1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
/*
* Mesa 3-D graphics library
* Version: 4.1
*
* Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "glheader.h"
#include "colormac.h"
#include "context.h"
#include "macros.h"
#include "mmath.h"
#include "s_context.h"
#include "s_fog.h"
#include "s_span.h"
/**
* Used to convert current raster distance to a fog factor in [0,1].
*/
GLfloat
_mesa_z_to_fogfactor(GLcontext *ctx, GLfloat z)
{
GLfloat d, f;
switch (ctx->Fog.Mode) {
case GL_LINEAR:
if (ctx->Fog.Start == ctx->Fog.End)
d = 1.0F;
else
d = 1.0F / (ctx->Fog.End - ctx->Fog.Start);
f = (ctx->Fog.End - z) * d;
return CLAMP(f, 0.0F, 1.0F);
case GL_EXP:
d = ctx->Fog.Density;
f = (GLfloat) exp(-d * z);
return f;
case GL_EXP2:
d = ctx->Fog.Density;
f = (GLfloat) exp(-(d * d * z * z));
return f;
default:
_mesa_problem(ctx, "Bad fog mode in _mesa_z_to_fogfactor");
return 0.0;
}
}
/**
* Calculate fog factors (in [0,1]) from window z values
* Input: n - number of pixels
* z - array of integer depth values
* red, green, blue, alpha - pixel colors
* Output: red, green, blue, alpha - fogged pixel colors
*
* Use lookup table & interpolation?
*/
static void
compute_fog_factors_from_z( const GLcontext *ctx,
GLuint n,
const GLdepth z[],
GLfloat fogFact[] )
{
const GLfloat *proj = ctx->ProjectionMatrixStack.Top->m;
const GLboolean ortho = (proj[15] != 0.0F);
const GLfloat p10 = proj[10];
const GLfloat p14 = proj[14];
const GLfloat tz = ctx->Viewport._WindowMap.m[MAT_TZ];
GLfloat szInv;
GLuint i;
if (ctx->Viewport._WindowMap.m[MAT_SZ] == 0.0)
szInv = 1.0F;
else
szInv = 1.0F / ctx->Viewport._WindowMap.m[MAT_SZ];
/*
* Note: to compute eyeZ from the ndcZ we have to solve the following:
*
* p[10] * eyeZ + p[14] * eyeW
* ndcZ = ---------------------------
* p[11] * eyeZ + p[15] * eyeW
*
* Thus:
*
* p[14] * eyeW - p[15] * eyeW * ndcZ
* eyeZ = ----------------------------------
* p[11] * ndcZ - p[10]
*
* If we note:
* a) if using an orthographic projection, p[11] = 0 and p[15] = 1.
* b) if using a perspective projection, p[11] = -1 and p[15] = 0.
* c) we assume eyeW = 1 (not always true- glVertex4)
*
* Then we can simplify the calculation of eyeZ quite a bit. We do
* separate calculations for the orthographic and perspective cases below.
* Note that we drop a negative sign or two since they don't matter.
*/
switch (ctx->Fog.Mode) {
case GL_LINEAR:
{
GLfloat fogEnd = ctx->Fog.End;
GLfloat fogScale;
if (ctx->Fog.Start == ctx->Fog.End)
fogScale = 1.0;
else
fogScale = 1.0F / (ctx->Fog.End - ctx->Fog.Start);
if (ortho) {
for (i=0;i<n;i++) {
GLfloat ndcz = ((GLfloat) z[i] - tz) * szInv;
GLfloat eyez = (ndcz - p14) / p10;
GLfloat f;
if (eyez < 0.0)
eyez = -eyez;
f = (fogEnd - eyez) * fogScale;
fogFact[i] = CLAMP(f, 0.0F, 1.0F);
}
}
else {
/* perspective */
for (i=0;i<n;i++) {
GLfloat ndcz = ((GLfloat) z[i] - tz) * szInv;
GLfloat eyez = p14 / (ndcz + p10);
GLfloat f;
if (eyez < 0.0)
eyez = -eyez;
f = (fogEnd - eyez) * fogScale;
fogFact[i] = CLAMP(f, 0.0F, 1.0F);
}
}
}
break;
case GL_EXP:
if (ortho) {
for (i=0;i<n;i++) {
GLfloat ndcz = ((GLfloat) z[i] - tz) * szInv;
GLfloat eyez = (ndcz - p14) / p10;
if (eyez < 0.0)
eyez = -eyez;
fogFact[i] = (GLfloat) exp( -ctx->Fog.Density * eyez );
}
}
else {
/* perspective */
for (i=0;i<n;i++) {
GLfloat ndcz = ((GLfloat) z[i] - tz) * szInv;
GLfloat eyez = p14 / (ndcz + p10);
if (eyez < 0.0)
eyez = -eyez;
fogFact[i] = (GLfloat) exp( -ctx->Fog.Density * eyez );
}
}
break;
case GL_EXP2:
{
GLfloat negDensitySquared = -ctx->Fog.Density * ctx->Fog.Density;
if (ortho) {
for (i=0;i<n;i++) {
GLfloat ndcz = ((GLfloat) z[i] - tz) * szInv;
GLfloat eyez = (ndcz - p14) / p10;
GLfloat tmp = negDensitySquared * eyez * eyez;
#if defined(__alpha__) || defined(__alpha)
/* XXX this underflow check may be needed for other systems*/
if (tmp < FLT_MIN_10_EXP)
tmp = FLT_MIN_10_EXP;
#endif
fogFact[i] = (GLfloat) exp( tmp );
}
}
else {
/* perspective */
for (i=0;i<n;i++) {
GLfloat ndcz = ((GLfloat) z[i] - tz) * szInv;
GLfloat eyez = p14 / (ndcz + p10);
GLfloat tmp = negDensitySquared * eyez * eyez;
#if defined(__alpha__) || defined(__alpha)
/* XXX this underflow check may be needed for other systems*/
if (tmp < FLT_MIN_10_EXP)
tmp = FLT_MIN_10_EXP;
#endif
fogFact[i] = (GLfloat) exp( tmp );
}
}
}
break;
default:
_mesa_problem(ctx, "Bad fog mode in compute_fog_factors_from_z");
return;
}
}
/**
* Apply fog to a span of RGBA pixels.
