1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
/*
* ARM SSE (Subsystems for Embedded): IoTKit, SSE-200
*
* Copyright (c) 2018 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/*
* This is a model of the Arm "Subsystems for Embedded" family of
* hardware, which include the IoT Kit and the SSE-050, SSE-100 and
* SSE-200. Currently we model:
* - the Arm IoT Kit which is documented in
* http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
* - the SSE-200 which is documented in
* http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
*
* The IoTKit contains:
* a Cortex-M33
* the IDAU
* some timers and watchdogs
* two peripheral protection controllers
* a memory protection controller
* a security controller
* a bus fabric which arranges that some parts of the address
* space are secure and non-secure aliases of each other
* The SSE-200 additionally contains:
* a second Cortex-M33
* two Message Handling Units (MHUs)
* an optional CryptoCell (which we do not model)
* more SRAM banks with associated MPCs
* multiple Power Policy Units (PPUs)
* a control interface for an icache for each CPU
* per-CPU identity and control register blocks
*
* QEMU interface:
* + QOM property "memory" is a MemoryRegion containing the devices provided
* by the board model.
* + QOM property "MAINCLK" is the frequency of the main system clock
* + QOM property "EXP_NUMIRQ" sets the number of expansion interrupts.
* (In hardware, the SSE-200 permits the number of expansion interrupts
* for the two CPUs to be configured separately, but we restrict it to
* being the same for both, to avoid having to have separate Property
* lists for different variants. This restriction can be relaxed later
* if necessary.)
* + Named GPIO inputs "EXP_IRQ" 0..n are the expansion interrupts for CPU 0,
* which are wired to its NVIC lines 32 .. n+32
* + Named GPIO inputs "EXP_CPU1_IRQ" 0..n are the expansion interrupts for
* CPU 1, which are wired to its NVIC lines 32 .. n+32
* + sysbus MMIO region 0 is the "AHB Slave Expansion" which allows
* bus master devices in the board model to make transactions into
* all the devices and memory areas in the IoTKit
* Controlling up to 4 AHB expansion PPBs which a system using the IoTKit
* might provide:
* + named GPIO outputs apb_ppcexp{0,1,2,3}_nonsec[0..15]
* + named GPIO outputs apb_ppcexp{0,1,2,3}_ap[0..15]
* + named GPIO outputs apb_ppcexp{0,1,2,3}_irq_enable
* + named GPIO outputs apb_ppcexp{0,1,2,3}_irq_clear
* + named GPIO inputs apb_ppcexp{0,1,2,3}_irq_status
* Controlling each of the 4 expansion AHB PPCs which a system using the IoTKit
* might provide:
* + named GPIO outputs ahb_ppcexp{0,1,2,3}_nonsec[0..15]
* + named GPIO outputs ahb_ppcexp{0,1,2,3}_ap[0..15]
* + named GPIO outputs ahb_ppcexp{0,1,2,3}_irq_enable
* + named GPIO outputs ahb_ppcexp{0,1,2,3}_irq_clear
* + named GPIO inputs ahb_ppcexp{0,1,2,3}_irq_status
* Controlling each of the 16 expansion MPCs which a system using the IoTKit
* might provide:
* + named GPIO inputs mpcexp_status[0..15]
* Controlling each of the 16 expansion MSCs which a system using the IoTKit
* might provide:
* + named GPIO inputs mscexp_status[0..15]
* + named GPIO outputs mscexp_clear[0..15]
* + named GPIO outputs mscexp_ns[0..15]
*/
#ifndef ARMSSE_H
#define ARMSSE_H
#include "hw/sysbus.h"
#include "hw/arm/armv7m.h"
#include "hw/misc/iotkit-secctl.h"
#include "hw/misc/tz-ppc.h"
#include "hw/misc/tz-mpc.h"
#include "hw/timer/cmsdk-apb-timer.h"
#include "hw/timer/cmsdk-apb-dualtimer.h"
#include "hw/watchdog/cmsdk-apb-watchdog.h"
#include "hw/misc/iotkit-sysctl.h"
#include "hw/misc/iotkit-sysinfo.h"
#include "hw/misc/armsse-cpuid.h"
#include "hw/misc/unimp.h"
#include "hw/or-irq.h"
#include "hw/core/split-irq.h"
#include "hw/cpu/cluster.h"
#define TYPE_ARMSSE "arm-sse"
#define ARMSSE(obj) OBJECT_CHECK(ARMSSE, (obj), TYPE_ARMSSE)
/*
* These type names are for specific IoTKit subsystems; other than
* instantiating them, code using these devices should always handle
* them via the ARMSSE base class, so they have no IOTKIT() etc macros.
