1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
|
[require]
GLSL >= 3.30
[fragment shader]
#version 330
#define GLES_OVER_GL
#define MAX_LIGHT_DATA_STRUCTS 409
#define MAX_FORWARD_LIGHTS 32
#define MAX_REFLECTION_DATA_STRUCTS 455
#define MAX_SKELETON_BONES 1365
#define USE_SKELETON
#define USE_LIGHT_DIRECTIONAL
#define USE_FORWARD_LIGHTING
#define SHADOW_MODE_PCF_13
#define USE_LIGHTMAP_FILTER_BICUBIC
#define DIFFUSE_BURLEY
#define SPECULAR_SCHLICK_GGX
#define USE_MATERIAL
#define ENABLE_UV_INTERP
precision highp float;
precision highp int;
/* texture unit usage, N is max_texture_unity-N
1-skeleton
2-radiance
3-reflection_atlas
4-directional_shadow
5-shadow_atlas
6-decal_atlas
7-screen
8-depth
9-probe1
10-probe2
*/
uniform highp mat4 world_transform;
/* clang-format on */
#define M_PI 3.14159265359
#define SHADER_IS_SRGB false
/* Varyings */
#if defined(ENABLE_COLOR_INTERP)
in vec4 color_interp;
#endif
#if defined(ENABLE_UV_INTERP)
in vec2 uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
in vec2 uv2_interp;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
in vec3 tangent_interp;
in vec3 binormal_interp;
#endif
in highp vec3 vertex_interp;
in vec3 normal_interp;
/* PBR CHANNELS */
#ifdef USE_RADIANCE_MAP
layout(std140) uniform Radiance { // ubo:2
mat4 radiance_inverse_xform;
float radiance_ambient_contribution;
};
#define RADIANCE_MAX_LOD 5.0
uniform sampler2D irradiance_map; // texunit:-6
#ifdef USE_RADIANCE_MAP_ARRAY
uniform sampler2DArray radiance_map; // texunit:-2
vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec, float p_roughness) {
vec3 norm = normalize(p_vec);
norm.xy /= 1.0 + abs(norm.z);
norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
// we need to lie the derivatives (normg) and assume that DP side is always the same
// to get proper texture filtering
vec2 normg = norm.xy;
if (norm.z > 0.0) {
norm.y = 0.5 - norm.y + 0.5;
}
// thanks to OpenGL spec using floor(layer + 0.5) for texture arrays,
// it's easy to have precision errors using fract() to interpolate layers
// as such, using fixed point to ensure it works.
float index = p_roughness * RADIANCE_MAX_LOD;
int indexi = int(index * 256.0);
vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256)), dFdx(normg), dFdy(normg)).xyz;
vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256 + 1)), dFdx(normg), dFdy(normg)).xyz;
return mix(base, next, float(indexi % 256) / 256.0);
}
#else
uniform sampler2D radiance_map; // texunit:-2
vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec, float p_roughness) {
vec3 norm = normalize(p_vec);
norm.xy /= 1.0 + abs(norm.z);
norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
if (norm.z > 0.0) {
norm.y = 0.5 - norm.y + 0.5;
}
return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz;
}
#endif
#endif
/* Material Uniforms */
#if defined(USE_MATERIAL)
/* clang-format off */
layout(std140) uniform UniformData {
vec4 m_albedo;
float m_specular;
float m_metallic;
float m_roughness;
float m_point_size;
vec3 m_uv1_scale;
vec3 m_uv1_offset;
vec3 m_uv2_scale;
vec3 m_uv2_offset;
};
/* clang-format on */
#endif
layout(std140) uniform SceneData {
highp mat4 projection_matrix;
highp mat4 inv_projection_matrix;
highp mat4 camera_inverse_matrix;
highp mat4 camera_matrix;
mediump vec4 ambient_light_color;
mediump vec4 bg_color;
mediump vec4 fog_color_enabled;
mediump vec4 fog_sun_color_amount;
mediump float ambient_energy;
mediump float bg_energy;
mediump float z_offset;
mediump float z_slope_scale;
highp float shadow_dual_paraboloid_render_zfar;
highp float shadow_dual_paraboloid_render_side;
highp vec2 viewport_size;
highp vec2 screen_pixel_size;
highp vec2 shadow_atlas_pixel_size;
highp vec2 directional_shadow_pixel_size;
highp float time;
highp float z_far;
mediump float reflection_multiplier;
mediump float subsurface_scatter_width;
mediump float ambient_occlusion_affect_light;
mediump float ambient_occlusion_affect_ao_channel;
mediump float opaque_prepass_threshold;
bool fog_depth_enabled;
highp float fog_depth_begin;
highp float fog_depth_end;
mediump float fog_density;
highp float fog_depth_curve;
bool fog_transmit_enabled;
highp float fog_transmit_curve;
bool fog_height_enabled;
highp float fog_height_min;
highp float fog_height_max;
highp float fog_height_curve;
int view_index;
};
/* clang-format off */
uniform sampler2D m_texture_albedo;
/* clang-format on */
//directional light data
#ifdef USE_LIGHT_DIRECTIONAL
layout(std140) uniform DirectionalLightData {
highp vec4 light_pos_inv_radius;
mediump vec4 light_direction_attenuation;
mediump vec4 light_color_energy;
mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
