1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
|
/* $XConsortium: mparith.c,v 1.4 94/01/12 20:21:16 rws Exp $ */
/**** module mparith.c ****/
/******************************************************************************
Copyright (c) 1993, 1994 X Consortium
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of the X Consortium shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from the X Consortium.
NOTICE
This software is being provided by AGE Logic, Inc. under the
following license. By obtaining, using and/or copying this software,
you agree that you have read, understood, and will comply with these
terms and conditions:
Permission to use, copy, modify, distribute and sell this
software and its documentation for any purpose and without
fee or royalty and to grant others any or all rights granted
herein is hereby granted, provided that you agree to comply
with the following copyright notice and statements, including
the disclaimer, and that the same appears on all copies and
derivative works of the software and documentation you make.
"Copyright 1993, 1994 by AGE Logic, Inc."
THIS SOFTWARE IS PROVIDED "AS IS". AGE LOGIC MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. By way of
example, but not limitation, AGE LOGIC MAKE NO
REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE SOFTWARE DOES NOT
INFRINGE THIRD-PARTY PROPRIETARY RIGHTS. AGE LOGIC
SHALL BEAR NO LIABILITY FOR ANY USE OF THIS SOFTWARE. IN NO
EVENT SHALL EITHER PARTY BE LIABLE FOR ANY INDIRECT,
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOSS
OF PROFITS, REVENUE, DATA OR USE, INCURRED BY EITHER PARTY OR
ANY THIRD PARTY, WHETHER IN AN ACTION IN CONTRACT OR TORT OR
BASED ON A WARRANTY, EVEN IF AGE LOGIC LICENSEES
HEREUNDER HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
The name of AGE Logic, Inc. may not be used in
advertising or publicity pertaining to this software without
specific, written prior permission from AGE Logic.
Title to this software shall at all times remain with AGE
Logic, Inc.
*****************************************************************************
mparith.c -- DDXIE arithmetic and math element
Larry Hare -- AGE Logic, Inc. August, 1993
*****************************************************************************/
#define _XIEC_MPARITH
#define _XIEC_PARITH
/*
* Include files
*/
#include <stdio.h>
#include <math.h>
/*
* Core X Includes
*/
#include <X.h>
#include <Xproto.h>
/*
* XIE Includes
*/
#include <XIE.h>
#include <XIEproto.h>
/*
* more X server includes.
*/
#include <misc.h>
#include <dixstruct.h>
/*
* Server XIE Includes
*/
#include <error.h>
#include <macro.h>
#include <element.h>
#include <texstr.h>
#include <xiemd.h>
/*
** Most machines will work fine using the double precision versions
** of the math functions. If they give you problems, or if you
** want a bit more speed, then pick one of the following sets of
** defines. Enjoy. While you are thinking about this you might
** want to consider changing the cube root function in mprgb.c
** with fpow(x,1./3.) or powf(x,1./3.). Another similar area is
** in mpgeomaa.c for the gaussian technique.
*/
#if defined(USE_EXPF)
/*
** The very newest ANSI-C libraries promote this style of floating
** functions. Even if you have these available, you may need to
** use special compiler options, and prototypes from math.h
*/
# define exp expf
# define log logf
# define pow powf
# define sqrt sqrtf
#endif
#if defined(USE_FEXP)
/*
** This is the more antique way to get floating math functions. But
** you may have to use compiler options or otherwise stand on your
** head to do this safely. Otherwise the argument may get promoted.
*/
# define exp fexp
# define log flog
# define pow fpow
# define sqrt fsqrt
#endif
/*
* routines referenced by other DDXIE modules
*/
int miAnalyzeArith();
int miAnalyzeMath();
/*
* routines used internal to this module
*/
static int CreateArith();
static int InitializeArith();
static int ResetArith();
static int DestroyArith();
static int ActivateArithMROI();
static int ActivateArithDROI();
static int SetupArith();
static void ClearArith(); /* and Math */
static int CreateMath();
static int InitializeMath();
static int SetupMath();
/*
* DDXIE Arithmetic and Math entry points
*/
static ddElemVecRec ArithVec = {
CreateArith,
InitializeArith,
(xieIntProc) NULL,
(xieIntProc) NULL,
ResetArith,
DestroyArith
};
static ddElemVecRec MathVec = {
CreateMath,
InitializeMath,
ActivateArithMROI, /* yes, arith */
(xieIntProc) NULL,
ResetArith, /* yes, arith */
DestroyArith /* yes, arith */
};
/*
* Local Declarations.