*/
#define TYPE_IOTKIT "iotkit"
#define TYPE_SSE200 "sse-200"
/* We have an IRQ splitter and an OR gate input for each external PPC
* and the 2 internal PPCs
*/
#define NUM_EXTERNAL_PPCS (IOTS_NUM_AHB_EXP_PPC + IOTS_NUM_APB_EXP_PPC)
#define NUM_PPCS (NUM_EXTERNAL_PPCS + 2)
#define MAX_SRAM_BANKS 4
#if MAX_SRAM_BANKS > IOTS_NUM_MPC
#error Too many SRAM banks
#endif
#define SSE_MAX_CPUS 2
/* These define what each PPU in the ppu[] index is for */
#define CPU0CORE_PPU 0
#define CPU1CORE_PPU 1
#define DBG_PPU 2
#define RAM0_PPU 3
#define RAM1_PPU 4
#define RAM2_PPU 5
#define RAM3_PPU 6
#define NUM_PPUS 7
typedef struct ARMSSE {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
ARMv7MState armv7m[SSE_MAX_CPUS];
CPUClusterState cluster[SSE_MAX_CPUS];
IoTKitSecCtl secctl;
TZPPC apb_ppc0;
TZPPC apb_ppc1;
TZMPC mpc[IOTS_NUM_MPC];
CMSDKAPBTIMER timer0;
CMSDKAPBTIMER timer1;
CMSDKAPBTIMER s32ktimer;
qemu_or_irq ppc_irq_orgate;
SplitIRQ sec_resp_splitter;
SplitIRQ ppc_irq_splitter[NUM_PPCS];
SplitIRQ mpc_irq_splitter[IOTS_NUM_EXP_MPC + IOTS_NUM_MPC];
qemu_or_irq mpc_irq_orgate;
qemu_or_irq nmi_orgate;
SplitIRQ cpu_irq_splitter[32];
CMSDKAPBDualTimer dualtimer;
CMSDKAPBWatchdog s32kwatchdog;
CMSDKAPBWatchdog nswatchdog;
CMSDKAPBWatchdog swatchdog;
IoTKitSysCtl sysctl;
IoTKitSysCtl sysinfo;
UnimplementedDeviceState mhu[2];
UnimplementedDeviceState ppu[NUM_PPUS];
UnimplementedDeviceState cachectrl[SSE_MAX_CPUS];
UnimplementedDeviceState cpusecctrl[SSE_MAX_CPUS];
ARMSSECPUID cpuid[SSE_MAX_CPUS];
/*
* 'container' holds all devices seen by all CPUs.
* 'cpu_container[i]' is the view that CPU i has: this has the
* per-CPU devices of that CPU, plus as the background 'container'
* (or an alias of it, since we can only use it directly once).
* container_alias[i] is the alias of 'container' used by CPU i+1;
* CPU 0 can use 'container' directly.
*/
MemoryRegion container;
MemoryRegion container_alias[SSE_MAX_CPUS - 1];
MemoryRegion cpu_container[SSE_MAX_CPUS];
MemoryRegion alias1;
MemoryRegion alias2;
MemoryRegion alias3;
MemoryRegion sram[MAX_SRAM_BANKS];
qemu_irq *exp_irqs[SSE_MAX_CPUS];
qemu_irq ppc0_irq;
qemu_irq ppc1_irq;
qemu_irq sec_resp_cfg;
qemu_irq sec_resp_cfg_in;
qemu_irq nsc_cfg_in;
qemu_irq irq_status_in[NUM_EXTERNAL_PPCS];
qemu_irq mpcexp_status_in[IOTS_NUM_EXP_MPC];
uint32_t nsccfg;
/* Properties */
MemoryRegion *board_memory;
uint32_t exp_numirq;
uint32_t mainclk_frq;
uint32_t sram_addr_width;
} ARMSSE;
typedef struct ARMSSEInfo ARMSSEInfo;
typedef struct ARMSSEClass {
DeviceClass parent_class;
const ARMSSEInfo *info;
} ARMSSEClass;
#define ARMSSE_CLASS(klass) \
OBJECT_CLASS_CHECK(ARMSSEClass, (klass), TYPE_ARMSSE)
#define ARMSSE_GET_CLASS(obj) \
OBJECT_GET_CLASS(ARMSSEClass, (obj), TYPE_ARMSSE)
#endif
|