1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
|
/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
/* Cairo - a vector graphics library with display and print output
*
* Copyright © 2007 Mozilla Corporation
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is Mozilla Foundation
*
* Contributor(s):
* Vladimir Vukicevic <vladimir@pobox.com>
*/
#ifndef CAIRO_FIXED_PRIVATE_H
#define CAIRO_FIXED_PRIVATE_H
#include "cairo-fixed-type-private.h"
#include "cairo-wideint-private.h"
#include "cairoint.h"
/* Implementation */
#if (CAIRO_FIXED_BITS != 32)
# error CAIRO_FIXED_BITS must be 32, and the type must be a 32-bit type.
# error To remove this limitation, you will have to fix the tesselator.
#endif
#define CAIRO_FIXED_ONE ((cairo_fixed_t)(1 << CAIRO_FIXED_FRAC_BITS))
#define CAIRO_FIXED_ONE_DOUBLE ((double)(1 << CAIRO_FIXED_FRAC_BITS))
#define CAIRO_FIXED_EPSILON ((cairo_fixed_t)(1))
#define CAIRO_FIXED_ERROR_DOUBLE (1. / (2 * CAIRO_FIXED_ONE_DOUBLE))
#define CAIRO_FIXED_FRAC_MASK ((cairo_fixed_t)(((cairo_fixed_unsigned_t)(-1)) >> (CAIRO_FIXED_BITS - CAIRO_FIXED_FRAC_BITS)))
#define CAIRO_FIXED_WHOLE_MASK (~CAIRO_FIXED_FRAC_MASK)
static inline cairo_fixed_t
_cairo_fixed_from_int (int i)
{
return i << CAIRO_FIXED_FRAC_BITS;
}
/* This is the "magic number" approach to converting a double into fixed
* point as described here:
*
* http://www.stereopsis.com/sree/fpu2006.html (an overview)
* http://www.d6.com/users/checker/pdfs/gdmfp.pdf (in detail)
*
* The basic idea is to add a large enough number to the double that the
* literal floating point is moved up to the extent that it forces the
* double's value to be shifted down to the bottom of the mantissa (to make
* room for the large number being added in). Since the mantissa is, at a
* given moment in time, a fixed point integer itself, one can convert a
* float to various fixed point representations by moving around the point
* of a floating point number through arithmetic operations. This behavior
* is reliable on most modern platforms as it is mandated by the IEEE-754
* standard for floating point arithmetic.
*
* For our purposes, a "magic number" must be carefully selected that is
* both large enough to produce the desired point-shifting effect, and also
* has no lower bits in its representation that would interfere with our
* value at the bottom of the mantissa. The magic number is calculated as
* follows:
*
* (2 ^ (MANTISSA_SIZE - FRACTIONAL_SIZE)) * 1.5
*
* where in our case:
* - MANTISSA_SIZE for 64-bit doubles is 52
* - FRACTIONAL_SIZE for 16.16 fixed point is 16
*
* Although this approach provides a very large speedup of this function
* on a wide-array of systems, it does come with two caveats:
*
* 1) It uses banker's rounding as opposed to arithmetic rounding.
* 2) It doesn't function properly if the FPU is in single-precision
* mode.
*/
/* The 16.16 number must always be available */
#define CAIRO_MAGIC_NUMBER_FIXED_16_16 (103079215104.0)
#if CAIRO_FIXED_BITS <= 32
#define CAIRO_MAGIC_NUMBER_FIXED ((1LL << (52 - CAIRO_FIXED_FRAC_BITS)) * 1.5)
/* For 32-bit fixed point numbers */
static inline cairo_fixed_t
_cairo_fixed_from_double (double d)
{
union {
double d;
int32_t i[2];
} u;
u.d = d + CAIRO_MAGIC_NUMBER_FIXED;
#ifdef FLOAT_WORDS_BIGENDIAN
return u.i[1];
#else
return u.i[0];