mediump vec4 light_clamp;
mediump vec4 shadow_color_contact;
highp mat4 shadow_matrix1;
highp mat4 shadow_matrix2;
highp mat4 shadow_matrix3;
highp mat4 shadow_matrix4;
mediump vec4 shadow_split_offsets;
};
uniform highp sampler2DShadow directional_shadow; // texunit:-4
#endif
#ifdef USE_VERTEX_LIGHTING
in vec4 diffuse_light_interp;
in vec4 specular_light_interp;
#endif
// omni and spot
struct LightData {
highp vec4 light_pos_inv_radius;
mediump vec4 light_direction_attenuation;
mediump vec4 light_color_energy;
mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
mediump vec4 light_clamp;
mediump vec4 shadow_color_contact;
highp mat4 shadow_matrix;
};
layout(std140) uniform OmniLightData { // ubo:4
LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
};
layout(std140) uniform SpotLightData { // ubo:5
LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
};
uniform highp sampler2DShadow shadow_atlas; // texunit:-5
struct ReflectionData {
mediump vec4 box_extents;
mediump vec4 box_offset;
mediump vec4 params; // intensity, 0, interior , boxproject
mediump vec4 ambient; // ambient color, energy
mediump vec4 atlas_clamp;
highp mat4 local_matrix; // up to here for spot and omni, rest is for directional
// notes: for ambientblend, use distance to edge to blend between already existing global environment
};
layout(std140) uniform ReflectionProbeData { //ubo:6
ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS];
};
uniform mediump sampler2D reflection_atlas; // texunit:-3
#ifdef USE_FORWARD_LIGHTING
uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
uniform int omni_light_count;
uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
uniform int spot_light_count;
uniform int reflection_indices[MAX_FORWARD_LIGHTS];
uniform int reflection_count;
#endif
#if defined(SCREEN_TEXTURE_USED)
uniform highp sampler2D screen_texture; // texunit:-7
#endif
#ifdef USE_MULTIPLE_RENDER_TARGETS
layout(location = 0) out vec4 diffuse_buffer;
layout(location = 1) out vec4 specular_buffer;
layout(location = 2) out vec4 normal_mr_buffer;
#if defined(ENABLE_SSS)
layout(location = 3) out float sss_buffer;
#endif
#else
layout(location = 0) out vec4 frag_color;
#endif
in highp vec4 position_interp;
uniform highp sampler2D depth_buffer; // texunit:-8
#ifdef USE_CONTACT_SHADOWS
float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) {
if (abs(dir.z) > 0.99)
return 1.0;
vec3 endpoint = pos + dir * max_distance;
vec4 source = position_interp;
vec4 dest = projection_matrix * vec4(endpoint, 1.0);
vec2 from_screen = (source.xy / source.w) * 0.5 + 0.5;
vec2 to_screen = (dest.xy / dest.w) * 0.5 + 0.5;
vec2 screen_rel = to_screen - from_screen;
if (length(screen_rel) < 0.00001)
return 1.0; // too small, don't do anything
/*
float pixel_size; // approximate pixel size
if (screen_rel.x > screen_rel.y) {
pixel_size = abs((pos.x - endpoint.x) / (screen_rel.x / screen_pixel_size.x));
} else {
pixel_size = abs((pos.y - endpoint.y) / (screen_rel.y / screen_pixel_size.y));
}
*/
vec4 bias = projection_matrix * vec4(pos + vec3(0.0, 0.0, max_distance * 0.5), 1.0);
vec2 pixel_incr = normalize(screen_rel) * screen_pixel_size;
float steps = length(screen_rel) / length(pixel_incr);
steps = min(2000.0, steps); // put a limit to avoid freezing in some strange situation
//steps = 10.0;
vec4 incr = (dest - source) / steps;
float ratio = 0.0;
float ratio_incr = 1.0 / steps;
while (steps > 0.0) {
source += incr * 2.0;
bias += incr * 2.0;
vec3 uv_depth = (source.xyz / source.w) * 0.5 + 0.5;
if (uv_depth.x > 0.0 && uv_depth.x < 1.0 && uv_depth.y > 0.0 && uv_depth.y < 1.0) {
float depth = texture(depth_buffer, uv_depth.xy).r;
if (depth < uv_depth.z) {
if (depth > (bias.z / bias.w) * 0.5 + 0.5) {
return min(pow(ratio, 4.0), 1.0);
} else {
return 1.0;
}
}
ratio += ratio_incr;
steps -= 1.0;
} else {
return 1.0;
}
}
return 1.0;
}
#endif
// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
// We're dividing this factor off because the overall term we'll end up looks like
// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
//
// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
//
// We're basically regouping this as
//
// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
//
// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
//
// The contents of the D and G (G1) functions (GGX) are taken from
// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
float G_GGX_2cos(float cos_theta_m, float alpha) {
// Schlick's approximation
// C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
// Eq. (19), although see Heitz (2014) the about the problems with his derivation.
