1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
_C_ License Applicability. Except to the extent portions of this file are
_C_ made subject to an alternative license as permitted in the SGI Free
_C_ Software License B, Version 1.1 (the "License"), the contents of this
_C_ file are subject only to the provisions of the License. You may not use
_C_ this file except in compliance with the License. You may obtain a copy
_C_ of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
_C_ Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
_C_
_C_ http://oss.sgi.com/projects/FreeB
_C_
_C_ Note that, as provided in the License, the Software is distributed on an
_C_ "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
_C_ DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
_C_ CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
_C_ PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
_C_
_C_ Original Code. The Original Code is: OpenGL Sample Implementation,
_C_ Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
_C_ Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
_C_ Copyright in any portions created by third parties is as indicated
_C_ elsewhere herein. All Rights Reserved.
_C_
_C_ Additional Notice Provisions: The application programming interfaces
_C_ established by SGI in conjunction with the Original Code are The
_C_ OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
_C_ April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
_C_ 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
_C_ Window System(R) (Version 1.3), released October 19, 1998. This software
_C_ was created using the OpenGL(R) version 1.2.1 Sample Implementation
_C_ published by SGI, but has not been independently verified as being
_C_ compliant with the OpenGL(R) version 1.2.1 Specification.
_C_
_C_ The first character in this file must be an '_'!
_C_ Anything on a line after _C_ is ignored
_define(_filters,eqn)_C_
_C_ eqn is automatically replaced with neqn for nroff
_header(EvalMesh, compute a one- or two-dimensional grid of points or lines)
_names(EvalMesh1)
.EQ
delim $$
.EN
.SH PARAMETERS
_phead(_param1)
In _cmnd(EvalMesh1), specifies whether to compute a one-dimensional mesh of points or lines.
Symbolic constants
_const(POINT) and
_const(LINE) are accepted.
_phead(_param2 _param3)
Specify the first and last integer values for grid domain variable $i$.
_names(EvalMesh2)
.SH PARAMETERS
_phead(_param1)
In _cmnd(EvalMesh2), specifies whether to compute a two-dimensional mesh of points, lines,
or polygons.
Symbolic constants
_const(POINT),
_const(LINE), and
_const(FILL) are accepted.
_phead(_param2 _param3)
Specify the first and last integer values for grid domain variable $i$.
_phead(_param4 _param5)
Specify the first and last integer values for grid domain variable $j$.
.SH DESCRIPTION
_cmnd(MapGrid) and _cmnd are used in tandem to efficiently
generate and evaluate a series of evenly-spaced map domain values.
_cmnd steps through the integer domain of a one- or two-dimensional grid,
whose range is the domain of the evaluation maps specified by
_cmnd(Map1) and _cmnd(Map2).
_param1(1) determines whether the resulting vertices are connected as
points,
lines,
or filled polygons.
.P
In the one-dimensional case,
_cmnd(EvalMesh1),
the mesh is generated as if the following code fragment were executed:
.nf
.IP
\f7
glBegin( \f2type\f7 );
for ( i = _param2; i <= _param3; i += 1 )
glEvalCoord1( i$^cdot^DELTA u ~+~ u sub 1$ );
glEnd();
\fP
.RE
.fi
where
.sp
.in
$ DELTA u ~=~ (u sub 2 ~-~ u sub 1 ) ^/^ n$
.sp
.in 0
.P
and $n$, $u sub 1$, and $u sub 2$ are the arguments to the most recent
_cmnd(MapGrid1) command.
\f2type\fP is _const(POINTS) if _param1(1) is _const(POINT),
or _const(LINES) if _param1(1) is _const(LINE).
.P
The one absolute numeric requirement is that if $i ~=~ n$, then the
value computed from $ i^cdot^DELTA u ~+~ u sub 1$ is exactly $u sub 2$.
.P
In the two-dimensional case, _cmnd(EvalMesh2), let
.nf
.IP
$ DELTA u ~=~ mark ( u sub 2 ~-~ u sub 1 ) ^/^ n$
.sp
$ DELTA v ~=~ lineup ( v sub 2 ~-~ v sub 1 ) ^/^ m$,
.fi
.RE
.P
where $n$, $u sub 1$, $u sub 2$, $m$, $v sub 1$, and $v sub 2$ are the
arguments to the most recent _cmnd(MapGrid2) command. Then, if
_param1(2) is _const(FILL), the _cmnd(EvalMesh2) command is equivalent
to:
.nf
.IP
\f7
for ( j = _param4; j < _param5; j += 1 ) {
glBegin( GL_QUAD_STRIP );
for ( i = _param2; i <= _param3; i += 1 ) {
glEvalCoord2( i$^cdot^DELTA u ~+~ u sub 1$, j$^cdot^DELTA v ~+~ v sub 1$ );
glEvalCoord2( i$^cdot^DELTA u ~+~ u sub 1$, (j+1)$^cdot^DELTA v ~+~ v sub 1$ );
}
glEnd();
}
\fP
.RE
.fi
.P
If _param1 is _const(LINE), then a call to _cmnd(EvalMesh2) is equivalent to:
.nf
.IP
\f7
for ( j = _param4; j <= _param5; j += 1 ) {
glBegin( GL_LINE_STRIP );
for ( i = _param2; i <= _param3; i += 1 )
glEvalCoord2( i$^cdot^DELTA u ~+~ u sub 1$, j$^cdot^DELTA v ~+~ v sub 1$ );
glEnd();
}
.sp
for ( i = _param2; i <= _param3; i += 1 ) {
glBegin( GL_LINE_STRIP );
for ( j = _param4; j <= _param4; j += 1 )
glEvalCoord2( i$^cdot^DELTA u ~+~ u sub 1$, j$^cdot^DELTA v ~+~ v sub 1 $ );
glEnd();
}
\fP
.RE
.fi
.P
And finally, if _param1 is _const(POINT), then a call to
_cmnd(EvalMesh2) is equivalent to:
.nf
.IP
\f7
glBegin( GL_POINTS );
for ( j = _param4; j <= _param5; j += 1 )
for ( i = _param2; i <= _param3; i += 1 )
glEvalCoord2( i$^cdot^DELTA u ~+~ u sub 1$, j$^cdot^DELTA v ~+~ v sub 1$ );
glEnd();
\fP
.RE
.fi
.P
In all three cases, the only absolute numeric requirements are that if $i~=~n$,
then the value computed from $i^cdot^DELTA u ~+~ u sub 1$ is exactly $u
sub 2$, and if $j~=~m$, then the value computed from
$j ^cdot^ DELTA v ~+~ v sub 1$ is exactly $v sub 2$.
.SH ERRORS
_const(INVALID_ENUM) is generated if _param1 is not an accepted value.
.P
_const(INVALID_OPERATION) is generated if _cmnd
is executed between the execution of _cmnd(Begin)
and the corresponding execution of _cmnd(End).
.SH ASSOCIATED GETS
_cmnd(Get) with argument _const(MAP1_GRID_DOMAIN)
.br
_cmnd(Get) with argument _const(MAP2_GRID_DOMAIN)
.br
_cmnd(Get) with argument _const(MAP1_GRID_SEGMENTS)
.br
_cmnd(Get) with argument _const(MAP2_GRID_SEGMENTS)
.SH SEE ALSO
_cmnd(Begin),
_cmnd(EvalCoord),
_cmnd(EvalPoint),
_cmnd(Map1),
_cmnd(Map2),
_cmnd(MapGrid)
|