1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
#!/usr/bin/python
# perf_graph.cgi: generate image of one graph of a benchmark's performance
__author__ = """duanes@google.com (Duane Sand), Copyright Google 2008"""
import cgi, cgitb, datetime, re
import common
from autotest_lib.tko import db, plotgraph
from autotest_lib.client.bin import kernel_versions
kernel_names = {}
kernel_dates = {}
kernel_sortkeys = {}
machine_to_platform = {}
selected_machines = ''
selected_jobs = set()
use_all_jobs = True
benchmark_main_metrics = {
'dbench' : 'throughput',
'kernbench': '1000/elapsed',
'membench' : 'sweeps',
'tbench' : 'throughput',
'unixbench': 'score',
} # keep sync'd with similar table in perf_graphs.cgi
usual_platforms = ['Icarus', 'Argo', 'Ilium', 'Warp19', 'Warp18', 'Unicorn']
date_unknown = datetime.datetime(2999, 12, 31, 23, 59, 59)
def get_all_kernel_names():
# lookup all kernel names once, and edit for graph axis
nrows = db.cur.execute('select kernel_idx, printable from kernels')
for idx, name in db.cur.fetchall():
sortname = kernel_versions.version_encode(name)
name = name.replace('-smp-', '-') # boring, in all names
name = name.replace('2.6.18-2', '2') # reduce clutter
kernel_names[idx] = name
kernel_dates[name] = date_unknown
kernel_sortkeys[name] = sortname
def kname_to_sortkey(kname):
# cached version of version_encode(uneditted name)
return kernel_sortkeys[kname]
def sort_kernels(kernels):
return sorted(kernels, key=kname_to_sortkey)
def get_all_platform_info():
# lookup all machine/platform info once
global selected_machines
machs = []
cmd = 'select machine_idx, machine_group from machines'
if selected_machine_names:
# convert 'a,b,c' to '("a","b","c")'
hnames = selected_machine_names.split(',')
hnames = ['"%s"' % name for name in hnames]
cmd += ' where hostname in (%s)' % ','.join(hnames)
nrows = db.cur.execute(cmd)
for idx, platform in db.cur.fetchall():
# ignore machine variations in 'mobo_memsize_disks'
machine_to_platform[idx] = platform.split('_', 2)[0]
machs.append(str(idx))
if selected_machine_names:
selected_machines = ','.join(machs)
def get_selected_jobs():
global use_all_jobs
use_all_jobs = not( one_user or selected_machine_names )
if use_all_jobs:
return
needs = []
if selected_machine_names:
needs.append('machine_idx in (%s)' % selected_machines)
if one_user:
needs.append('username = "%s"' % one_user)
cmd = 'select job_idx from jobs where %s' % ' and '.join(needs)
nrows = db.cur.execute(cmd)
for row in db.cur.fetchall():
job_idx = row[0]
selected_jobs.add(job_idx)
def identify_relevent_tests(benchmark, platforms):
# Collect idx's for all whole-machine test runs of benchmark
# Also collect earliest test dates of kernels used
cmd = 'select status_idx from status where word = "GOOD"'
nrows = db.cur.execute(cmd)
good_status = db.cur.fetchall()[0][0]
tests = {}
cmd = ( 'select test_idx, test, kernel_idx, machine_idx,'
' finished_time, job_idx, status from tests'
' where test like "%s%%"' % benchmark )
if selected_machine_names:
cmd += ' and machine_idx in (%s)' % selected_machines
nrows = db.cur.execute(cmd)
for row in db.cur.fetchall():
(test_idx, tname, kernel_idx,
machine_idx, date, job_idx, status) = row
kname = kernel_names[kernel_idx]
if date:
kernel_dates[kname] = min(kernel_dates[kname], date)
# omit test runs from failed runs
# and from unwanted platforms
# and from partial-machine container tests
# and from unselected machines or users
platform = machine_to_platform[machine_idx]
if ( status == good_status and
platform in platforms and
tname.find('.twoway') < 0 and
(use_all_jobs or job_idx in selected_jobs) ):
tests.setdefault(platform, {})
tests[platform].setdefault(kname, [])