// It nevertheless approximates GGX well with k = alpha/2.
float k = 0.5 * alpha;
return 0.5 / (cos_theta_m * (1.0 - k) + k);
// float cos2 = cos_theta_m * cos_theta_m;
// float sin2 = (1.0 - cos2);
// return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
}
float D_GGX(float cos_theta_m, float alpha) {
float alpha2 = alpha * alpha;
float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
return alpha2 / (M_PI * d * d);
}
float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float cos2 = cos_theta_m * cos_theta_m;
float sin2 = (1.0 - cos2);
float s_x = alpha_x * cos_phi;
float s_y = alpha_y * sin_phi;
return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
}
float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float cos2 = cos_theta_m * cos_theta_m;
float sin2 = (1.0 - cos2);
float r_x = cos_phi / alpha_x;
float r_y = sin_phi / alpha_y;
float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001);
}
float SchlickFresnel(float u) {
float m = 1.0 - u;
float m2 = m * m;
return m2 * m2 * m; // pow(m,5)
}
float GTR1(float NdotH, float a) {
if (a >= 1.0)
return 1.0 / M_PI;
float a2 = a * a;
float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
return (a2 - 1.0) / (M_PI * log(a2) * t);
}
vec3 F0(float metallic, float specular, vec3 albedo) {
float dielectric = 0.16 * specular * specular;
// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
// see https://google.github.io/filament/Filament.md.html
return mix(vec3(dielectric), albedo, vec3(metallic));
}
void light_compute(vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec3 attenuation, vec3 diffuse_color, vec3 transmission, float specular_blob_intensity, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light, inout float alpha) {
#if defined(USE_LIGHT_SHADER_CODE)
// light is written by the light shader
vec3 normal = N;
vec3 albedo = diffuse_color;
vec3 light = L;
vec3 view = V;
/* clang-format off */
/* clang-format on */
#else
float NdotL = dot(N, L);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
float cNdotV = max(NdotV, 0.0);
/* Make a default specular mode SPECULAR_SCHLICK_GGX. */
#if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN) && !defined(SPECULAR_PHONG) && !defined(SPECULAR_TOON)
#define SPECULAR_SCHLICK_GGX
#endif
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
vec3 H = normalize(V + L);
#endif
#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
float cNdotH = max(dot(N, H), 0.0);
#endif
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
float cLdotH = max(dot(L, H), 0.0);
#endif
if (metallic < 1.0) {
#if defined(DIFFUSE_OREN_NAYAR)
vec3 diffuse_brdf_NL;
#else
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
#endif
#if defined(DIFFUSE_LAMBERT_WRAP)
// energy conserving lambert wrap shader
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
#elif defined(DIFFUSE_OREN_NAYAR)
{
// see http://mimosa-pudica.net/improved-oren-nayar.html
float LdotV = dot(L, V);
float s = LdotV - NdotL * NdotV;
float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
float sigma2 = roughness * roughness; // TODO: this needs checking
vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
float B = 0.45 * sigma2 / (sigma2 + 0.09);
diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
}
#elif defined(DIFFUSE_TOON)
diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
#elif defined(DIFFUSE_BURLEY)
{
float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
/*
float energyBias = mix(roughness, 0.0, 0.5);
float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
float f0 = 1.0;
float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
*/
}
#else
// lambert
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
#if defined(TRANSMISSION_USED)
diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation;
#endif
#if defined(LIGHT_USE_RIM)
float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
#endif
}
if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
// D
#if defined(SPECULAR_BLINN)
//normalized blinn
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float blinn = pow(cNdotH, shininess);
blinn *= (shininess + 2.0) * (1.0 / (8.0 * M_PI)); // Normalized NDF and Geometric term
float intensity = blinn;
specular_light += light_color * intensity * specular_blob_intensity * attenuation * diffuse_color * specular;
#elif defined(SPECULAR_PHONG)
vec3 R = normalize(-reflect(L, N));
float cRdotV = max(0.0, dot(R, V));
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float phong = pow(cRdotV, shininess);
phong *= (shininess + 1.0) * (1.0 / (8.0 * M_PI)); // Normalized NDF and Geometric term
float intensity = phong;
specular_light += light_color * intensity * specular_blob_intensity * attenuation * diffuse_color * specular;
#elif defined(SPECULAR_TOON)
vec3 R = normalize(-reflect(L, N));
float RdotV = dot(R, V);
float mid = 1.0 - roughness;
mid *= mid;
float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
diffuse_light += light_color * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection
#elif defined(SPECULAR_DISABLED)
// none..
