1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
|
/* -*- Mode: C++; indent-tabs-mode: t; c-basic-offset: 8; tab-width: 8 -*- */
/*
* Tartan
* Copyright © 2013 Collabora Ltd.
*
* Tartan is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Tartan is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Tartan. If not, see <http://www.gnu.org/licenses/>.
*
* Authors:
* Philip Withnall <philip.withnall@collabora.co.uk>
*/
#include <unordered_set>
#include <clang/AST/Attr.h>
#include <clang/Lex/Lexer.h>
#include "assertion-extracter.h"
#include "debug.h"
static bool
_is_assertion_name (const std::string& name)
{
return (name == "g_return_if_fail" ||
name == "g_return_val_if_fail" ||
name == "g_assert_cmpstr" ||
name == "g_assert_cmpint" ||
name == "g_assert_cmpuint" ||
name == "g_assert_cmphex" ||
name == "g_assert_cmpfloat" ||
name == "g_assert_no_error" ||
name == "g_assert_error" ||
name == "g_assert_true" ||
name == "g_assert_false" ||
name == "g_assert_null" ||
name == "g_assert_nonnull" ||
name == "g_assert_not_reached" ||
name == "g_assert" ||
name == "assert" ||
name == "assert_perror");
}
static bool
_is_assertion_fail_func_name (const std::string& name)
{
return (name == "g_return_if_fail_warning" ||
name == "g_assertion_message_cmpstr" ||
name == "g_assertion_message_cmpnum" ||
name == "g_assertion_message_error" ||
name == "g_assertion_message" ||
name == "g_assertion_message_expr" ||
name == "__assert_fail" ||
name == "__assert_perror_fail");
}
/* Return the negation of the given expression. */
static Expr*
_negation_expr (Expr* e, const ASTContext& context)
{
return new (context)
UnaryOperator (e, UnaryOperatorKind::UO_LNot,
context.getLogicalOperationType (),
VK_RValue, OK_Ordinary, SourceLocation (),
/* can_overflow = */ false);
}
/* Combine expressions A and B to give (A && B). */
static Expr*
_conjunction_expr (Expr* lhs, Expr* rhs, const ASTContext& context)
{
return new (context)
BinaryOperator (lhs, rhs, BinaryOperatorKind::BO_LAnd,
context.getLogicalOperationType (),
VK_RValue, OK_Ordinary, SourceLocation (),
FPOptions ());
}
/* Combine expressions A and B to give (A || B). */
static Expr*
_disjunction_expr (Expr* lhs, Expr* rhs, const ASTContext& context)
{
return new (context)
BinaryOperator (lhs, rhs, BinaryOperatorKind::BO_LOr,
context.getLogicalOperationType (),
VK_RValue, OK_Ordinary, SourceLocation (),
FPOptions ());
}
/* Does the given statement look like:
* • g_return_if_fail(…)
* • g_return_val_if_fail(…)
* • g_assert(…)
* • g_assert_*(…)
* • assert(…)
* This is complicated by the fact that if the gmessages.h header isn’t
* available, they’ll present as CallExpr function calls with those names; if it
* is available, they’ll be expanded as macros and turn into DoStmts with misc.
* rubbish beneath.
*
* If the statement changes program state at all, return NULL. Otherwise, return
* the condition which holds for the assertion to be bypassed (i.e. for the
* assertion to succeed). This function is built recursively, building a boolean
* expression for the condition based on avoiding branches which call
* abort()-like functions.
*
* This function is based on a transformation of the AST to an augmented boolean
* expression, using rules documented in each switch case. In this
* documentation, calc(S) refers to the transformation function. The augmented
* boolean expressions can be either NULL, or a normal boolean expression
* (TRUE, FALSE, ∧, ∨, ¬). NULL is used iff the statement potentially changes
* program state, and poisons any boolean expression:
* B ∧ NULL ≡ NULL
* B ∨ NULL ≡ NULL
* ¬NULL ≡ NULL
*/
Expr*
AssertionExtracter::is_assertion_stmt (Stmt& stmt, const ASTContext& context)
{
DEBUG ("Checking " << stmt.getStmtClassName () << " for assertions.");
/* Slow path: walk through the AST, aborting on statements which
* potentially mutate program state, and otherwise trying to find a base
* function call such as:
* • g_return_if_fail_warning()
* • g_assertion_message()
* • g_assertion_message_*()
*/
switch ((int) stmt.getStmtClass ()) {
case Stmt::StmtClass::CallExprClass: {
/* Handle a direct function call.