*/
typedef struct _mparithdef {
void (*action) (); /* to do arithmetic */
void (*passive) (); /* to copy src1 in passive areas */
CARD32 *lutptr; /* in case we do a lookup */
CARD32 nlev; /* integer clipping */
CARD32 nclip; /* integer clipping */
CARD32 iconstant;
RealPixel fconstant;
} mpArithPvtRec, *mpArithPvtPtr; /* also used for Math */
/*
** NOTE: What happens if element is run over and over with same
** parameters. If we are using a LUT, should we try to keep it?
** If KEEP_LUTS is enabled, then we build any required luts in
** the Create routine and free them in Destroy. Otherwise we do
** so in Initialize and Reset. This is more important on
** operations like divide on non-fpu machines.
*/
#define KEEP_LUTS
/*------------------------------------------------------------------------
------------------------ fill in the vector ---------------------------
------------------------------------------------------------------------*/
int miAnalyzeArith(flo,ped)
floDefPtr flo;
peDefPtr ped;
{
ped->ddVec = ArithVec;
return TRUE;
}
int miAnalyzeMath(flo,ped)
floDefPtr flo;
peDefPtr ped;
{
ped->ddVec = MathVec;
return TRUE;
}
/*------------------------------------------------------------------------
---------------------------- create peTex . . . --------------------------
------------------------------------------------------------------------*/
static int CreateArith(flo,ped)
floDefPtr flo;
peDefPtr ped;
{
/* always force syncing between inputs (is nop if only one input) */
if (!MakePETex(flo,ped,
xieValMaxBands * sizeof(mpArithPvtRec),
SYNC, /* InSync: */
NO_SYNC /* bandSync: */))
return FALSE;
#if defined(KEEP_LUTS)
if (!SetupArith(flo, ped, 0 /* modify ?? */))
return FALSE;
#endif
return TRUE;
}
static int CreateMath(flo,ped)
floDefPtr flo;
peDefPtr ped;
{
/* always force syncing between inputs (is nop if only one input) */
if (!MakePETex(flo,ped,
xieValMaxBands * sizeof(mpArithPvtRec),
SYNC, /* InSync: */
NO_SYNC /* bandSync: */))
return FALSE;
#if defined(KEEP_LUTS)
if (!SetupMath(flo, ped, 0 /* modify ?? */))
return FALSE;
#endif
return TRUE;
}
/*------------------------------------------------------------------------
---------------------------- initialize peTex . . . ----------------------
------------------------------------------------------------------------*/
static int InitializeArith(flo,ped)
floDefPtr flo;
peDefPtr ped;
{
xieFloArithmetic *raw = (xieFloArithmetic *) ped->elemRaw;
peTexPtr pet = ped->peTex;
receptorPtr rcp = pet->receptor;
CARD8 msk = raw->bandMask;
#if !defined(KEEP_LUTS)
if (!SetupArith(flo, ped, 0 /* modify ?? */))
return FALSE;
#endif
ped->ddVec.activate = raw->src2 ? ActivateArithDROI : ActivateArithMROI;
/* If processing domain, allow replication */
if (raw->domainPhototag)
rcp[ped->inCnt-1].band[0].replicate = msk;
InitReceptor(flo, ped, &rcp[SRCt1], NO_DATAMAP, 1, msk, ~msk);
if (raw->src2)
InitReceptor(flo, ped, &rcp[SRCt2], NO_DATAMAP, 1, msk, NO_BANDS);
InitProcDomain(flo, ped, raw->domainPhototag, raw->domainOffsetX,
raw->domainOffsetY);
InitEmitter(flo, ped, NO_DATAMAP, SRCt1);
return !ferrCode(flo);
}
static int InitializeMath(flo,ped)
floDefPtr flo;
peDefPtr ped;
{
xieFloMath *raw = (xieFloMath *) ped->elemRaw;
peTexPtr pet = ped->peTex;
receptorPtr rcp = pet->receptor;
CARD8 msk = raw->bandMask;
#if !defined(KEEP_LUTS)
if (!SetupMath(flo, ped, 0 /* modify ?? */))
return FALSE;
#endif
if (raw->domainPhototag)
rcp[ped->inCnt-1].band[0].replicate = msk;
InitReceptor(flo, ped, &rcp[SRCt1], NO_DATAMAP, 1, msk, NO_BANDS);
InitProcDomain(flo, ped, raw->domainPhototag, raw->domainOffsetX,
raw->domainOffsetY);
InitEmitter(flo, ped, NO_DATAMAP, SRCt1);
return !ferrCode(flo);
}
/*------------------------------------------------------------------------
----------------------------- crank some data ----------------------------
