diff options
Diffstat (limited to 'target-alpha/op_helper.c')
-rw-r--r-- | target-alpha/op_helper.c | 275 |
1 files changed, 244 insertions, 31 deletions
diff --git a/target-alpha/op_helper.c b/target-alpha/op_helper.c index b2abf6c78..4d2c2ee58 100644 --- a/target-alpha/op_helper.c +++ b/target-alpha/op_helper.c @@ -24,7 +24,7 @@ /*****************************************************************************/ /* Exceptions processing helpers */ -void helper_excp (int excp, int error) +void QEMU_NORETURN helper_excp (int excp, int error) { env->exception_index = excp; env->error_code = error; @@ -78,7 +78,7 @@ uint64_t helper_addqv (uint64_t op1, uint64_t op2) uint64_t tmp = op1; op1 += op2; if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) { - helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); + helper_excp(EXCP_ARITH, EXC_M_IOV); } return op1; } @@ -88,7 +88,7 @@ uint64_t helper_addlv (uint64_t op1, uint64_t op2) uint64_t tmp = op1; op1 = (uint32_t)(op1 + op2); if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) { - helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); + helper_excp(EXCP_ARITH, EXC_M_IOV); } return op1; } @@ -98,7 +98,7 @@ uint64_t helper_subqv (uint64_t op1, uint64_t op2) uint64_t res; res = op1 - op2; if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) { - helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); + helper_excp(EXCP_ARITH, EXC_M_IOV); } return res; } @@ -108,7 +108,7 @@ uint64_t helper_sublv (uint64_t op1, uint64_t op2) uint32_t res; res = op1 - op2; if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) { - helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); + helper_excp(EXCP_ARITH, EXC_M_IOV); } return res; } @@ -118,7 +118,7 @@ uint64_t helper_mullv (uint64_t op1, uint64_t op2) int64_t res = (int64_t)op1 * (int64_t)op2; if (unlikely((int32_t)res != res)) { - helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); + helper_excp(EXCP_ARITH, EXC_M_IOV); } return (int64_t)((int32_t)res); } @@ -130,7 +130,7 @@ uint64_t helper_mulqv (uint64_t op1, uint64_t op2) muls64(&tl, &th, op1, op2); /* If th != 0 && th != -1, then we had an overflow */ if (unlikely((th + 1) > 1)) { - helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); + helper_excp(EXCP_ARITH, EXC_M_IOV); } return tl; } @@ -370,6 +370,130 @@ uint64_t helper_unpkbw (uint64_t op1) /* Floating point helpers */ +void helper_setroundmode (uint32_t val) +{ + set_float_rounding_mode(val, &FP_STATUS); +} + +void helper_setflushzero (uint32_t val) +{ + set_flush_to_zero(val, &FP_STATUS); +} + +void helper_fp_exc_clear (void) +{ + set_float_exception_flags(0, &FP_STATUS); +} + +uint32_t helper_fp_exc_get (void) +{ + return get_float_exception_flags(&FP_STATUS); +} + +/* Raise exceptions for ieee fp insns without software completion. + In that case there are no exceptions that don't trap; the mask + doesn't apply. */ +void helper_fp_exc_raise(uint32_t exc, uint32_t regno) +{ + if (exc) { + uint32_t hw_exc = 0; + + env->ipr[IPR_EXC_MASK] |= 1ull << regno; + + if (exc & float_flag_invalid) { + hw_exc |= EXC_M_INV; + } + if (exc & float_flag_divbyzero) { + hw_exc |= EXC_M_DZE; + } + if (exc & float_flag_overflow) { + hw_exc |= EXC_M_FOV; + } + if (exc & float_flag_underflow) { + hw_exc |= EXC_M_UNF; + } + if (exc & float_flag_inexact) { + hw_exc |= EXC_M_INE; + } + helper_excp(EXCP_ARITH, hw_exc); + } +} + +/* Raise exceptions for ieee fp insns with software completion. */ +void helper_fp_exc_raise_s(uint32_t exc, uint32_t regno) +{ + if (exc) { + env->fpcr_exc_status |= exc; + + exc &= ~env->fpcr_exc_mask; + if (exc) { + helper_fp_exc_raise(exc, regno); + } + } +} + +/* Input remapping without software completion. Handle denormal-map-to-zero + and trap for all other non-finite numbers. */ +uint64_t helper_ieee_input(uint64_t val) +{ + uint32_t exp = (uint32_t)(val >> 52) & 0x7ff; + uint64_t frac = val & 0xfffffffffffffull; + + if (exp == 0) { + if (frac != 0) { + /* If DNZ is set flush denormals to zero on input. */ + if (env->fpcr_dnz) { + val &= 1ull << 63; + } else { + helper_excp(EXCP_ARITH, EXC_M_UNF); + } + } + } else if (exp == 0x7ff) { + /* Infinity or NaN. */ + /* ??? I'm not sure these exception bit flags are correct. I do + know that the Linux kernel, at least, doesn't rely on them and + just emulates the insn to figure out what exception to use. */ + helper_excp(EXCP_ARITH, frac ? EXC_M_INV : EXC_M_FOV); + } + return val; +} + +/* Similar, but does not trap for infinities. Used for comparisons. */ +uint64_t helper_ieee_input_cmp(uint64_t val) +{ + uint32_t exp = (uint32_t)(val >> 52) & 0x7ff; + uint64_t frac = val & 0xfffffffffffffull; + + if (exp == 0) { + if (frac != 0) { + /* If DNZ is set flush denormals to zero on input. */ + if (env->fpcr_dnz) { + val &= 