* Transformations:
* [g_return_if_fail|assert|…](C) ↦ C
* [g_return_if_fail_warning|__assert_fail|…](C) ↦ FALSE
* other_funcs(…) ↦ NULL */
CallExpr& call_expr = cast<CallExpr> (stmt);
FunctionDecl* func = call_expr.getDirectCallee ();
if (func == NULL)
return NULL;
std::string func_name = func->getNameAsString ();
DEBUG ("CallExpr to function " << func_name);
if (_is_assertion_name (func_name)) {
/* Assertion path where the compiler hasn't seen the
* definition of the assertion macro, so still thinks
* it's a function.
*
* Extract the assertion condition as the first function
* parameter.
*
* TODO: May need to fix up the condition for macros
* like g_assert_null(). */
return call_expr.getArg (0);
} else if (_is_assertion_fail_func_name (func_name)) {
/* Assertion path where the assertion macro has been
* expanded and we're on the assertion failure branch.
*
* In this case, the assertion condition has been
* grabbed from an if statement already, so negate it
* (to avoid the failure condition) and return. */
return new (context)
IntegerLiteral (context, context.MakeIntValue (0, context.getLogicalOperationType ()),
context.getLogicalOperationType (),
SourceLocation ());
}
/* Not an assertion path. */
return NULL;
}
case Stmt::StmtClass::DoStmtClass: {
/* Handle a do { … } while (0) block (commonly used to allow
* macros to optionally be suffixed by a semicolon).
* Transformations:
* do { S } while (0) ↦ calc(S)
* do { S } while (C) ↦ NULL
* Note the second condition is overly-conservative. No
* solutions for the halting problem here. */
DoStmt& do_stmt = cast<DoStmt> (stmt);
Stmt* body = do_stmt.getBody ();
Stmt* cond = do_stmt.getCond ();
Expr* expr = dyn_cast<Expr> (cond);
llvm::APSInt bool_expr;
if (body != NULL &&
expr != NULL &&
expr->isIntegerConstantExpr (bool_expr, context) &&
!bool_expr.getBoolValue ()) {
return is_assertion_stmt (*body, context);
}
return NULL;
}
case Stmt::StmtClass::IfStmtClass: {
/* Handle an if(…) { … } else { … } block.
* Transformations:
* if (C) { S1 } else { S2 } ↦
* (C ∧ calc(S1)) ∨ (¬C ∧ calc(S2))
* if (C) { S } ↦ (C ∧ calc(S)) ∨ ¬C
* i.e.
* if (C) { S } ≡ if (C) { S } else {}
* where {} is an empty compound statement, below. */
IfStmt& if_stmt = cast<IfStmt> (stmt);
assert (if_stmt.getThen () != NULL);
Expr* neg_cond = _negation_expr (if_stmt.getCond (), context);
Expr* then_assertion =
is_assertion_stmt (*(if_stmt.getThen ()), context);
if (then_assertion == NULL)
return NULL;
then_assertion =
_conjunction_expr (if_stmt.getCond (), then_assertion,
context);
if (if_stmt.getElse () == NULL)
return _disjunction_expr (then_assertion, neg_cond,
context);
Expr* else_assertion =
is_assertion_stmt (*(if_stmt.getElse ()), context);
if (else_assertion == NULL)
return NULL;
else_assertion =
_conjunction_expr (neg_cond, else_assertion, context);
return _disjunction_expr (then_assertion, else_assertion,
context);
}
case Stmt::StmtClass::ConditionalOperatorClass: {
/* Handle a ternary operator.