#elif defined(SPECULAR_SCHLICK_GGX)
// shlick+ggx as default
#if defined(LIGHT_USE_ANISOTROPY)
float alpha_ggx = roughness * roughness;
float aspect = sqrt(1.0 - anisotropy * 0.9);
float ax = alpha_ggx / aspect;
float ay = alpha_ggx * aspect;
float XdotH = dot(T, H);
float YdotH = dot(B, H);
float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
#else
float alpha_ggx = roughness * roughness;
float D = D_GGX(cNdotH, alpha_ggx);
float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
#endif
// F
vec3 f0 = F0(metallic, specular, diffuse_color);
float cLdotH5 = SchlickFresnel(cLdotH);
vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
vec3 specular_brdf_NL = cNdotL * D * F * G;
specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
#endif
#if defined(LIGHT_USE_CLEARCOAT)
#if !defined(SPECULAR_SCHLICK_GGX)
float cLdotH5 = SchlickFresnel(cLdotH);
#endif
float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
float Fr = mix(.04, 1.0, cLdotH5);
float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
#endif
}
#ifdef USE_SHADOW_TO_OPACITY
alpha = min(alpha, clamp(1.0 - length(attenuation), 0.0, 1.0));
#endif
#endif //defined(USE_LIGHT_SHADER_CODE)
}
float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) {
#ifdef SHADOW_MODE_PCF_13
float avg = textureProj(shadow, vec4(pos, depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth, 1.0));
return avg * (1.0 / 13.0);
#endif
#ifdef SHADOW_MODE_PCF_5
float avg = textureProj(shadow, vec4(pos, depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0));
return avg * (1.0 / 5.0);
#endif
#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13)
return textureProj(shadow, vec4(pos, depth, 1.0));
#endif
}
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
in highp float dp_clip;
#endif
#ifdef USE_PHYSICAL_LIGHT_ATTENUATION
float get_omni_attenuation(float distance, float inv_range, float decay) {
float nd = distance * inv_range;
nd *= nd;
nd *= nd; // nd^4
nd = max(1.0 - nd, 0.0);
nd *= nd; // nd^2
return nd * pow(max(distance, 0.0001), -decay);
}
#endif
void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light, inout float alpha) {
vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex;
float light_length = length(light_rel_vec);
float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w;
float omni_attenuation;
if (normalized_distance < 1.0) {
#ifdef USE_PHYSICAL_LIGHT_ATTENUATION
omni_attenuation = get_omni_attenuation(light_length, omni_lights[idx].light_pos_inv_radius.w, omni_lights[idx].light_direction_attenuation.w);
#else
omni_attenuation = pow(1.0 - normalized_distance, omni_lights[idx].light_direction_attenuation.w);
#endif
} else {
omni_attenuation = 0.0;
}
vec3 light_attenuation = vec3(omni_attenuation);
#if !defined(SHADOWS_DISABLED)
#ifdef USE_SHADOW
if (omni_lights[idx].light_params.w > 0.5) {
// there is a shadowmap
highp vec3 splane = (omni_lights[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
float shadow_len = length(splane);
splane = normalize(splane);
vec4 clamp_rect = omni_lights[idx].light_clamp;
if (splane.z >= 0.0) {
splane.z += 1.0;
clamp_rect.y += clamp_rect.w;
} else {
splane.z = 1.0 - splane.z;
/*
if (clamp_rect.z < clamp_rect.w) {
clamp_rect.x += clamp_rect.z;
} else {
clamp_rect.y += clamp_rect.w;
}
*/
}
splane.xy /= splane.z;
splane.xy = splane.xy * 0.5 + 0.5;
splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w;
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, clamp_rect);
#ifdef USE_CONTACT_SHADOWS
if (shadow > 0.01 && omni_lights[idx].shadow_color_contact.a > 0.0) {
float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, omni_lights[idx].shadow_color_contact.a));
shadow = min(shadow, contact_shadow);
}
#endif
light_attenuation *= mix(omni_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow);
}
#endif //USE_SHADOW
#endif //SHADOWS_DISABLED
light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, omni_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, omni_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, specular, rim * omni_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light, alpha);
}
void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light, inout float alpha) {
vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex;
float light_length = length(light_rel_vec);
float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w;
float spot_attenuation;
if (normalized_distance < 1.0) {
#ifdef USE_PHYSICAL_LIGHT_ATTENUATION
spot_attenuation = get_omni_attenuation(light_length, spot_lights[idx].light_pos_inv_radius.w, spot_lights[idx].light_direction_attenuation.w);
#else
spot_attenuation = pow(1.0 - normalized_distance, spot_lights[idx].light_direction_attenuation.w);
#endif
} else {
spot_attenuation = 0.0;
}
vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
float spot_cutoff = spot_lights[idx].light_params.y;
float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff);
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].light_params.x);
vec3 light_attenuation = vec3(spot_attenuation);
#if !defined(SHADOWS_DISABLED)