#endif
}
#else
# error Please define a magic number for your fixed point type!
# error See cairo-fixed-private.h for details.
#endif
static inline cairo_fixed_t
_cairo_fixed_from_26_6 (uint32_t i)
{
#if CAIRO_FIXED_FRAC_BITS > 6
return i << (CAIRO_FIXED_FRAC_BITS - 6);
#else
return i >> (6 - CAIRO_FIXED_FRAC_BITS);
#endif
}
static inline cairo_fixed_t
_cairo_fixed_from_16_16 (uint32_t i)
{
#if CAIRO_FIXED_FRAC_BITS > 16
return i << (CAIRO_FIXED_FRAC_BITS - 16);
#else
return i >> (16 - CAIRO_FIXED_FRAC_BITS);
#endif
}
static inline double
_cairo_fixed_to_double (cairo_fixed_t f)
{
return ((double) f) / CAIRO_FIXED_ONE_DOUBLE;
}
static inline int
_cairo_fixed_is_integer (cairo_fixed_t f)
{
return (f & CAIRO_FIXED_FRAC_MASK) == 0;
}
static inline cairo_fixed_t
_cairo_fixed_floor (cairo_fixed_t f)
{
return f & ~CAIRO_FIXED_FRAC_MASK;
}
static inline cairo_fixed_t
_cairo_fixed_ceil (cairo_fixed_t f)
{
return _cairo_fixed_floor (f + CAIRO_FIXED_FRAC_MASK);
}
static inline cairo_fixed_t
_cairo_fixed_round (cairo_fixed_t f)
{
return _cairo_fixed_floor (f + (CAIRO_FIXED_FRAC_MASK+1)/2);
}
static inline cairo_fixed_t
_cairo_fixed_round_down (cairo_fixed_t f)
{
return _cairo_fixed_floor (f + CAIRO_FIXED_FRAC_MASK/2);
}
static inline int
_cairo_fixed_integer_part (cairo_fixed_t f)
{
return f >> CAIRO_FIXED_FRAC_BITS;
}
static inline int
_cairo_fixed_integer_round (cairo_fixed_t f)
{
return _cairo_fixed_integer_part (f + (CAIRO_FIXED_FRAC_MASK+1)/2);
}
static inline int
_cairo_fixed_integer_round_down (cairo_fixed_t f)
{
return _cairo_fixed_integer_part (f + CAIRO_FIXED_FRAC_MASK/2);
}
static inline int
_cairo_fixed_fractional_part (cairo_fixed_t f)
{
return f & CAIRO_FIXED_FRAC_MASK;
}
static inline int
_cairo_fixed_integer_floor (cairo_fixed_t f)
{
if (f >= 0)
return f >> CAIRO_FIXED_FRAC_BITS;
else
return -((-f - 1) >> CAIRO_FIXED_FRAC_BITS) - 1;
}
static inline int
_cairo_fixed_integer_ceil (cairo_fixed_t f)
{
if (f > 0)
return ((f - 1)>>CAIRO_FIXED_FRAC_BITS) + 1;
else
return - (-f >> CAIRO_FIXED_FRAC_BITS);
}
/* A bunch of explicit 16.16 operators; we need these
* to interface with pixman and other backends that require
* 16.16 fixed point types.
*/
static inline cairo_fixed_16_16_t
_cairo_fixed_to_16_16 (cairo_fixed_t f)
{
#if (CAIRO_FIXED_FRAC_BITS == 16) && (CAIRO_FIXED_BITS == 32)
return f;
#elif CAIRO_FIXED_FRAC_BITS > 16
/* We're just dropping the low bits, so we won't ever got over/underflow here */
return f >> (CAIRO_FIXED_FRAC_BITS - 16);
#else
cairo_fixed_16_16_t x;
/* Handle overflow/underflow by clamping to the lowest/highest
* value representable as 16.16
*/
if ((f >> CAIRO_FIXED_FRAC_BITS) < INT16_MIN) {
x = INT32_MIN;
} else if ((f >> CAIRO_FIXED_FRAC_BITS) > INT16_MAX) {
x = INT32_MAX;
} else {
x = f << (16 - CAIRO_FIXED_FRAC_BITS);
}
return x;
#endif
}
static inline cairo_fixed_16_16_t
_cairo_fixed_16_16_from_double (double d)
{
union {
double d;
int32_t i[2];
} u;
u.d = d + CAIRO_MAGIC_NUMBER_FIXED_16_16;
#ifdef FLOAT_WORDS_BIGENDIAN
return u.i[1];
#else
return u.i[0];
#endif
}
static inline int
_cairo_fixed_16_16_floor (cairo_fixed_16_16_t f)