* Transformations:
* C ? S1 : S2 ↦
* (C ∧ calc(S1)) ∨ (¬C ∧ calc(S2)) */
ConditionalOperator& op_expr = cast<ConditionalOperator> (stmt);
assert (op_expr.getTrueExpr () != NULL);
assert (op_expr.getFalseExpr () != NULL);
Expr* neg_cond = _negation_expr (op_expr.getCond (), context);
Expr* then_assertion =
is_assertion_stmt (*(op_expr.getTrueExpr ()), context);
if (then_assertion == NULL)
return NULL;
then_assertion =
_conjunction_expr (op_expr.getCond (), then_assertion,
context);
Expr* else_assertion =
is_assertion_stmt (*(op_expr.getFalseExpr ()),
context);
if (else_assertion == NULL)
return NULL;
else_assertion =
_conjunction_expr (neg_cond, else_assertion, context);
return _disjunction_expr (then_assertion, else_assertion,
context);
}
case Stmt::StmtClass::SwitchStmtClass: {
/* Handle a switch statement.
* Transformations:
* switch (C) { L1: S1; L2: S2; …; Lz: Sz } ↦ NULL
* FIXME: This should get a proper transformation sometime. */
return NULL;
}
case Stmt::StmtClass::AttributedStmtClass: {
/* Handle an attributed statement, e.g. G_LIKELY(…).
* Transformations:
* att S ↦ calc(S) */
AttributedStmt& attr_stmt = cast<AttributedStmt> (stmt);
Stmt* sub_stmt = attr_stmt.getSubStmt ();
if (sub_stmt == NULL)
return NULL;
return is_assertion_stmt (*sub_stmt, context);
}
case Stmt::StmtClass::CompoundStmtClass: {
/* Handle a compound statement, e.g. { stmt1; stmt2; }.
* Transformations:
* S1; S2; …; Sz ↦ calc(S1) ∧ calc(S2) ∧ … ∧ calc(Sz)
* {} ↦ TRUE
*
* This is implemented by starting with a base TRUE case in the
* compound_condition, then taking the conjunction with the next
* statement’s assertion condition for each statement in the
* compound.
*
* If the compound is empty, the compound_condition will be
* TRUE. Otherwise, it will be (TRUE ∧ …), which will be
* simplified later. */
CompoundStmt& compound_stmt = cast<CompoundStmt> (stmt);
Expr* compound_condition =
new (context)
IntegerLiteral (context,
context.MakeIntValue (1, context.getLogicalOperationType ()),
context.getLogicalOperationType (),
SourceLocation ());
for (CompoundStmt::const_body_iterator it =
compound_stmt.body_begin (),
ie = compound_stmt.body_end (); it != ie; ++it) {
Stmt* body_stmt = *it;
Expr* body_assertion =
is_assertion_stmt (*body_stmt, context);
if (body_assertion == NULL) {
/* Reached a program state mutation. */
return NULL;
}
/* Update the compound condition. */
compound_condition =
_conjunction_expr (compound_condition,
body_assertion, context);
DEBUG_EXPR ("Compound condition: ", *compound_condition);
}
return compound_condition;
}
case Stmt::StmtClass::GotoStmtClass:
/* Handle a goto statement.
* Transformations:
* goto L ↦ FALSE */
case Stmt::StmtClass::ReturnStmtClass: {
/* Handle a return statement.
* Transformations:
* return ↦ FALSE */
return new (context)
IntegerLiteral (context,
context.MakeIntValue (0, context.getLogicalOperationType ()),
context.getLogicalOperationType (),
SourceLocation ());
}
case Stmt::StmtClass::NullStmtClass:
/* Handle a null statement.
* Transformations:
* ; ↦ TRUE */
case Stmt::StmtClass::DeclRefExprClass:
/* Handle a variable reference expression. These don’t modify
* program state.
* Transformations:
* E ↦ TRUE */
case Stmt::StmtClass::DeclStmtClass: {
/* Handle a variable declaration statement. These don’t modify
* program state; they only introduce new state, so can’t affect
* subsequent assertions. (FIXME: For the moment, we ignore the
* possibility of the rvalue modifying program state.)
* Transformations:
* T S1 ↦ TRUE
* T S1 = S2 ↦ TRUE */
return new (context)
IntegerLiteral (context,
context.MakeIntValue (1, context.getLogicalOperationType ()),
context.getLogicalOperationType (),
SourceLocation ());
}
case Stmt::StmtClass::IntegerLiteralClass: {
/* Handle an integer literal. This doesn’t modify program state,
* and evaluates directly to a boolean.
* Transformations:
* 0 ↦ FALSE
* I ↦ TRUE */
return dyn_cast<Expr> (&stmt);
}
case Stmt::StmtClass::ParenExprClass: {
/* Handle a parenthesised expression.
