE)) {
		free(data);
	}
	for (i = 0; i < n_vm; ++i) {
		syncobj_destroy(fd, bind_syncobjs[i]);
		xe_vm_destroy(fd, vm[i]);
	}
}

igt_main
{
	struct drm_xe_engine_class_instance *hwe;
	const struct section {
		const char *name;
		unsigned int flags;
	} sections[] = {
		{ "basic", 0 },
		{ "basic-defer-mmap", DEFER_ALLOC },
		{ "basic-defer-bind", DEFER_ALLOC | DEFER_BIND },
		{ "userptr", USERPTR },
		{ "rebind", REBIND },
		{ "null", SPARSE },
		{ "null-defer-mmap", SPARSE | DEFER_ALLOC },
		{ "null-defer-bind", SPARSE | DEFER_ALLOC | DEFER_BIND },
		{ "null-rebind", SPARSE | REBIND },
		{ "userptr-rebind", USERPTR | REBIND },
		{ "userptr-invalidate", USERPTR | INVALIDATE },
		{ "userptr-invalidate-race", USERPTR | INVALIDATE | RACE },
		{ "bindexecqueue", BIND_EXEC_QUEUE },
		{ "bindexecqueue-userptr", BIND_EXEC_QUEUE | USERPTR },
		{ "bindexecqueue-rebind", BIND_EXEC_QUEUE | REBIND },
		{ "bindexecqueue-userptr-rebind", BIND_EXEC_QUEUE | USERPTR | REBIND },
		{ "bindexecqueue-userptr-invalidate", BIND_EXEC_QUEUE | USERPTR |
			INVALIDATE },
		{ "bindexecqueue-userptr-invalidate-race", BIND_EXEC_QUEUE | USERPTR |
			INVALIDATE | RACE },
		{ NULL },
	};
	int fd;

	igt_fixture
		fd = drm_open_driver(DRIVER_XE);

	for (const struct section *s = sections; s->name; s++) {
		igt_subtest_f("once-%s", s->name)
			xe_for_each_hw_engine(fd, hwe)
				test_exec(fd, hwe, 1, 1, 1, s->flags);

		igt_subtest_f("twice-%s", s->name)
			xe_for_each_hw_engine(fd, hwe)
				test_exec(fd, hwe, 1, 2, 1, s->flags);

		igt_subtest_f("many-%s", s->name)
			xe_for_each_hw_engine(fd, hwe)
				test_exec(fd, hwe, 1,
					  s->flags & (REBIND | INVALIDATE) ?
					  64 : 1024, 1,
					  s->flags);

		igt_subtest_f("many-execqueues-%s", s->name)
			xe_for_each_hw_engine(fd, hwe)
				test_exec(fd, hwe, 16,
					  s->flags & (REBIND | INVALIDATE) ?
					  64 : 1024, 1,
					  s->flags);

		igt_subtest_f("many-execqueues-many-vm-%s", s->name)
			xe_for_each_hw_engine(fd, hwe)
				test_exec(fd, hwe, 16,
					  s->flags & (REBIND | INVALIDATE) ?
					  64 : 1024, 16,
					  s->flags);

		igt_subtest_f("no-exec-%s", s->name)
			xe_for_each_hw_engine(fd, hwe)
				test_exec(fd, hwe, 1, 0, 1, s->flags);
	}

	igt_fixture
		drm_close_driver(fd);
}