#ifdef USE_SHADOW
if (spot_lights[idx].light_params.w > 0.5) {
//there is a shadowmap
highp vec4 splane = (spot_lights[idx].shadow_matrix * vec4(vertex, 1.0));
splane.xyz /= splane.w;
float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, spot_lights[idx].light_clamp);
#ifdef USE_CONTACT_SHADOWS
if (shadow > 0.01 && spot_lights[idx].shadow_color_contact.a > 0.0) {
float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, spot_lights[idx].shadow_color_contact.a));
shadow = min(shadow, contact_shadow);
}
#endif
light_attenuation *= mix(spot_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow);
}
#endif //USE_SHADOW
#endif //SHADOWS_DISABLED
light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, spot_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, spot_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, specular, rim * spot_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light, alpha);
}
void reflection_process(int idx, vec3 vertex, vec3 normal, vec3 binormal, vec3 tangent, float roughness, float anisotropy, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) {
vec3 ref_vec = normalize(reflect(vertex, normal));
vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex, 1.0)).xyz;
vec3 box_extents = reflections[idx].box_extents.xyz;
if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
return;
}
vec3 inner_pos = abs(local_pos / box_extents);
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
//make blend more rounded
blend = mix(length(inner_pos), blend, blend);
blend *= blend;
blend = max(0.0, 1.0 - blend);
if (reflections[idx].params.x > 0.0) { // compute reflection
vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec, 0.0)).xyz;
if (reflections[idx].params.w > 0.5) { //box project
vec3 nrdir = normalize(local_ref_vec);
vec3 rbmax = (box_extents - local_pos) / nrdir;
vec3 rbmin = (-box_extents - local_pos) / nrdir;
vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0)));
float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
vec3 posonbox = local_pos + nrdir * fa;
local_ref_vec = posonbox - reflections[idx].box_offset.xyz;
}
vec4 clamp_rect = reflections[idx].atlas_clamp;
vec3 norm = normalize(local_ref_vec);
norm.xy /= 1.0 + abs(norm.z);
norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
if (norm.z > 0.0) {
norm.y = 0.5 - norm.y + 0.5;
}
vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy;
atlas_uv = clamp(atlas_uv, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw);
highp vec4 reflection;
reflection.rgb = textureLod(reflection_atlas, atlas_uv, roughness * 5.0).rgb;
if (reflections[idx].params.z < 0.5) {
reflection.rgb = mix(skybox, reflection.rgb, blend);
}
reflection.rgb *= reflections[idx].params.x;
reflection.a = blend;
reflection.rgb *= reflection.a;
reflection_accum += reflection;
}
#if !defined(USE_LIGHTMAP) && !defined(USE_LIGHTMAP_CAPTURE)
if (reflections[idx].ambient.a > 0.0) { //compute ambient using skybox
vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal, 0.0)).xyz;
vec3 splane = normalize(local_amb_vec);
vec4 clamp_rect = reflections[idx].atlas_clamp;
splane.z *= -1.0;
if (splane.z >= 0.0) {
splane.z += 1.0;
clamp_rect.y += clamp_rect.w;
} else {
splane.z = 1.0 - splane.z;
splane.y = -splane.y;
}
splane.xy /= splane.z;
splane.xy = splane.xy * 0.5 + 0.5;
splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy;
splane.xy = clamp(splane.xy, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw);
highp vec4 ambient_out;
ambient_out.a = blend;
ambient_out.rgb = textureLod(reflection_atlas, splane.xy, 5.0).rgb;
ambient_out.rgb = mix(reflections[idx].ambient.rgb, ambient_out.rgb, reflections[idx].ambient.a);
if (reflections[idx].params.z < 0.5) {
ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
}
ambient_out.rgb *= ambient_out.a;
ambient_accum += ambient_out;
} else {
highp vec4 ambient_out;
ambient_out.a = blend;
ambient_out.rgb = reflections[idx].ambient.rgb;
if (reflections[idx].params.z < 0.5) {
ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
}
ambient_out.rgb *= ambient_out.a;
ambient_accum += ambient_out;
}
#endif
}
#ifdef USE_LIGHTMAP
#ifdef USE_LIGHTMAP_LAYERED
uniform mediump sampler2DArray lightmap; //texunit:-9
uniform int lightmap_layer;
#else
uniform mediump sampler2D lightmap; //texunit:-9
#endif
uniform mediump float lightmap_energy;
#ifdef USE_LIGHTMAP_FILTER_BICUBIC
uniform vec2 lightmap_texture_size;
// w0, w1, w2, and w3 are the four cubic B-spline basis functions
float w0(float a) {
return (1.0 / 6.0) * (a * (a * (-a + 3.0) - 3.0) + 1.0);
}
float w1(float a) {
return (1.0 / 6.0) * (a * a * (3.0 * a - 6.0) + 4.0);
}
float w2(float a) {
return (1.0 / 6.0) * (a * (a * (-3.0 * a + 3.0) + 3.0) + 1.0);
}
float w3(float a) {
return (1.0 / 6.0) * (a * a * a);
}
// g0 and g1 are the two amplitude functions
float g0(float a) {
return w0(a) + w1(a);
}
float g1(float a) {
return w2(a) + w3(a);
}
// h0 and h1 are the two offset functions
float h0(float a) {
return -1.0 + w1(a) / (w0(a) + w1(a));
}
float h1(float a) {
return 1.0 + w3(a) / (w2(a) + w3(a));
}