* Transformations:
* ( S ) ↦ calc(S) */
ParenExpr& paren_expr = cast<ParenExpr> (stmt);
Stmt* sub_expr = paren_expr.getSubExpr ();
if (sub_expr == NULL)
return NULL;
return is_assertion_stmt (*sub_expr, context);
}
case Stmt::StmtClass::LabelStmtClass: {
/* Handle a label statement.
* Transformations:
* label: S ↦ calc(S) */
LabelStmt& label_stmt = cast<LabelStmt> (stmt);
Stmt* sub_stmt = label_stmt.getSubStmt ();
if (sub_stmt == NULL)
return NULL;
return is_assertion_stmt (*sub_stmt, context);
}
case Stmt::StmtClass::ImplicitCastExprClass:
case Stmt::StmtClass::CStyleCastExprClass: {
/* Handle an explicit or implicit cast.
* Transformations:
* (T) S ↦ calc(S) */
CastExpr& cast_expr = cast<CastExpr> (stmt);
Stmt* sub_expr = cast_expr.getSubExpr ();
if (sub_expr == NULL)
return NULL;
return is_assertion_stmt (*sub_expr, context);
}
case Stmt::StmtClass::GCCAsmStmtClass:
case Stmt::StmtClass::MSAsmStmtClass:
/* Inline assembly. There is no way we are parsing this, so
* conservatively assume it modifies program state.
* Transformations:
* A ↦ NULL */
case Stmt::StmtClass::BinaryOperatorClass:
/* Handle a binary operator statement. Since this is being
* processed at the top level, it’s most likely an assignment,
* so conservatively assume it modifies program state.
* Transformations:
* S1 op S2 ↦ NULL */
case Stmt::StmtClass::UnaryOperatorClass:
/* Handle a unary operator statement. Since this is being
* processed at the top level, it’s not very interesting re.
* assertions, even though it probably won’t modify program
* state (unless it’s a pre- or post-increment or -decrement
* operator). Be conservative and assume it does, though.
* Transformations:
* op S ↦ NULL */
case Stmt::StmtClass::CompoundAssignOperatorClass:
/* Handle a compound assignment operator, e.g. x += 5. This
* definitely modifies program state, so ignore it.
* Transformations:
* S1 op S2 ↦ NULL */
case Stmt::StmtClass::ForStmtClass:
/* Handle a for statement. We assume these *always* change
* program state.
* Transformations:
* for (…) { … } ↦ NULL */
case Stmt::StmtClass::WhileStmtClass: {
/* Handle a while(…) { … } block. Because we don't want to solve
* the halting problem, just assume all while statements cannot
* be assertion statements.
* Transformations:
* while (C) { S } ↦ NULL
*/
return NULL;
}
case Stmt::StmtClass::NoStmtClass:
default:
WARN_EXPR (__func__ << "() can’t handle statements of type " <<
stmt.getStmtClassName (), stmt);
return NULL;
}
}
/* Simplify a logical expression. Currently this eliminates extra parens and
* casts, and performs basic boolean simplification according to common
* identities.
*
* FIXME: Ideally, this should should be a full boolean expression minimiser,
* returning in disjunctive normal form. */
static Expr*
_simplify_boolean_expr (Expr* expr, const ASTContext& context)
{
expr = expr->IgnoreParens ();
DEBUG ("Simplifying boolean expression of type " <<
expr->getStmtClassName ());
if (expr->getStmtClass () == Expr::UnaryOperatorClass) {
UnaryOperator& op_expr = cast<UnaryOperator> (*expr);
Expr* sub_expr =
_simplify_boolean_expr (op_expr.getSubExpr (), context);
if (op_expr.getOpcode () != UnaryOperatorKind::UO_LNot) {
/* op S ↦ op simplify(S) */
op_expr.setSubExpr (sub_expr);
return expr;
}
if (sub_expr->getStmtClass () == Expr::UnaryOperatorClass) {
UnaryOperator& op_sub_expr =
cast<UnaryOperator> (*sub_expr);
Expr* sub_sub_expr =
_simplify_boolean_expr (
op_sub_expr.getSubExpr (), context);
if (op_sub_expr.getOpcode () ==
UnaryOperatorKind::UO_LNot) {
/* ! ! S ↦ simplify(S) */
return sub_sub_expr;
}
/* ! op S ↦ ! op simplify(S) */
op_sub_expr.setSubExpr (sub_sub_expr);
return expr;
} else if (sub_expr->getStmtClass () ==
Expr::BinaryOperatorClass) {
BinaryOperator& op_sub_expr =
cast<BinaryOperator> (*sub_expr);
Expr* lhs =
_simplify_boolean_expr (
op_sub_expr.getLHS (), context);
Expr* rhs =
_simplify_boolean_expr (
op_sub_expr.getRHS (), context);
if (op_sub_expr.getOpcode () ==
BinaryOperatorKind::BO_EQ ||
op_sub_expr.getOpcode () ==
BinaryOperatorKind::BO_NE) {
/* ! (S1 == S2) ↦
* simplify(S1) != simplify(S2)
* or
* ! (S1 != S2) ↦
* simplify(S1) == simplify(S2) */
BinaryOperatorKind opcode =
(op_sub_expr.getOpcode () ==
BinaryOperatorKind::BO_EQ) ?