* The fog factors are either in the span->array->fog or stored as base/step.
* These are fog _factors_, not fog coords. Fog coords were converted to
* fog factors per vertex.
*/
void
_mesa_fog_rgba_span( const GLcontext *ctx, struct sw_span *span )
{
const SWcontext *swrast = SWRAST_CONTEXT(ctx);
const GLuint n = span->end;
GLchan (*rgba)[4] = (GLchan (*)[4]) span->array->rgba;
GLchan rFog, gFog, bFog;
ASSERT(ctx->Fog.Enabled);
ASSERT((span->interpMask | span->arrayMask) & SPAN_FOG);
ASSERT(span->arrayMask & SPAN_RGBA);
UNCLAMPED_FLOAT_TO_CHAN(rFog, ctx->Fog.Color[RCOMP]);
UNCLAMPED_FLOAT_TO_CHAN(gFog, ctx->Fog.Color[GCOMP]);
UNCLAMPED_FLOAT_TO_CHAN(bFog, ctx->Fog.Color[BCOMP]);
if (swrast->_PreferPixelFog) {
/* compute fog factor from each fragment's Z value */
if ((span->interpMask & SPAN_Z) && (span->arrayMask & SPAN_Z) == 0)
_mesa_span_interpolate_z(ctx, span);
compute_fog_factors_from_z(ctx, n, span->array->z, span->array->fog);
span->arrayMask |= SPAN_FOG;
}
if (span->arrayMask & SPAN_FOG) {
/* use fog array in span */
GLuint i;
for (i = 0; i < n; i++) {
const GLfloat fog = span->array->fog[i];
const GLfloat oneMinusFog = 1.0F - fog;
rgba[i][RCOMP] = (GLchan) (fog * rgba[i][RCOMP] + oneMinusFog * rFog);
rgba[i][GCOMP] = (GLchan) (fog * rgba[i][GCOMP] + oneMinusFog * gFog);
rgba[i][BCOMP] = (GLchan) (fog * rgba[i][BCOMP] + oneMinusFog * bFog);
}
}
else {
/* interpolate fog factors */
GLfloat fog = span->fog, dFog = span->fogStep;
GLuint i;
for (i = 0; i < n; i++) {
const GLfloat oneMinusFog = 1.0F - fog;
rgba[i][RCOMP] = (GLchan) (fog * rgba[i][RCOMP] + oneMinusFog * rFog);
rgba[i][GCOMP] = (GLchan) (fog * rgba[i][GCOMP] + oneMinusFog * gFog);
rgba[i][BCOMP] = (GLchan) (fog * rgba[i][BCOMP] + oneMinusFog * bFog);
fog += dFog;
}
}
}
/**
* As above, but color index mode.
*/
void
_mesa_fog_ci_span( const GLcontext *ctx, struct sw_span *span )
{
const SWcontext *swrast = SWRAST_CONTEXT(ctx);
const GLuint n = span->end;
GLuint *index = span->array->index;
ASSERT(ctx->Fog.Enabled);
ASSERT(span->arrayMask & SPAN_INDEX);
ASSERT((span->interpMask | span->arrayMask) & SPAN_FOG);
if (swrast->_PreferPixelFog) {
/* compute fog factor from each fragment's Z value */
if ((span->interpMask & SPAN_Z) && (span->arrayMask & SPAN_Z) == 0)
_mesa_span_interpolate_z(ctx, span);
compute_fog_factors_from_z(ctx, n, span->array->z, span->array->fog);
span->arrayMask |= SPAN_FOG;
}
if (span->arrayMask & SPAN_FOG) {
const GLuint idx = (GLuint) ctx->Fog.Index;
GLuint i;
for (i = 0; i < n; i++) {
const GLfloat f = CLAMP(span->array->fog[i], 0.0F, 1.0F);
index[i] = (GLuint) ((GLfloat) index[i] + (1.0F - f) * idx);
}
}
else {
GLfloat fog = span->fog, dFog = span->fogStep;
const GLuint idx = (GLuint) ctx->Fog.Index;
GLuint i;
for (i = 0; i < n; i++) {
const GLfloat f = CLAMP(fog, 0.0F, 1.0F);
index[i] = (GLuint) ((GLfloat) index[i] + (1.0F - f) * idx);
fog += dFog;
}
}
}
|