vec4 texture_bicubic(sampler2D tex, vec2 uv) {
vec2 texel_size = vec2(1.0) / lightmap_texture_size;
uv = uv * lightmap_texture_size + vec2(0.5);
vec2 iuv = floor(uv);
vec2 fuv = fract(uv);
float g0x = g0(fuv.x);
float g1x = g1(fuv.x);
float h0x = h0(fuv.x);
float h1x = h1(fuv.x);
float h0y = h0(fuv.y);
float h1y = h1(fuv.y);
vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5)) * texel_size;
vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5)) * texel_size;
vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5)) * texel_size;
vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5)) * texel_size;
return (g0(fuv.y) * (g0x * texture(tex, p0) + g1x * texture(tex, p1))) +
(g1(fuv.y) * (g0x * texture(tex, p2) + g1x * texture(tex, p3)));
}
vec4 textureArray_bicubic(sampler2DArray tex, vec3 uv) {
vec2 texel_size = vec2(1.0) / lightmap_texture_size;
uv.xy = uv.xy * lightmap_texture_size + vec2(0.5);
vec2 iuv = floor(uv.xy);
vec2 fuv = fract(uv.xy);
float g0x = g0(fuv.x);
float g1x = g1(fuv.x);
float h0x = h0(fuv.x);
float h1x = h1(fuv.x);
float h0y = h0(fuv.y);
float h1y = h1(fuv.y);
vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5)) * texel_size;
vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5)) * texel_size;
vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5)) * texel_size;
vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5)) * texel_size;
return (g0(fuv.y) * (g0x * texture(tex, vec3(p0, uv.z)) + g1x * texture(tex, vec3(p1, uv.z)))) +
(g1(fuv.y) * (g0x * texture(tex, vec3(p2, uv.z)) + g1x * texture(tex, vec3(p3, uv.z))));
}
#define LIGHTMAP_TEXTURE_SAMPLE(m_tex, m_uv) texture_bicubic(m_tex, m_uv)
#define LIGHTMAP_TEXTURE_LAYERED_SAMPLE(m_tex, m_uv) textureArray_bicubic(m_tex, m_uv)
#else //!USE_LIGHTMAP_FILTER_BICUBIC
#define LIGHTMAP_TEXTURE_SAMPLE(m_tex, m_uv) texture(m_tex, m_uv)
#define LIGHTMAP_TEXTURE_LAYERED_SAMPLE(m_tex, m_uv) texture(m_tex, m_uv)
#endif //USE_LIGHTMAP_FILTER_BICUBIC
#endif
#ifdef USE_LIGHTMAP_CAPTURE
uniform mediump vec4[12] lightmap_captures;
#endif
#ifdef USE_GI_PROBES
uniform mediump sampler3D gi_probe1; //texunit:-9
uniform highp mat4 gi_probe_xform1;
uniform highp vec3 gi_probe_bounds1;
uniform highp vec3 gi_probe_cell_size1;
uniform highp float gi_probe_multiplier1;
uniform highp float gi_probe_bias1;
uniform highp float gi_probe_normal_bias1;
uniform bool gi_probe_blend_ambient1;
uniform mediump sampler3D gi_probe2; //texunit:-10
uniform highp mat4 gi_probe_xform2;
uniform highp vec3 gi_probe_bounds2;
uniform highp vec3 gi_probe_cell_size2;
uniform highp float gi_probe_multiplier2;
uniform highp float gi_probe_bias2;
uniform highp float gi_probe_normal_bias2;
uniform bool gi_probe2_enabled;
uniform bool gi_probe_blend_ambient2;
vec3 voxel_cone_trace(mediump sampler3D probe, vec3 cell_size, vec3 pos, vec3 ambient, bool blend_ambient, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
float dist = p_bias; //1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0;
float alpha = 0.0;
vec3 color = vec3(0.0);
while (dist < max_distance && alpha < 0.95) {
float diameter = max(1.0, 2.0 * tan_half_angle * dist);
vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter));
float a = (1.0 - alpha);
color += scolor.rgb * a;
alpha += a * scolor.a;
dist += diameter * 0.5;
}
if (blend_ambient) {
color.rgb = mix(ambient, color.rgb, min(1.0, alpha / 0.95));
}
return color;
}
void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds, vec3 cell_size, vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient, float multiplier, mat3 normal_mtx, vec3 ref_vec, float roughness, float p_bias, float p_normal_bias, inout vec4 out_spec, inout vec4 out_diff) {
vec3 probe_pos = (probe_xform * vec4(pos, 1.0)).xyz;
vec3 ref_pos = (probe_xform * vec4(pos + ref_vec, 1.0)).xyz;
ref_vec = normalize(ref_pos - probe_pos);
probe_pos += (probe_xform * vec4(normal_mtx[2], 0.0)).xyz * p_normal_bias;
/* out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0);
out_diff.a = 1.0;
return;*/
//out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0);
//return;
//this causes corrupted pixels, i have no idea why..
if (any(bvec2(any(lessThan(probe_pos, vec3(0.0))), any(greaterThan(probe_pos, bounds))))) {
return;
}
vec3 blendv = abs(probe_pos / bounds * 2.0 - 1.0);
float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0);
//float blend=1.0;
float max_distance = length(bounds);
//radiance
#ifdef VCT_QUALITY_HIGH
#define MAX_CONE_DIRS 6
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
vec3(0.0, 0.0, 1.0),
vec3(0.866025, 0.0, 0.5),
vec3(0.267617, 0.823639, 0.5),
vec3(-0.700629, 0.509037, 0.5),
vec3(-0.700629, -0.509037, 0.5),
vec3(0.267617, -0.823639, 0.5));
float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
float cone_angle_tan = 0.577;
float min_ref_tan = 0.0;
#else
#define MAX_CONE_DIRS 4
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
vec3(0.707107, 0.0, 0.707107),
vec3(0.0, 0.707107, 0.707107),
vec3(-0.707107, 0.0, 0.707107),
vec3(0.0, -0.707107, 0.707107));
float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
float cone_angle_tan = 0.98269;