BinaryOperatorKind::BO_NE :
BinaryOperatorKind::BO_EQ;
return new (context)
BinaryOperator (lhs, rhs, opcode,
context.getLogicalOperationType (),
VK_RValue, OK_Ordinary, SourceLocation (),
FPOptions ());
}
/* ! (S1 op S2) ↦ ! (simplify(S1) op simplify(S2)) */
op_sub_expr.setLHS (lhs);
op_sub_expr.setRHS (rhs);
return expr;
}
} else if (expr->getStmtClass () == Expr::BinaryOperatorClass) {
BinaryOperator& op_expr = cast<BinaryOperator> (*expr);
Expr* lhs = _simplify_boolean_expr (op_expr.getLHS (), context);
Expr* rhs = _simplify_boolean_expr (op_expr.getRHS (), context);
/* Guaranteed one-hot. */
bool is_and =
op_expr.getOpcode () == BinaryOperatorKind::BO_LAnd;
bool is_or =
op_expr.getOpcode () == BinaryOperatorKind::BO_LOr;
if (!is_and && !is_or) {
/* S1 op S2 ↦ simplify(S1) op simplify(S2) */
op_expr.setLHS (lhs);
op_expr.setRHS (rhs);
return expr;
}
llvm::APSInt bool_expr;
if (lhs->isIntegerConstantExpr (bool_expr, context)) {
if (is_or && bool_expr.getBoolValue ()) {
/* 1 || S2 ↦ 1 */
return new (context)
IntegerLiteral (context,
context.MakeIntValue (1, context.getLogicalOperationType ()),
context.getLogicalOperationType (),
SourceLocation ());
} else if (is_and && !bool_expr.getBoolValue ()) {
/* 0 && S2 ↦ 0 */
return new (context)
IntegerLiteral (context,
context.MakeIntValue (0, context.getLogicalOperationType ()),
context.getLogicalOperationType (),
SourceLocation ());
} else {
/* 1 && S2 ↦ simplify(S2)
* or
* 0 || S2 ↦ simplify(S2) */
return rhs;
}
} else if (rhs->isIntegerConstantExpr (bool_expr, context)) {
if (is_or && bool_expr.getBoolValue ()) {
/* S1 || 1 ↦ 1 */
return new (context)
IntegerLiteral (context,
context.MakeIntValue (1, context.getLogicalOperationType ()),
context.getLogicalOperationType (),
SourceLocation ());
} else if (is_and && !bool_expr.getBoolValue ()) {
/* S2 && 0 ↦ 0 */
return new (context)
IntegerLiteral (context,
context.MakeIntValue (0, context.getLogicalOperationType ()),
context.getLogicalOperationType (),
SourceLocation ());
} else {
/* S1 && 1 ↦ simplify(S1)
* or
* S1 || 0 ↦ simplify(S1) */
return lhs;
}
}
/* S1 op S2 ↦ simplify(S1) op simplify(S2) */
op_expr.setLHS (lhs);
op_expr.setRHS (rhs);
return expr;
}
return expr;
}
/* Calculate whether an assertion is a standard GObject type check.
* .e.g. NSPACE_IS_OBJ(x).
