1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
/* Cairo - a vector graphics library with display and print output
*
* Copyright © 2007 Chris Wilson
* Copyright © 2009 Intel Corporation
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipoolent may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is Red Hat, Inc.
*
* Contributors(s):
* Chris Wilson <chris@chris-wilson.co.uk>
*/
#include "cairoint.h"
#include "cairo-mempool-private.h"
#include "cairo-list-inline.h"
/* a simple buddy allocator for memory pools
* XXX fragmentation? use Doug Lea's malloc?
*/
#define BITTEST(p, n) ((p)->map[(n) >> 3] & (128 >> ((n) & 7)))
#define BITSET(p, n) ((p)->map[(n) >> 3] |= (128 >> ((n) & 7)))
#define BITCLEAR(p, n) ((p)->map[(n) >> 3] &= ~(128 >> ((n) & 7)))
static void
clear_bits (cairo_mempool_t *pool, size_t first, size_t last)
{
size_t i, n = last;
size_t first_full = (first + 7) & ~7;
size_t past_full = last & ~7;
size_t bytes;
if (n > first_full)
n = first_full;
for (i = first; i < n; i++)
BITCLEAR (pool, i);
if (past_full > first_full) {
bytes = past_full - first_full;
bytes = bytes >> 3;
memset (pool->map + (first_full >> 3), 0, bytes);
}
if (past_full < n)
past_full = n;
for (i = past_full; i < last; i++)
BITCLEAR (pool, i);
}
static void
free_bits (cairo_mempool_t *pool, size_t start, int bits, cairo_bool_t clear)
{
struct _cairo_memblock *block;
if (clear)
clear_bits (pool, start, start + (1 << bits));
block = pool->blocks + start;
block->bits = bits;
cairo_list_add (&block->link, &pool->free[bits]);
pool->free_bytes += 1 << (bits + pool->min_bits);
if (bits > pool->max_free_bits)
pool->max_free_bits = bits;
}
/* Add a chunk to the free list */
static void
free_blocks (cairo_mempool_t *pool,
size_t first,
size_t last,
cairo_bool_t clear)
{
size_t i, len;
int bits = 0;
for (i = first, len = 1; i < last; i += len) {
/* To avoid cost quadratic in the number of different
* blocks produced from this chunk of store, we have to
* use the size of the previous block produced from this
* chunk as the starting point to work out the size of the
* next block we can produce. If you look at the binary
* representation of the starting points of the blocks
* produced, you can see that you first of all increase the
* size of the blocks produced up to some maximum as the
* address dealt with gets offsets added on which zap out
* low order bits, then decrease as the low order bits of the
* final block produced get added in. E.g. as you go from
* 001 to 0111 you generate blocks
* of size 001 at 001 taking you to 010
* of size 010 at 010 taking you to 100
* of size 010 at 100 taking you to 110
* of size 001 at 110 taking you to 111
* So the maximum total cost of the loops below this comment
* is one trip from the lowest blocksize to the highest and
* back again.
*/
while (bits < pool->num_sizes - 1) {
size_t next_bits = bits + 1;
size_t next_len = len << 1;
if (i + next_bits > last) {
/* off end of chunk to be freed */
break;
}
if (i & (next_len - 1)) /* block would not be on boundary */
break;
bits = next_bits;
len = next_len;
}
do {
if (i + len <= last && /* off end of chunk to be freed */
(i & (len - 1)) == 0) /* block would not be on boundary */
break;
bits--; len >>=1;
} while (len);
if (len == 0)
break;
free_bits (pool, i, bits, clear);
}
}
static struct _cairo_memblock *
get_buddy (cairo_mempool_t *pool, size_t offset, int bits)
{
struct _cairo_memblock *block;
assert (offset + (1 << bits) <= pool->num_blocks);
if (BITTEST (pool, offset + (1 << bits) - 1))
return NULL; /* buddy is allocated */
block = pool->blocks + offset;
if (block->bits != bits)
return NULL; /* buddy is partially allocated */
return block;
}
static void
merge_buddies (cairo_mempool_t *pool,
struct _cairo_memblock *block,
int max_bits)
{
size_t block_offset = block - pool->blocks;
int bits = block->bits;
while (bits < max_bits - 1) {
/* while you can, merge two blocks and get a legal block size */
size_t buddy_offset = block_offset ^ (1 << bits);