------------------------------------------------------------------------*/
static int ActivateArithMROI(flo,ped,pet)
floDefPtr flo;
peDefPtr ped;
peTexPtr pet;
{
mpArithPvtPtr pvt = (mpArithPvtPtr) pet->private;
int band, nbands = pet->receptor[SRCt1].inFlo->bands;
bandPtr sband = &(pet->receptor[SRCt1].band[0]);
bandPtr dband = &(pet->emitter[0]);
for(band = 0; band < nbands; band++, pvt++, sband++, dband++) {
pointer svoid, dvoid;
if (!(svoid = GetCurrentSrc(flo,pet,sband)) ||
!(dvoid = GetCurrentDst(flo,pet,dband))) continue;
while (!ferrCode(flo) && svoid && dvoid &&
SyncDomain(flo,ped,dband,FLUSH)) {
INT32 run, ix = 0;
while (run = GetRun(flo,pet,dband)) {
if (run > 0) {
(*(pvt->action)) (dvoid, svoid, run, ix, pvt);
ix += run;
} else {
if (dvoid != svoid)
(*(pvt->passive)) (dvoid, svoid, -run, ix);
ix -= run;
}
}
svoid = GetNextSrc(flo,pet,sband,FLUSH);
dvoid = GetNextDst(flo,pet,dband,FLUSH);
}
FreeData(flo, pet, sband, sband->current);
}
return TRUE;
}
static int ActivateArithDROI(flo,ped,pet)
floDefPtr flo;
peDefPtr ped;
peTexPtr pet;
{
mpArithPvtPtr pvt = (mpArithPvtPtr) pet->private;
int band, nbands = pet->receptor[SRCt1].inFlo->bands;
bandPtr sband = &(pet->receptor[SRCt1].band[0]);
bandPtr tband = &(pet->receptor[SRCt2].band[0]);
bandPtr dband = &(pet->emitter[0]);
for(band = 0; band < nbands; band++, pvt++, sband++, tband++, dband++) {
pointer svoid, tvoid, dvoid;
CARD32 w;
w = sband->format->width;
if (w > tband->format->width) w = tband->format->width;
if (!(svoid = GetCurrentSrc(flo,pet,sband)) ||
!(tvoid = GetCurrentSrc(flo,pet,tband)) ||
!(dvoid = GetCurrentDst(flo,pet,dband))) continue;
while (!ferrCode(flo) && svoid && tvoid && dvoid &&
SyncDomain(flo,ped,dband,FLUSH)) {
INT32 run, ix = 0;
while (run = GetRun(flo,pet,dband)) {
if (run > 0) {
/* needs to clip to second source, yuck */
if ((ix + run) > w) {
if (ix < w)
(*(pvt->action)) (dvoid,svoid,tvoid, w-ix, ix, pvt);
if (dvoid != svoid) {
run = sband->format->width - w;
if (run > 0)
(*(pvt->passive)) (dvoid, svoid, run, w);
}
break;
}
(*(pvt->action)) (dvoid, svoid, tvoid, run, ix, pvt);
ix += run;
} else {
if (dvoid != svoid)
(*(pvt->passive)) (dvoid, svoid, -run, ix);
ix -= run;
}
}
svoid = GetNextSrc(flo,pet,sband,FLUSH);
tvoid = GetNextSrc(flo,pet,tband,FLUSH);
dvoid = GetNextDst(flo,pet,dband,FLUSH);
}
if(!svoid && sband->final) {
DisableSrc(flo,pet,tband,FLUSH);
} else if(!tvoid && tband->final) {
BypassSrc(flo,pet,sband);
} else {
/* both inputs still active, keep the scheduler up to date */
FreeData(flo,pet,sband,sband->current);
FreeData(flo,pet,tband,tband->current);
}
}
return TRUE;
}
/*------------------------------------------------------------------------
------------------------ get rid of run-time stuff -----------------------
------------------------------------------------------------------------*/
static int ResetArith(flo,ped)
floDefPtr flo;
peDefPtr ped;
{
#if !defined(KEEP_LUTS)
ClearArith(flo,ped);
#endif
ResetReceptors(ped);
ResetProcDomain(ped);
ResetEmitter(ped);
return TRUE;
}
/*------------------------------------------------------------------------
-------------------------- get rid of this element -----------------------
------------------------------------------------------------------------*/
static int DestroyArith(flo,ped)
floDefPtr flo;
peDefPtr ped;
{
#if defined(KEEP_LUTS)
ClearArith(flo,ped);
#endif
/* get rid of the peTex structure and private structures */
ped->peTex = (peTexPtr) XieFree(ped->peTex);
/* zap this element's entry point vector */
ped->ddVec.create = (xieIntProc)NULL;
ped->ddVec.initialize = (xieIntProc)NULL;
ped->ddVec.activate = (xieIntProc)NULL;
ped->ddVec.reset = (xieIntProc)NULL;
ped->ddVec.destroy = (xieIntProc)NULL;
return TRUE;
}
/*------------------------------------------------------------------------