*
* This is complicated by the fact that type checking is done by macros, which
* expand to something like:
* (((__extension__ ({
* GTypeInstance *__inst = (GTypeInstance *)((x));
* GType __t = ((nspace_obj_get_type()));
* gboolean __r;
* if (!__inst)
* __r = (0);
* else if (__inst->g_class && __inst->g_class->g_type == __t)
* __r = (!(0));
* else
* __r = g_type_check_instance_is_a(__inst, __t);
* __r;
* }))))
*
* Insert the ValueDecls of the variables being checked into the provided
* unordered_set, and return the number of such insertions (this will be 0 if no
* variables are type checked). The returned number may be an over-estimate
* of the number of elements in the set, as it doesn’t account for
* duplicates. */
static unsigned int
_assertion_is_gobject_type_check (Expr& assertion_expr,
const ASTContext& context,
std::unordered_set<const ValueDecl*>& ret)
{
DEBUG_EXPR (__func__ << ": ", assertion_expr);
switch ((int) assertion_expr.getStmtClass ()) {
case Expr::StmtExprClass: {
/* Parse all the way through the statement expression, checking
* if the first statement is an assignment to the __inst
* variable, as in the macro expansion given above.
*
* This is a particularly shoddy way of checking for a GObject
* type check (we should really check for a
* g_type_check_instance_is_a() call) but this will do for
* now. */
StmtExpr& stmt_expr = cast<StmtExpr> (assertion_expr);
CompoundStmt* compound_stmt = stmt_expr.getSubStmt ();
const Stmt* first_stmt = *(compound_stmt->body_begin ());
if (first_stmt->getStmtClass () != Expr::DeclStmtClass)
return 0;
const DeclStmt& decl_stmt = cast<DeclStmt> (*first_stmt);
const VarDecl* decl =
dyn_cast<VarDecl> (decl_stmt.getSingleDecl ());
if (decl == NULL)
return 0;
if (decl->getNameAsString () != "__inst")
return 0;
const Expr* init =
decl->getAnyInitializer ()->IgnoreParenCasts ();
const DeclRefExpr* decl_expr = dyn_cast<DeclRefExpr> (init);
if (decl_expr != NULL) {
ret.insert (decl_expr->getDecl ());
return 1;
}
return 0;
}
case Expr::IntegerLiteralClass:
case Expr::BinaryOperatorClass:
case Expr::UnaryOperatorClass:
case Expr::ConditionalOperatorClass:
case Expr::CallExprClass:
case Expr::ImplicitCastExprClass: {
/* These can’t be type checks. */
return 0;
}
case Stmt::StmtClass::NoStmtClass:
default:
WARN_EXPR (__func__ << "() can’t handle expressions of type " <<
assertion_expr.getStmtClassName (), assertion_expr);
return 0;
}
}
/* Calculate whether an assertion is a standard non-NULL check.
* e.g. (x != NULL), (x), (x != NULL && …) or (x && …).
*
* Insert the ValueDecls of the variables being checked into the provided
* unordered_set, and return the number of such insertions (this will be 0 if no
* variables are non-NULL checked). The returned number may be an over-estimate
* of the number of elements in the set, as it doesn’t account for
* duplicates. */
static unsigned int
_assertion_is_explicit_nonnull_check (Expr& assertion_expr,
const ASTContext& context,
std::unordered_set<const ValueDecl*>& ret)
{
DEBUG_EXPR (__func__ << ": ", assertion_expr);
switch ((int) assertion_expr.getStmtClass ()) {
case Expr::BinaryOperatorClass: {
BinaryOperator& bin_expr =
cast<BinaryOperator> (assertion_expr);
BinaryOperatorKind opcode = bin_expr.getOpcode ();
if (opcode == BinaryOperatorKind::BO_LAnd) {
/* LHS && RHS */
unsigned int lhs_count =
AssertionExtracter::assertion_is_nonnull_check (*(bin_expr.getLHS ()), context, ret);
unsigned int rhs_count =
AssertionExtracter::assertion_is_nonnull_check (*(bin_expr.getRHS ()), context, ret);
return lhs_count + rhs_count;
} else if (opcode == BinaryOperatorKind::BO_LOr) {