block = get_buddy (pool, buddy_offset, bits);
if (block == NULL)
break;
cairo_list_del (&block->link);
/* Merged block starts at buddy */
if (buddy_offset < block_offset)
block_offset = buddy_offset;
bits++;
}
block = pool->blocks + block_offset;
block->bits = bits;
cairo_list_add (&block->link, &pool->free[bits]);
if (bits > pool->max_free_bits)
pool->max_free_bits = bits;
}
/* attempt to merge all available buddies up to a particular size */
static int
merge_bits (cairo_mempool_t *pool, int max_bits)
{
struct _cairo_memblock *block, *buddy, *next;
int bits;
for (bits = 0; bits < max_bits - 1; bits++) {
cairo_list_foreach_entry_safe (block, next,
struct _cairo_memblock,
&pool->free[bits],
link)
{
size_t buddy_offset = (block - pool->blocks) ^ (1 << bits);
buddy = get_buddy (pool, buddy_offset, bits);
if (buddy == NULL)
continue;
if (buddy == next) {
next = cairo_container_of (buddy->link.next,
struct _cairo_memblock,
link);
}
cairo_list_del (&block->link);
merge_buddies (pool, block, max_bits);
}
}
return pool->max_free_bits;
}
/* find store for 1 << bits blocks */
static void *
buddy_malloc (cairo_mempool_t *pool, int bits)
{
size_t past, offset;
struct _cairo_memblock *block;
int b;
if (bits > pool->max_free_bits && bits > merge_bits (pool, bits))
return NULL;
/* Find a list with blocks big enough on it */
block = NULL;
for (b = bits; b <= pool->max_free_bits; b++) {
if (! cairo_list_is_empty (&pool->free[b])) {
block = cairo_list_first_entry (&pool->free[b],
struct _cairo_memblock,
link);
break;
}
}
assert (block != NULL);
cairo_list_del (&block->link);
while (cairo_list_is_empty (&pool->free[pool->max_free_bits])) {
if (--pool->max_free_bits == -1)
break;
}
/* Mark end of allocated area */
offset = block - pool->blocks;
past = offset + (1 << bits);
BITSET (pool, past - 1);
block->bits = bits;
/* If we used a larger free block than we needed, free the rest */
pool->free_bytes -= 1 << (b + pool->min_bits);
free_blocks (pool, past, offset + (1 << b), 0);
return pool->base + ((block - pool->blocks) << pool->min_bits);
}
cairo_status_t
_cairo_mempool_init (cairo_mempool_t *pool,
void *base, size_t bytes,
int min_bits, int num_sizes)
{
unsigned long tmp;
int num_blocks;
int i;
/* Align the start to an integral chunk */
tmp = ((unsigned long) base) & ((1 << min_bits) - 1);
if (tmp) {
tmp = (1 << min_bits) - tmp;
base = (char *)base + tmp;
bytes -= tmp;
}
assert ((((unsigned long) base) & ((1 << min_bits) - 1)) == 0);
assert (num_sizes < ARRAY_LENGTH (pool->free));
pool->base = base;
pool->free_bytes = 0;
pool->max_bytes = bytes;
pool->max_free_bits = -1;
num_blocks = bytes >> min_bits;
pool->blocks = calloc (num_blocks, sizeof (struct _cairo_memblock));
if (pool->blocks == NULL)
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
pool->num_blocks = num_blocks;
pool->min_bits = min_bits;
pool->num_sizes = num_sizes;
for (i = 0; i < ARRAY_LENGTH (pool->free); i++)
cairo_list_init (&pool->free[i]);
pool->map = malloc ((num_blocks + 7) >> 3);
if (pool->map == NULL) {
free (pool->blocks);
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
}
memset (pool->map, -1, (num_blocks + 7) >> 3);
clear_bits (pool, 0, num_blocks);
/* Now add all blocks to the free list */
free_blocks (pool, 0, num_blocks, 1);
return CAIRO_STATUS_SUCCESS;
}
void *
_cairo_mempool_alloc (cairo_mempool_t *pool, size_t bytes)
{
size_t size;
int bits;
size = 1 << pool->min_bits;
for (bits = 0; size < bytes; bits++)
size <<= 1;
if (bits >= pool->num_sizes)
return NULL;
return buddy_malloc (pool, bits);
}
void
_cairo_mempool_free (cairo_mempool_t *pool, void *storage)
{
size_t block_offset;
struct _cairo_memblock *block;
block_offset = ((char *)storage - pool->base) >> pool->min_bits;
block = pool->blocks + block_offset;
BITCLEAR (pool, block_offset + ((1 << block->bits) - 1));
pool->free_bytes += 1 << (block->bits + pool->min_bits);
merge_buddies (pool, block, pool->num_sizes);
}
void
_cairo_mempool_fini (cairo_mempool_t *pool)
{
free (pool->map);
free (pool->blocks);
}
|