max_distance *= 0.5;
float min_ref_tan = 0.2;
#endif
vec3 light = vec3(0.0);
for (int i = 0; i < MAX_CONE_DIRS; i++) {
vec3 dir = normalize((probe_xform * vec4(pos + normal_mtx * cone_dirs[i], 1.0)).xyz - probe_pos);
light += cone_weights[i] * voxel_cone_trace(probe, cell_size, probe_pos, ambient, blend_ambient, dir, cone_angle_tan, max_distance, p_bias);
}
light *= multiplier;
out_diff += vec4(light * blend, blend);
//irradiance
vec3 irr_light = voxel_cone_trace(probe, cell_size, probe_pos, environment, blend_ambient, ref_vec, max(min_ref_tan, tan(roughness * 0.5 * M_PI * 0.99)), max_distance, p_bias);
irr_light *= multiplier;
//irr_light=vec3(0.0);
out_spec += vec4(irr_light * blend, blend);
}
void gi_probes_compute(vec3 pos, vec3 normal, float roughness, inout vec3 out_specular, inout vec3 out_ambient) {
roughness = roughness * roughness;
vec3 ref_vec = normalize(reflect(normalize(pos), normal));
//find arbitrary tangent and bitangent, then build a matrix
vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
vec3 tangent = normalize(cross(v0, normal));
vec3 bitangent = normalize(cross(tangent, normal));
mat3 normal_mat = mat3(tangent, bitangent, normal);
vec4 diff_accum = vec4(0.0);
vec4 spec_accum = vec4(0.0);
vec3 ambient = out_ambient;
out_ambient = vec3(0.0);
vec3 environment = out_specular;
out_specular = vec3(0.0);
gi_probe_compute(gi_probe1, gi_probe_xform1, gi_probe_bounds1, gi_probe_cell_size1, pos, ambient, environment, gi_probe_blend_ambient1, gi_probe_multiplier1, normal_mat, ref_vec, roughness, gi_probe_bias1, gi_probe_normal_bias1, spec_accum, diff_accum);
if (gi_probe2_enabled) {
gi_probe_compute(gi_probe2, gi_probe_xform2, gi_probe_bounds2, gi_probe_cell_size2, pos, ambient, environment, gi_probe_blend_ambient2, gi_probe_multiplier2, normal_mat, ref_vec, roughness, gi_probe_bias2, gi_probe_normal_bias2, spec_accum, diff_accum);
}
if (diff_accum.a > 0.0) {
diff_accum.rgb /= diff_accum.a;
}
if (spec_accum.a > 0.0) {
spec_accum.rgb /= spec_accum.a;
}
out_specular += spec_accum.rgb;
out_ambient += diff_accum.rgb;
}
#endif
void main() {
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
if (dp_clip > 0.0)
discard;
#endif
//lay out everything, whathever is unused is optimized away anyway
highp vec3 vertex = vertex_interp;
vec3 view = -normalize(vertex_interp);
vec3 albedo = vec3(1.0);
vec3 transmission = vec3(0.0);
float metallic = 0.0;
float specular = 0.5;
vec3 emission = vec3(0.0);
float roughness = 1.0;
float rim = 0.0;
float rim_tint = 0.0;
float clearcoat = 0.0;
float clearcoat_gloss = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
#if defined(ENABLE_AO)
float ao = 1.0;
float ao_light_affect = 0.0;
#endif
float alpha = 1.0;
#if defined(ALPHA_SCISSOR_USED)
float alpha_scissor = 0.5;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
vec3 binormal = normalize(binormal_interp);
vec3 tangent = normalize(tangent_interp);
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
vec3 normal = normalize(normal_interp);
#if defined(DO_SIDE_CHECK)
if (!gl_FrontFacing) {
normal = -normal;
}
#endif
#if defined(ENABLE_UV_INTERP)
vec2 uv = uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
vec2 uv2 = uv2_interp;
#endif
#if defined(ENABLE_COLOR_INTERP)
vec4 color = color_interp;
#endif
#if defined(ENABLE_NORMALMAP)
vec3 normalmap = vec3(0.5);
#endif
float normaldepth = 1.0;
#if defined(SCREEN_UV_USED)
vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
#endif
#if defined(ENABLE_SSS)
float sss_strength = 0.0;
#endif
{
/* clang-format off */
{
vec2 m_base_uv=uv_interp;
vec4 m_albedo_tex=texture(m_texture_albedo, m_base_uv);
albedo=(m_albedo.rgb*m_albedo_tex.rgb);
metallic=m_metallic;
roughness=m_roughness;
specular=m_specular;
}
/* clang-format on */
}
#if !defined(USE_SHADOW_TO_OPACITY)
#if defined(ALPHA_SCISSOR_USED)
if (alpha < alpha_scissor) {
discard;
}
#endif // ALPHA_SCISSOR_USED
#ifdef USE_OPAQUE_PREPASS
if (alpha < opaque_prepass_threshold) {
discard;
}
#endif // USE_OPAQUE_PREPASS
#endif // !USE_SHADOW_TO_OPACITY
#if defined(ENABLE_NORMALMAP)
normalmap.xy = normalmap.xy * 2.0 - 1.0;
normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
normal = normalize(mix(normal, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth));
#endif
#if defined(LIGHT_USE_ANISOTROPY)
if (anisotropy > 0.01) {
//rotation matrix
mat3 rot = mat3(tangent, binormal, normal);
//make local to space
tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
}
#endif
#ifdef ENABLE_CLIP_ALPHA
if (albedo.a < 0.99) {
//used for doublepass and shadowmapping
discard;
}
#endif
/////////////////////// LIGHTING //////////////////////////////
//apply energy conservation
#ifdef USE_VERTEX_LIGHTING
vec3 specular_light = specular_light_interp.rgb;
vec3 diffuse_light = diffuse_light_interp.rgb;
#else
vec3 specular_light = vec3(0.0, 0.0, 0.0);
vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
#endif
vec3 ambient_light;
vec3 env_reflection_light = vec3(0.0, 0.0, 0.0);
vec3 eye_vec = view;
// IBL precalculations
float ndotv = clamp(dot(normal, eye_vec), 0.0, 1.0);