{
if (f >= 0)
return f >> 16;
else
return -((-f - 1) >> 16) - 1;
}
static inline double
_cairo_fixed_16_16_to_double (cairo_fixed_16_16_t f)
{
return ((double) f) / (double) (1 << 16);
}
#if CAIRO_FIXED_BITS == 32
static inline cairo_fixed_t
_cairo_fixed_mul (cairo_fixed_t a, cairo_fixed_t b)
{
cairo_int64_t temp = _cairo_int32x32_64_mul (a, b);
return _cairo_int64_to_int32(_cairo_int64_rsl (temp, CAIRO_FIXED_FRAC_BITS));
}
/* computes round (a * b / c) */
static inline cairo_fixed_t
_cairo_fixed_mul_div (cairo_fixed_t a, cairo_fixed_t b, cairo_fixed_t c)
{
cairo_int64_t ab = _cairo_int32x32_64_mul (a, b);
cairo_int64_t c64 = _cairo_int32_to_int64 (c);
return _cairo_int64_to_int32 (_cairo_int64_divrem (ab, c64).quo);
}
/* computes floor (a * b / c) */
static inline cairo_fixed_t
_cairo_fixed_mul_div_floor (cairo_fixed_t a, cairo_fixed_t b, cairo_fixed_t c)
{
return _cairo_int64_32_div (_cairo_int32x32_64_mul (a, b), c);
}
static inline cairo_fixed_t
_cairo_edge_compute_intersection_y_for_x (const cairo_point_t *p1,
const cairo_point_t *p2,
cairo_fixed_t x)
{
cairo_fixed_t y, dx;
if (x == p1->x)
return p1->y;
if (x == p2->x)
return p2->y;
y = p1->y;
dx = p2->x - p1->x;
if (dx != 0)
y += _cairo_fixed_mul_div_floor (x - p1->x, p2->y - p1->y, dx);
return y;
}
static inline cairo_fixed_t
_cairo_edge_compute_intersection_x_for_y (const cairo_point_t *p1,
const cairo_point_t *p2,
cairo_fixed_t y)
{
cairo_fixed_t x, dy;
if (y == p1->y)
return p1->x;
if (y == p2->y)
return p2->x;
x = p1->x;
dy = p2->y - p1->y;
if (dy != 0)
x += _cairo_fixed_mul_div_floor (y - p1->y, p2->x - p1->x, dy);
return x;
}
/* Intersect two segments based on the algorithm described at
* http://paulbourke.net/geometry/pointlineplane/. This implementation
* uses floating point math. */
static inline cairo_bool_t
_slow_segment_intersection (const cairo_point_t *seg1_p1,
const cairo_point_t *seg1_p2,
const cairo_point_t *seg2_p1,
const cairo_point_t *seg2_p2,
cairo_point_t *intersection)
{
double denominator, u_a, u_b;
double seg1_dx, seg1_dy, seg2_dx, seg2_dy, seg_start_dx, seg_start_dy;
seg1_dx = _cairo_fixed_to_double (seg1_p2->x - seg1_p1->x);
seg1_dy = _cairo_fixed_to_double (seg1_p2->y - seg1_p1->y);
seg2_dx = _cairo_fixed_to_double (seg2_p2->x - seg2_p1->x);
seg2_dy = _cairo_fixed_to_double (seg2_p2->y - seg2_p1->y);
denominator = (seg2_dy * seg1_dx) - (seg2_dx * seg1_dy);
if (denominator == 0)
return FALSE;
seg_start_dx = _cairo_fixed_to_double (seg1_p1->x - seg2_p1->x);
seg_start_dy = _cairo_fixed_to_double (seg1_p1->y - seg2_p1->y);
u_a = ((seg2_dx * seg_start_dy) - (seg2_dy * seg_start_dx)) / denominator;
u_b = ((seg1_dx * seg_start_dy) - (seg1_dy * seg_start_dx)) / denominator;
if (u_a <= 0 || u_a >= 1 || u_b <= 0 || u_b >= 1)
return FALSE;
intersection->x = seg1_p1->x + _cairo_fixed_from_double ((u_a * seg1_dx));
intersection->y = seg1_p1->y + _cairo_fixed_from_double ((u_a * seg1_dy));
return TRUE;
}
#else
# error Please define multiplication and other operands for your fixed-point type size
#endif
#endif /* CAIRO_FIXED_PRIVATE_H */
|