/* LHS || RHS */
std::unordered_set<const ValueDecl*> lhs_vars, rhs_vars;
unsigned int lhs_count =
AssertionExtracter::assertion_is_nonnull_check (*(bin_expr.getLHS ()), context, lhs_vars);
unsigned int rhs_count =
AssertionExtracter::assertion_is_nonnull_check (*(bin_expr.getRHS ()), context, rhs_vars);
std::set_intersection (lhs_vars.begin (),
lhs_vars.end (),
rhs_vars.begin (),
rhs_vars.end (),
std::inserter (ret, ret.end ()));
return lhs_count + rhs_count;
} else if (opcode == BinaryOperatorKind::BO_NE) {
/* LHS != RHS */
Expr* rhs = bin_expr.getRHS ();
Expr::NullPointerConstantKind k =
rhs->isNullPointerConstant (const_cast<ASTContext&> (context),
Expr::NullPointerConstantValueDependence::NPC_ValueDependentIsNotNull);
if (k != Expr::NullPointerConstantKind::NPCK_NotNull &&
bin_expr.getLHS ()->IgnoreParenCasts ()->getStmtClass () == Expr::DeclRefExprClass) {
DEBUG ("Found non-NULL check.");
ret.insert (cast<DeclRefExpr> (bin_expr.getLHS ()->IgnoreParenCasts ())->getDecl ());
return 1;
}
/* Either not a comparison to NULL, or the expr being
* compared is not a DeclRefExpr. */
return 0;
}
return 0;
}
case Expr::UnaryOperatorClass: {
/* A unary operator. For the moment, assume this isn't a
* non-null check.
*
* FIXME: In the future, define a proper program transformation
* to check for non-null checks, since we could have expressions
* like:
* !(my_var == NULL)
* or (more weirdly):
* ~(my_var == NULL)
*/
return 0;
}
case Expr::ConditionalOperatorClass: {
/* A conditional operator. For the moment, assume this isn’t a
* non-null check.
*
* FIXME: In the future, define a proper program transformation
* to check for non-null checks, since we could have expressions
* like:
* (x == NULL) ? TRUE : FALSE
*/
return 0;
}
case Expr::CStyleCastExprClass:
case Expr::ImplicitCastExprClass: {
/* A (explicit or implicit) cast. This can either be:
* (void*)0
* or
* (bool)my_var */
CastExpr& cast_expr = cast<CastExpr> (assertion_expr);
Expr* sub_expr = cast_expr.getSubExpr ()->IgnoreParenCasts ();
if (sub_expr->getStmtClass () == Expr::DeclRefExprClass) {
DEBUG ("Found non-NULL check.");
ret.insert (cast<DeclRefExpr> (sub_expr)->getDecl ());
return 1;
}
/* Not a cast to NULL, or the expr being casted is not a
* DeclRefExpr. */
return 0;
}
case Expr::DeclRefExprClass: {
/* A variable reference, which will implicitly become a non-NULL
* check. */
DEBUG ("Found non-NULL check.");
DeclRefExpr& decl_ref_expr = cast<DeclRefExpr> (assertion_expr);
ret.insert (decl_ref_expr.getDecl ());
return 1;
}
case Expr::StmtExprClass:
/* FIXME: Statement expressions can be nonnull checks, but
* detecting them requires a formal program transformation which
* has not been implemented yet. */
case Expr::CallExprClass:
/* Function calls can’t be nonnull checks. */
case Expr::IntegerLiteralClass: {
/* Integer literals can’t be nonnull checks. */
return 0;
}
case Stmt::StmtClass::NoStmtClass:
default:
WARN_EXPR (__func__ << "() can’t handle expressions of type " <<
assertion_expr.getStmtClassName (), assertion_expr);
return 0;
}
}
unsigned int
AssertionExtracter::assertion_is_nonnull_check (Expr& assertion_expr,
const ASTContext& context,
std::unordered_set<const ValueDecl*>& param_decls)
{
/* After this call, assume expr is in boolean disjunctive normal
* form. */
Expr* expr = _simplify_boolean_expr (&assertion_expr, context);
unsigned int explicit_nonnull_count =
_assertion_is_explicit_nonnull_check (*expr, context, param_decls);
unsigned int type_check_count =
_assertion_is_gobject_type_check (*expr, context, param_decls);
return explicit_nonnull_count + type_check_count;
}
|