--------------------- Lotsa Little Action Routines ---------------------
------------------------------------------------------------------------*/
/* xieTypArithmeticOp
**
** #define xieValAdd 1
** #define xieValSub 2
** #define xieValSubRev 3
** #define xieValMul 4
** #define xieValDiv 5
** #define xieValDivRev 6
** #define xieValMin 7
** #define xieValMax 8
** #define xieValGamma 9
**
** xieTypMathOp
**
** #define xieValExp 1
** #define xieValLn 2
** #define xieValLog2 3
** #define xieValLog10 4
** #define xieValSquare 5
** #define xieValSqrt 6
*/
#define NADA 0
#define AADD D = S1 + S2; if (D >= nlev) D = nlev - 1;
#define ASUB D = (S1 > S2) ? S1 - S2 : 0;
#define ASUBREV D = (S2 > S1) ? S2 - S1 : 0;
#define AMIN D = S1 < S2 ? S1 : S2;
#define AMAX D = S1 > S2 ? S1 : S2;
#define FADD D = S1 + S2;
#define FSUB D = S1 - S2;
#define FSUBREV D = S2 - S1;
#define FMUL D = S1 * S2;
#define FDIV D = S1 / S2;
#define FDIVREV D = S1 ? S2 / S1 : S2;
#define FMIN D = S1 < S2 ? S1 : S2;
#define FMAX D = S1 > S2 ? S1 : S2;
/* beware float vs double */
/* consider using fpow() if available */
#define FGAM D = pow(S1,S2);
#define IFGAM D = (nlev - 1) * pow(S1/(nlev-1),S2);
#define BADD D = S1 | S2;
#define BSUB D = S1 & ~S2;
#define BSUBREV D = S2 & ~S1;
#define BMUL D = S1 & S2;
#define BDIV D = S1;
#define BDIVREV D = S2;
#define BMIN D = S1 & S2; /* same as BMUL */
#define BMAX D = S1 | S2; /* same as BADD */
#define BGAM D = S1;
/*------------------------------------------------------------------------
--------------------- ROI operations work on subranges ------------------
------------------------------------------------------------------------*/
/* MROI: (*(pvt->action)) (dvoid, src1, run, ix, pvt); */
/* DROI: (*(pvt->action)) (dvoid, src1, src2, run, ix, pvt); */
#define MakeLutI(name1, expr) \
static void name1(pvt) \
mpArithPvtPtr pvt; \
{ \
CARD32 *lut = pvt->lutptr; \
CARD32 nlev = pvt->nlev; \
CARD32 nclip = pvt->nclip; \
CARD32 i; \
CARD32 D, S1, S2 = pvt->iconstant; \
for ( i = 0; i < nlev ; i++) { \
S1 = i; \
expr; \
lut[i] = D; \
} \
for ( ; i < nclip ; i++) { \
lut[i] = 0; \
} \
}
#define MakeLutF2(name1, expr) \
static void name1(pvt) \
mpArithPvtPtr pvt; \
{ \
CARD32 *lut = pvt->lutptr; \
CARD32 nlev = pvt->nlev; \
CARD32 nclip = pvt->nclip; \
RealPixel Half = (RealPixel) .5; \
RealPixel dlev = (RealPixel) nlev - Half; \
RealPixel D, S1, S2 = pvt->fconstant; \
CARD32 i; \
for ( i = 0; i < nlev ; i++) { \
S1 = i; \
expr; \
D += .5; \
if (D < 0.) D = 0; \
else if (D > dlev) D = dlev; \
lut[i] = D; \
} \
for ( ; i < nclip ; i++) { \
lut[i] = 0; \
} \
}
#define MakeLutF1(name1, expr) \
static void name1(pvt) \
mpArithPvtPtr pvt; \
{ \
CARD32 *lut = pvt->lutptr; \
CARD32 nlev = pvt->nlev; \
CARD32 nclip = pvt->nclip; \
RealPixel Half = (RealPixel) .5; \
RealPixel dlev = (RealPixel) nlev - Half; \
RealPixel D, S1; \
CARD32 i; \
for ( i = 0; i < nlev ; i++) { \
S1 = i; \
expr; \
D += .5; \
if (D < 0.) D = 0; \
else if (D > dlev) D = dlev; \
lut[i] = D; \
} \
for ( ; i < nclip ; i++) { \
lut[i] = 0; \
} \
}
#define MakeLook(name1, itype) \
static void name1(dst1,src1,nx,x,pvt) \
pointer dst1, src1; \
CARD32 nx, x; \
mpArithPvtPtr pvt; \
{ \
itype *dst = ((itype *) dst1) + x; \
itype *src = ((itype *) src1) + x; \
CARD32 *lut = pvt->lutptr; \
CARD32 nmask = pvt->nclip - 1; \
for ( ; nx > 0 ; nx--) { \
*dst++ = lut[*src++ & nmask]; \
} \
}
MakeLutI(pr_a, AADD )
MakeLutI(pr_s, ASUB )
MakeLutI(pr_sr, ASUBREV )
MakeLutI(pr_mn, AMIN )
MakeLutI(pr_mx, AMAX )
MakeLutF2(pr_m, FMUL )
MakeLutF2(pr_d, FDIV )
MakeLutF2(pr_dr, FDIVREV )
MakeLutF2(pr_gm, IFGAM )
static void (*prep_mono[xieValGamma])() = {
pr_a, pr_s, pr_sr, pr_m, pr_d, pr_dr, pr_mn, pr_mx, pr_gm
};
MakeLook(lr_B, BytePixel)
MakeLook(lr_P, PairPixel)
MakeLook(lr_Q, QuadPixel)
static void (*action_lut[5])() = {
NADA,
NADA,
lr_B,
lr_P,
lr_Q
};