1ull << 63; + } else { + helper_excp(EXCP_ARITH, EXC_M_UNF); + } + } + } else if (exp == 0x7ff && frac) { + /* NaN. */ + helper_excp(EXCP_ARITH, EXC_M_INV); + } + return val; +} + +/* Input remapping with software completion enabled. All we have to do + is handle denormal-map-to-zero; all other inputs get exceptions as + needed from the actual operation. */ +uint64_t helper_ieee_input_s(uint64_t val) +{ + if (env->fpcr_dnz) { + uint32_t exp = (uint32_t)(val >> 52) & 0x7ff; + if (exp == 0) { + val &= 1ull << 63; + } + } + return val; +} + /* F floating (VAX) */ static inline uint64_t float32_to_f(float32 fa) { @@ -447,6 +571,9 @@ uint64_t helper_memory_to_f (uint32_t a) return r; } +/* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong. We should + either implement VAX arithmetic properly or just signal invalid opcode. */ + uint64_t helper_addf (uint64_t a, uint64_t b) { float32 fa, fb, fr; @@ -931,10 +1058,107 @@ uint64_t helper_cvtqs (uint64_t a) return float32_to_s(fr); } -uint64_t helper_cvttq (uint64_t a) +/* Implement float64 to uint64 conversion without saturation -- we must + supply the truncated result. This behaviour is used by the compiler + to get unsigned conversion for free with the same instruction. + + The VI flag is set when overflow or inexact exceptions should be raised. */ + +static inline uint64_t helper_cvttq_internal(uint64_t a, int roundmode, int VI) { - float64 fa = t_to_float64(a); - return float64_to_int64_round_to_zero(fa, &FP_STATUS); + uint64_t frac, ret = 0; + uint32_t exp, sign, exc = 0; + int shift; + + sign = (a >> 63); + exp = (uint32_t)(a >> 52) & 0x7ff; + frac = a & 0xfffffffffffffull; + + if (exp == 0) { + if (unlikely(frac != 0)) { + goto do_underflow; + } + } else if (exp == 0x7ff) { + exc = (frac ? float_flag_invalid : VI ? float_flag_overflow : 0); + } else { + /* Restore implicit bit. */ + frac |= 0x10000000000000ull; + + shift = exp - 1023 - 52; + if (shift >= 0) { + /* In this case the number is so large that we must shift + the fraction left. There is no rounding to do. */ + if (shift < 63) { + ret = frac << shift; + if (VI && (ret >> shift) != frac) { + exc = float_flag_overflow; + } + } + } else { + uint64_t round; + + /* In this case the number is smaller than the fraction as + represented by the 52 bit number. Here we must think + about rounding the result. Handle this by shifting the + fractional part of the number into the high bits of ROUND. + This will let us efficiently handle round-to-nearest. */ + shift = -shift; + if (shift < 63) { + ret = frac >> shift; + round = frac << (64 - shift); + } else { + /* The exponent is so small we shift out everything. + Leave a sticky bit for proper rounding below. */ + do_underflow: + round = 1; + } + + if (round) { + exc = (VI ? float_flag_inexact : 0); + switch (roundmode) { + case float_round_nearest_even: + if (round == (1ull << 63)) { + /* Fraction is exactly 0.5; round to even. */ + ret += (ret & 1); + } else if (round > (1ull << 63)) { + ret += 1; + } + break; + case float_round_to_zero: + break; + case float_round_up: + ret += 1 - sign; + break; + case float_round_down: + ret += sign; + break; + } + } + } + if (sign) { + ret = -ret; + } + } + if (unlikely(exc)) { + float_raise(exc, &FP_STATUS); + } + + return ret; +} + +uint64_t helper_cvttq(uint64_t a) +{ + return helper_cvttq_internal(a, FP_STATUS.float_rounding_mode, 1); +} + +uint64_t helper_cvttq_c(uint64_t a) +{ + return helper_cvttq_internal(a, float_round_to_zero, 0); +} + +uint64_t helper_cvttq_svic(uint64_t a) +{ + return helper_cvttq_internal(a, float_round_to_zero, 1); } uint64_t helper_cvtqt (uint64_t a) @@ -979,35 +1203,24 @@ uint64_t helper_cvtlq (uint64_t a) return (lo & 0x3FFFFFFF) | (hi & 0xc0000000); } -static inline uint64_t __helper_cvtql(uint64_t a, int s, int v) -{ - uint64_t r; - - r = ((uint64_t)(a & 0xC0000000)) << 32; - r |= ((uint64_t)(a & 0x7FFFFFFF)) << 29; - - if (v && (int64_t)((int32_t)r) != (int64_t)r) { - helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); - } - if (s) { - /* TODO */ - } - return r; -} - uint64_t helper_cvtql (uint64_t a) { - return __helper_cvtql(a, 0, 0); + return ((a & 0xC0000000) << 32) | ((a & 0x7FFFFFFF) << 29); } -uint64_t helper_cvtqlv (uint64_t a) +uint64_t helper_cvtql_v (uint64_t a) { - return __helper_cvtql(a, 0, 1); + if ((int32_t)a != (int64_t)a) + helper_excp(EXCP_ARITH, EXC_M_IOV); + return helper_cvtql(a); } -uint64_t helper_cvtqlsv (uint64_t a) +uint64_t helper_cvtql_sv (uint64_t a) { - return __helper_cvtql(a, 1, 1); + /* ??? I'm pretty sure there's nothing that /sv needs to do that /v + doesn't do. The only thing I can think is that /sv is a valid + instruction merely for completeness in the ISA. */ + return helper_cvtql_v(a); } /* PALcode support special instructions */ |