tests[platform][kname].append(test_idx)
return tests
def prune_old_kernels():
# reduce clutter of graph and improve lookup times by pruning away
# older experimental kernels and oldest release-candidate kernels
today = datetime.datetime.today()
exp_cutoff = today - datetime.timedelta(weeks=7)
rc_cutoff = today - datetime.timedelta(weeks=18)
kernels_forgotten = set()
for kname in kernel_dates:
date = kernel_dates[kname]
if ( date == date_unknown or
(date < exp_cutoff and not kernel_versions.is_release_candidate(kname)) or
(date < rc_cutoff and not kernel_versions.is_released_kernel(kname) ) ):
kernels_forgotten.add(kname)
return kernels_forgotten
def get_metric_at_point(tests, metric):
nruns = len(tests)
if metric == 'good_testrun_count':
return [nruns]
# take subsamples from largest sets of test runs
min_sample_size = 100 # enough to approx mean & std dev
decimator = int(nruns / min_sample_size)
if decimator > 1:
tests = [tests[i] for i in xrange(0, nruns, decimator)]
# have min_sample_size <= len(tests) < min_sample_size*2
invert_scale = None
if metric.find('/') > 0:
invert_scale, metric = metric.split('/', 1)
invert_scale = float(invert_scale)
# 1/ gives simple inversion of times to rates,
# 1000/ scales Y axis labels to nice integers
if not tests:
return []
tests = ','.join(str(idx) for idx in tests)
cmd = ( 'select value from iteration_result'
' where test_idx in (%s) and attribute = "%s"'
% ( tests, metric) )
nrows = db.cur.execute(cmd)
vals = [row[0] for row in db.cur.fetchall()]
if invert_scale:
vals = [invert_scale/v for v in vals]
return vals
def collect_test_results(possible_tests, kernels_forgotten, metric):
# collect selected metric of all test results for covered
# combo's of platform and kernel
data = {}
for platform in possible_tests:
for kname in possible_tests[platform]:
if kname in kernels_forgotten:
continue
vals = get_metric_at_point(
possible_tests[platform][kname], metric)
if vals:
data.setdefault(platform, {})
data[platform].setdefault(kname, [])
data[platform][kname] += vals
return data
def one_performance_graph(benchmark, metric=None, one_platform=None):
# generate image of graph of one benchmark's performance over
# most kernels (X axis) and all machines (one plotline per type)
if one_platform:
platforms = [one_platform]
else:
platforms = usual_platforms
if not benchmark:
benchmark = 'dbench'
if not metric:
metric = benchmark_main_metrics[benchmark]
get_all_kernel_names()
get_all_platform_info()
get_selected_jobs()
possible_tests = identify_relevent_tests(benchmark, platforms)
kernels_forgotten = prune_old_kernels()
data = collect_test_results(possible_tests, kernels_forgotten, metric)
if data.keys():
title = benchmark.capitalize()
if one_user:
title += " On %s's Runs" % one_user
if selected_machine_names:
title += " On Selected Machines " + selected_machine_names
else:
title += " Over All Machines"
graph = plotgraph.gnuplot(title, 'Kernels',
metric.capitalize(), xsort=sort_kernels,
size='1000,600' )
for platform in platforms:
if platform in data:
graph.add_dataset(platform, data[platform])
graph.plot(cgi_header = True)
else:
# graph has no data; avoid plotgraph and Apache complaints
print "Content-type: image/gif\n"
print file("blank.gif", "rb").read()
cgitb.enable()
form = cgi.FieldStorage()
one_platform = form.getvalue('platform', None)
benchmark = form.getvalue('benchmark', None)
metric = form.getvalue('metric', None)
one_user = form.getvalue('user', '')
selected_machine_names = form.getvalue('machines', '')
if selected_machine_names == 'yinghans':
selected_machine_names = 'ipbj8,prik6,bdcz12'
db = db.db()
one_performance_graph(benchmark, metric, one_platform)
|