/*
** NOTE:
** The MakePixI and MakePixF? macros may be used to synthesize monadic
** action routines which can be used in place of look up table based
** routines. They were actually tested at one point in time. The
** invocations still remain below, and the routines can be plugged
** into the action_monoROI[itype][operator] table below. As noted
** elsewhere, these routines might be more appropriate for bigger
** pixels to avoid lookup table explosion; or for machines without
** a data cache, or a very small data cache. IN summary, which
** of these routines should be used depends on:
** a) existence of data cache?
** b) size, organization, and fill method of data cache?
** c) speed of floating operations
*/
#define MakePixI(name1, itype, expr) \
static void name1(dst1,src1,nx,x,pvt) \
pointer dst1, src1; \
CARD32 nx, x; \
mpArithPvtPtr pvt; \
{ \
itype *dst = (itype *) dst1; \
itype *src = (itype *) src1; \
CARD32 nlev = pvt->nlev; \
CARD32 D, S1, S2 = (itype) pvt->iconstant; \
for ( ; nx > 0 ; nx--, x++) { \
S1 = src[x]; \
expr \
dst[x] = D; \
} \
}
#define MakePixF2(name1, itype, expr) \
static void name1(dst1,src1,nx,x,pvt) \
pointer dst1, src1; \
CARD32 nx, x; \
mpArithPvtPtr pvt; \
{ \
itype *dst = (itype *) dst1; \
itype *src = (itype *) src1; \
RealPixel Half = (RealPixel) .5; \
RealPixel dlev = (RealPixel) pvt->nlev - Half; \
RealPixel D, S1, S2 = (itype) pvt->fconstant; \
for ( ; nx > 0 ; nx--, x++) { \
S1 = (RealPixel) src[x]; \
expr \
D += Half; \
if (D < 0.) D = 0; \
else if (D > dlev) D = dlev; \
dst[x] = (itype) D; \
} \
}
#define MakePixF1(name1, itype, expr) \
static void name1(dst1,src1,nx,x,pvt) \
pointer dst1, src1; \
CARD32 nx, x; \
mpArithPvtPtr pvt; \
{ \
itype *dst = (itype *) dst1; \
itype *src = (itype *) src1; \
RealPixel Half = (RealPixel) .5; \
RealPixel dlev = (RealPixel) pvt->nlev - Half; \
RealPixel D, S1; \
for ( ; nx > 0 ; nx--, x++) { \
S1 = (RealPixel) src[x]; \
expr \
D += Half; \
if (D < 0.) D = 0; \
else if (D > dlev) D = dlev; \
dst[x] = (itype) D; \
} \
}
#define DakePix(name2, itype, expr) \
static void name2(dst1,src1,src2,nx,x,pvt) \
pointer dst1, src1, src2; \
CARD32 nx, x; \
mpArithPvtPtr pvt; \
{ \
itype *dst = ((itype *) dst1) + x; \
itype *src = ((itype *) src1) + x; \
itype *trc = ((itype *) src2) + x; \
CARD32 nlev = pvt->nlev; \
CARD32 D, S1, S2; \
for ( ; nx > 0 ; nx--) { \
S1 = *src++; \
S2 = *trc++; \
expr \
*dst++ = D; \
} \
}
#define MakeFlt2(name1, expr) \
static void name1(dst1,src1,nx,x,pvt) \
pointer dst1, src1; \
CARD32 nx, x; \
mpArithPvtPtr pvt; \
{ \
RealPixel *dst = ((RealPixel *) dst1) + x; \
RealPixel *src = ((RealPixel *) src1) + x; \
RealPixel D, S1, S2 = pvt->fconstant; \
for ( ; nx > 0 ; nx--) { \
S1 = *src++; \
expr \
*dst++ = D; \
} \
}
#define MakeFlt1(name1, expr) \
static void name1(dst1,src1,nx,x,pvt) \
pointer dst1, src1; \
CARD32 nx, x; \
mpArithPvtPtr pvt; \
{ \
RealPixel *dst = ((RealPixel *) dst1) + x; \
RealPixel *src = ((RealPixel *) src1) + x; \
RealPixel D, S1; \
for ( ; nx > 0 ; nx--) { \
S1 = *src++; \
expr \
*dst++ = D; \
} \
}
#define DakeFlt(name2, expr) \
static void name2(dst1,src1,src2,nx,x,pvt) \
pointer dst1, src1, src2; \
CARD32 nx, x; \
mpArithPvtPtr pvt; \
{ \
RealPixel *dst = ((RealPixel *) dst1) + x; \
RealPixel *src = ((RealPixel *) src1) + x; \
RealPixel *trc = ((RealPixel *) src2) + x; \
RealPixel D, S1, S2; \
for ( ; nx > 0 ; nx--) { \
S1 = *src++; \
S2 = *trc++; \
expr \
*dst++ = D; \
} \
}
/* Bits no longer required by protocol */
#define mr_b_a NADA
#define mr_b_s NADA
#define mr_b_sr NADA
#define mr_b_m NADA
#define mr_b_d NADA
#define mr_b_dr NADA
#define mr_b_mn NADA
#define mr_b_mx NADA
#define mr_b_gm NADA
#define dr_b_a NADA
#define dr_b_s NADA
#define dr_b_sr NADA
#define dr_b_mn NADA
#define dr_b_mx NADA
/* MakePixI (mr_B_a, BytePixel, AADD ) */
/* MakePixI (mr_B_s, BytePixel, ASUB ) */
/* MakePixI (mr_B_sr, BytePixel, ASUBREV ) */
/* MakePixI (mr_B_mn, BytePixel, AMIN ) */
/* MakePixI (mr_B_mx, BytePixel, AMAX ) */
/* MakePixF2 (mr_B_m, BytePixel, FMUL ) */
/* MakePixF2 (mr_B_d, BytePixel, FDIV ) */
/* MakePixF2 (mr_B_dr, BytePixel, FDIVREV ) */
/* MakePixF2 (mr_B_gm, BytePixel, IFGAM ) */
DakePix (dr_B_a, BytePixel, AADD )
DakePix (dr_B_s, BytePixel, ASUB )
DakePix (dr_B_sr, BytePixel, ASUBREV )
DakePix (dr_B_mn, BytePixel, AMIN )
DakePix (dr_B_mx, BytePixel, AMAX )
/* MakePixI (mr_P_a, PairPixel, AADD ) */
/* MakePixI (mr_P_s, PairPixel, ASUB ) */
/* MakePixI (mr_P_sr, PairPixel, ASUBREV ) */
/* MakePixI (mr_P_mn, PairPixel, AMIN ) */
/* MakePixI (mr_P_mx, PairPixel, AMAX ) */
/* MakePixF2 (mr_P_m, PairPixel, FMUL ) */
/* MakePixF2 (mr_P_d, PairPixel, FDIV ) */
/* MakePixF2 (mr_P_dr, PairPixel, FDIVREV ) */
/* MakePixF2 (mr_P_gm, PairPixel, IFGAM ) */
DakePix (dr_P_a, PairPixel, AADD )
DakePix (dr_P_s, PairPixel, ASUB )
DakePix (dr_P_sr, PairPixel, ASUBREV )
DakePix (dr_P_mn, PairPixel, AMIN )
DakePix (dr_P_mx, PairPixel, AMAX )
/* MakePixI (mr_Q_a, QuadPixel, AADD ) */
/* MakePixI (mr_Q_s, QuadPixel, ASUB ) */
/* MakePixI (mr_Q_sr, QuadPixel, ASUBREV ) */
/* MakePixI (mr_Q_mn, QuadPixel, AMIN ) */
/* MakePixI (mr_Q_mx, QuadPixel, AMAX ) */
/* MakePixF2 (mr_Q_m, QuadPixel, FMUL ) */
/* MakePixF2 (mr_Q_d, QuadPixel, FDIV ) */
/* MakePixF2 (mr_Q_dr, QuadPixel, FDIVREV ) */
/* MakePixF2 (mr_Q_gm, QuadPixel, IFGAM ) */
DakePix (dr_Q_a, QuadPixel, AADD )
DakePix (dr_Q_s, QuadPixel, ASUB )
DakePix (dr_Q_sr, QuadPixel, ASUBREV )
DakePix (dr_Q_mn, QuadPixel, AMIN )
DakePix (dr_Q_mx, QuadPixel, AMAX )
MakeFlt2 (mr_R_a, FADD )
MakeFlt2 (mr_R_s, FSUB )
MakeFlt2 (mr_R_sr, FSUBREV )
MakeFlt2 (mr_R_m, FMUL )
MakeFlt2 (mr_R_d, FDIV )
MakeFlt2 (mr_R_dr, FDIVREV )
MakeFlt2 (mr_R_mn, FMIN )
MakeFlt2 (mr_R_mx, FMAX )
MakeFlt2 (mr_R_gm, FGAM )
DakeFlt (dr_R_a, FADD )
DakeFlt (dr_R_s, FSUB )
DakeFlt (dr_R_sr, FSUBREV )
DakeFlt (dr_R_mn, FMIN )
DakeFlt (dr_R_mx, FMAX )
/*
ADD, SUB, SUBREV, MUL, DIV, DIVREV, MIN, MAX, GAMMA
*/
static void (*action_monoROI[5][xieValGamma])() = {
mr_R_a, mr_R_s, mr_R_sr, mr_R_m, mr_R_d, mr_R_dr, mr_R_mn, mr_R_mx, mr_R_gm,
mr_b_a, mr_b_s, mr_b_sr, mr_b_m, mr_b_d, mr_b_dr, mr_b_mn, mr_b_mx, mr_b_gm,
NADA, NADA, NADA, NADA, NADA, NADA, NADA, NADA, NADA,
NADA, NADA, NADA, NADA, NADA, NADA, NADA, NADA, NADA,
NADA, NADA, NADA, NADA, NADA, NADA, NADA, NADA, NADA
};
static void (*action_dyadROI[5][xieValGamma])() = {
dr_R_a, dr_R_s, dr_R_sr, NADA, NADA, NADA, dr_R_mn, dr_R_mx, NADA,
dr_b_a, dr_b_s, dr_b_sr, NADA, NADA, NADA, dr_b_mn, dr_b_mx, NADA,
dr_B_a, dr_B_s, dr_B_sr, NADA, NADA, NADA, dr_B_mn, dr_B_mx, NADA,
dr_P_a, dr_P_s, dr_P_sr, NADA, NADA, NADA, dr_P_mn, dr_P_mx, NADA,
dr_Q_a, dr_Q_s, dr_Q_sr, NADA, NADA, NADA, dr_Q_mn, dr_Q_mx, NADA
};
extern void (*passive_copy[5])();
/*------------------------------------------------------------------------
-------------------------- . . . Math Sandbox . . . ----------------------
------------------------------------------------------------------------*/
/*
** Math NOTES:
** #define xieValExp 1
** #define xieValLn 2
** #define xieValLog2 3
** #define xieValLog10 4
** #define xieValSquare 5
** #define xieValSqrt 6
**
** log(==0) is -infinity with divide by zero exception. sigh.
** log( <0) is quiet NaN with invalid operation exception, sigh.
** sqrt(<0) might be error, 0., or -sqrt(-x) ???
**
** for log2(), it may be quicker to count bits for integer arguments :-)
**
** also, not all machines have a log2 and log10 in their math library
** so we multiply log() by the magic values M_LOG2E and M_LOG10E.
**
** one can argue that taking logs and exponents and such of small
** integers is a somewhat frenetic exercise. while it might make
** sense to use square or squareroot as an image contrast enhancer,
** it doesn't make sense when applied to small integers either.
**
** just for the heck of it, here are some values for small inputs:
** i log2 logN log10 exp sqrt square
** 0 -Inf -Inf -Inf 1 0 0
** 1 0 0 0 2.718 1 1
** 2 1 0.6931 0.301 7.389 1.414 4
** 3 1.585 1.099 0.4771 20.09 1.732 9
** 4 2 1.386 0.6021 54.6 2 16
** 5 2.322 1.609 0.699 148.4 2.236 25
**
** also note that LN_MAXFLOAT (or LN_MAXDOUBLE) and MAXFLOAT are
** typically defined in values.h, but including it conflicts with
** misc.h on many machines. values.h isn't a very modern .h file
** as standards go these days. help.....
*/
#ifndef M_LOG2E
#define M_LOG2E 1.4426950408889634074
#endif
#ifndef M_LOG10E
#define M_LOG10E 0.43429448190325182765
#endif
#ifndef LN_MAXFLOAT
#define LN_MAXFLOAT 88.7228394
#endif
#ifndef MAXFLOAT
#define MAXFLOAT ((float)3.40282346638528860e+38)
#endif
#define BANY D = S1;
#define FEXP D = (S1 <= (LN_MAXFLOAT-2.) ? exp(S1) : MAXFLOAT);
#define FLGN D = (S1 > 0. ? log(S1) : 0. );
#define FLG2 D = (S1 > 0. ? log(S1) * M_LOG2E : 0. );
#define FLG10 D = (S1 > 0. ? log(S1) * M_LOG10E : 0. );
#define FSQR D = S1 * S1;
#define FSQRT D = (S1 >= 0. ? sqrt(S1) : 0. );
MakeLutF1(mpr_exp, FEXP )
MakeLutF1(mpr_lgN, FLGN )
MakeLutF1(mpr_lg2, FLG2 )
MakeLutF1(mpr_lg10, FLG10)
MakeLutF1(mpr_sqr, FSQR )
MakeLutF1(mpr_sqrt, FSQRT)
/* Bits no longer required by protocol */
#define m_b_exp NADA
#define m_b_lgN NADA
#define m_b_lg2 NADA
#define m_b_lg10 NADA
#define m_b_sqr NADA
#define m_b_sqrt NADA
MakePixF1 (m_P_sqr, PairPixel, FSQR) /* ??? or use LUT */
MakePixF1 (m_Q_sqr, QuadPixel, FSQR)
MakeFlt1 (m_R_exp, FEXP )
MakeFlt1 (m_R_lgN, FLGN )
MakeFlt1 (m_R_lg2, FLG2 )
MakeFlt1 (m_R_lg10, FLG10 )
MakeFlt1 (m_R_sqr, FSQR )
MakeFlt1 (m_R_sqrt, FSQRT )
static void (*action_mathROI[5][xieValSqrt])() = {
/* EXP, LOG, LOG2, LOG10, SQUARE, SQRT */
m_R_exp, m_R_lgN, m_R_lg2, m_R_lg10, m_R_sqr, m_R_sqrt, /* floats */
m_b_exp, m_b_lgN, m_b_lg2, m_b_lg10, m_b_sqr, m_b_sqrt, /* bits */
NADA, NADA, NADA, NADA, NADA, NADA, /* bytes */
NADA, NADA, NADA, NADA, m_P_sqr, NADA, /* pairs */
NADA, NADA, NADA, NADA, m_Q_sqr, NADA /* quads */
/* EXP, LOG, LOG2, LOG10, SQUARE, SQRT */
};
static void (*prep_math[xieValSqrt])() = {
mpr_exp, mpr_lgN, mpr_lg2, mpr_lg10, mpr_sqr, mpr_sqrt
};
/*------------------------------------------------------------------------
-------------------------- initialize element . . . ----------------------
------------------------------------------------------------------------*/
static int SetupArith(flo,ped,modify)
floDefPtr flo;
peDefPtr ped;
int modify;
{
xieFloArithmetic *raw = (xieFloArithmetic *) ped->elemRaw;
peTexPtr pet = ped->peTex;
pArithDefPtr epvt = (pArithDefPtr) ped->elemPvt;
mpArithPvtPtr pvt = (mpArithPvtPtr) pet->private;
receptorPtr rcp = pet->receptor;
CARD32 nbands = rcp[SRCt1].inFlo->bands;
bandPtr sband = &(rcp[SRCt1].band[0]);
bandPtr tband = &(rcp[SRCt2].band[0]);
bandPtr dband = &(pet->emitter[0]);
CARD32 band;
for (band=0; band<nbands; band++, pvt++, sband++, tband++, dband++) {
CARD32 iclass = IndexClass(sband->format->class);
void (*act)() = 0;
if ((raw->bandMask & (1<<band)) == 0)
continue;
if (!raw->src2) /* only used for mul, div, divrev, gamma */
pvt->fconstant = (RealPixel) epvt->constant[band];
switch(raw->operator) {
case xieValDiv: if (pvt->fconstant == 0.0) /* epsilon ?? */
pvt->fconstant = 1.0;
break;
}
if (IsConstrained(sband->format->class)) {
pvt->nlev = sband->format->levels;
if (!raw->src2) {
CARD32 deep;
SetDepthFromLevels(pvt->nlev,deep); pvt->nclip = 1 << deep;
/* only used for add, sub, subrev, min, max */
pvt->iconstant = ConstrainConst(epvt->constant[band],pvt->nlev);
}
}
#if defined(USE_SIMPLE_TABLE)
if (raw->domainPhototag == 0) {
if (raw->src2)
act = action_dyad[iclass][raw->operator-1];
else
act = action_mono[iclass][raw->operator-1];
}
#endif
/* Try to find a dyadic operator */
if (!act && raw->src2)
act = action_dyadROI[iclass][raw->operator-1];
/*
** NOTE:
** For larger pixels a look up table begins to be less
** attractive since the malloc is larger, it takes longer
** to compute, and the cache hit rate may go down. So
** we may want to add more actual monodaic arithmetic
** elements to the table (see MakePixel, it worked once
** upon a time) and choose between an arithmetic and lookup
** version based on number of levels.
*/
/* Try to find a monadic operator */
if (!act && !raw->src2)
act = action_monoROI[iclass][raw->operator-1];
/* Or maybe a monadic look up table operator */
if (!act && !raw->src2) {
act = action_lut[iclass];
if (act) {
/* Allocate Lut and Fill it in */
if (!(pvt->lutptr = (CARD32 *)
XieMalloc(pvt->nclip * sizeof(CARD32))))
AllocError(flo,ped,return(FALSE));
(*prep_mono[raw->operator-1]) (pvt);
}
}
if (!act)
ImplementationError(flo,ped,return(FALSE));
pvt->action = act;
pvt->passive = passive_copy[iclass];
}
return TRUE;
}
static int SetupMath(flo,ped,modify)
floDefPtr flo;
peDefPtr ped;
int modify;
{
xieFloMath *raw = (xieFloMath *) ped->elemRaw;
peTexPtr pet = ped->peTex;
mpArithPvtPtr pvt = (mpArithPvtPtr) pet->private;
receptorPtr rcp = pet->receptor;
CARD32 nbands = rcp[SRCt1].inFlo->bands;
bandPtr sband = &(rcp[SRCt1].band[0]);
bandPtr dband = &(pet->emitter[0]);
CARD32 band;
for (band=0; band<nbands; band++, pvt++, sband++, dband++) {
CARD32 iclass = IndexClass(sband->format->class);
void (*act)() = 0;
if ((raw->bandMask & (1<<band)) == 0)
continue;
if (IsConstrained(sband->format->class)) {
CARD32 deep;
pvt->nlev = sband->format->levels;
SetDepthFromLevels(pvt->nlev,deep); pvt->nclip = 1 << deep;
}
#if defined(xxUSE_SIMPLE_TABLE)
/* enable this code if you think you know a better way to do this. */
if (raw->domainPhototag == 0) {
act = action_math[iclass][raw->operator-1];
}
#endif
/*
** NOTE:
** For larger sized pixels, a lookup table my be counter
** productive. In addition to the malloc space (eg 64k
** words), and the low cache hit rate, the time to fill the
** lookup table can become significant. Even for medium
** sized pixels, some sort of hashed cache might be a
** better solution. But I seriously doubt anyone will
** use these operations on integer pixels very much ...
*/
/* Try to find a monadic operator */
if (!act)
act = action_mathROI[iclass][raw->operator-1];
/* Or maybe a monadic look up table operator */
if (!act) {
act = action_lut[iclass];
if (act) {
/* Allocate Lut and Fill it in */
if (!(pvt->lutptr = (CARD32 *)
XieMalloc(pvt->nclip * sizeof(CARD32))))
AllocError(flo,ped,return(FALSE));
(*prep_math[raw->operator-1]) (pvt);
}
}
if (!act)
ImplementationError(flo,ped,return(FALSE));
pvt->action = act;
pvt->passive = passive_copy[iclass];
}
return TRUE;
}
static void ClearArith(flo,ped)
floDefPtr flo;
peDefPtr ped;
{
mpArithPvtPtr pvt = (mpArithPvtPtr) (ped->peTex->private);
int band;
/* free any dynamic private data */
if (pvt)
for (band = 0 ; band < xieValMaxBands ; band++, pvt++)
if (pvt->lutptr)
pvt->lutptr = (CARD32 *) XieFree(pvt->lutptr);
}
/* end module mparith.c */
|