vec3 f0 = F0(metallic, specular, albedo);
vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);
#ifdef USE_RADIANCE_MAP
#ifdef AMBIENT_LIGHT_DISABLED
ambient_light = vec3(0.0, 0.0, 0.0);
#else
{
{ //read radiance from dual paraboloid
vec3 ref_vec = reflect(-eye_vec, normal);
float horizon = min(1.0 + dot(ref_vec, normal), 1.0);
ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
vec3 radiance = textureDualParaboloid(radiance_map, ref_vec, roughness) * bg_energy;
env_reflection_light = radiance;
env_reflection_light *= horizon * horizon;
}
}
#ifndef USE_LIGHTMAP
{
vec3 norm = normal;
norm = normalize((radiance_inverse_xform * vec4(norm, 0.0)).xyz);
norm.xy /= 1.0 + abs(norm.z);
norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
if (norm.z > 0.0001) {
norm.y = 0.5 - norm.y + 0.5;
}
vec3 env_ambient = texture(irradiance_map, norm.xy).rgb * bg_energy;
env_ambient *= 1.0 - F;
ambient_light = mix(ambient_light_color.rgb, env_ambient, radiance_ambient_contribution);
}
#endif
#endif //AMBIENT_LIGHT_DISABLED
#else
#ifdef AMBIENT_LIGHT_DISABLED
ambient_light = vec3(0.0, 0.0, 0.0);
#else
ambient_light = ambient_light_color.rgb;
env_reflection_light = bg_color.rgb * bg_energy;
#endif //AMBIENT_LIGHT_DISABLED
#endif
ambient_light *= ambient_energy;
float specular_blob_intensity = 1.0;
#if defined(SPECULAR_TOON)
specular_blob_intensity *= specular * 2.0;
#endif
#ifdef USE_GI_PROBES
gi_probes_compute(vertex, normal, roughness, env_reflection_light, ambient_light);
#endif
#ifdef USE_LIGHTMAP
#ifdef USE_LIGHTMAP_LAYERED
ambient_light = LIGHTMAP_TEXTURE_LAYERED_SAMPLE(lightmap, vec3(uv2, float(lightmap_layer))).rgb * lightmap_energy;
#else
ambient_light = LIGHTMAP_TEXTURE_SAMPLE(lightmap, uv2).rgb * lightmap_energy;
#endif
#endif
#ifdef USE_LIGHTMAP_CAPTURE
{
vec3 cone_dirs[12] = vec3[](
vec3(0.0, 0.0, 1.0),
vec3(0.866025, 0.0, 0.5),
vec3(0.267617, 0.823639, 0.5),
vec3(-0.700629, 0.509037, 0.5),
vec3(-0.700629, -0.509037, 0.5),
vec3(0.267617, -0.823639, 0.5),
vec3(0.0, 0.0, -1.0),
vec3(0.866025, 0.0, -0.5),
vec3(0.267617, 0.823639, -0.5),
vec3(-0.700629, 0.509037, -0.5),
vec3(-0.700629, -0.509037, -0.5),
vec3(0.267617, -0.823639, -0.5));
vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz;
vec4 captured = vec4(0.0);
float sum = 0.0;
for (int i = 0; i < 12; i++) {
float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect
captured += lightmap_captures[i] * amount;
sum += amount;
}
captured /= sum;
// Alpha channel is used to indicate if dynamic objects keep the environment lighting
if (lightmap_captures[0].a > 0.5) {
ambient_light += captured.rgb;
} else {
ambient_light = captured.rgb;
}
}
#endif
#ifdef USE_FORWARD_LIGHTING
highp vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
highp vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);
for (int i = 0; i < reflection_count; i++) {
reflection_process(reflection_indices[i], vertex, normal, binormal, tangent, roughness, anisotropy, ambient_light, env_reflection_light, reflection_accum, ambient_accum);
}
if (reflection_accum.a > 0.0) {
specular_light += reflection_accum.rgb / reflection_accum.a;
} else {
specular_light += env_reflection_light;
}
#if !defined(USE_LIGHTMAP) && !defined(USE_LIGHTMAP_CAPTURE)
if (ambient_accum.a > 0.0) {
ambient_light = ambient_accum.rgb / ambient_accum.a;
}
#endif
#endif
{
#if defined(DIFFUSE_TOON)
//simplify for toon, as
specular_light *= specular * metallic * albedo * 2.0;
#else
// scales the specular reflections, needs to be be computed before lighting happens,
// but after environment, GI, and reflection probes are added
// Environment brdf approximation (Lazarov 2013)
// see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
specular_light *= env.x * F + env.y;
#endif
}
#if defined(USE_LIGHT_DIRECTIONAL)
vec3 light_attenuation = vec3(1.0);
float depth_z = -vertex.z;
#ifdef LIGHT_DIRECTIONAL_SHADOW
#if !defined(SHADOWS_DISABLED)
#ifdef LIGHT_USE_PSSM4
if (depth_z < shadow_split_offsets.w) {
#elif defined(LIGHT_USE_PSSM2)
if (depth_z < shadow_split_offsets.y) {
#else
if (depth_z < shadow_split_offsets.x) {
#endif //LIGHT_USE_PSSM4
vec3 pssm_coord;
float pssm_fade = 0.0;
#ifdef LIGHT_USE_PSSM_BLEND
float pssm_blend;
vec3 pssm_coord2;
bool use_blend = true;
#endif
#ifdef LIGHT_USE_PSSM4
if (depth_z < shadow_split_offsets.y) {
if (depth_z < shadow_split_offsets.x) {
highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
splane = (shadow_matrix2 * vec4(vertex, 1.0));
pssm_coord2 = splane.xyz / splane.w;
pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z);
#endif
} else {
highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
splane = (shadow_matrix3 * vec4(vertex, 1.0));
pssm_coord2 = splane.xyz / splane.w;
pssm_blend = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z);
#endif
}
} else {
if (depth_z < shadow_split_offsets.z) {
highp vec4 splane = (shadow_matrix3 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
splane = (shadow_matrix4 * vec4(vertex, 1.0));
pssm_coord2 = splane.xyz / splane.w;
pssm_blend = smoothstep(shadow_split_offsets.y, shadow_split_offsets.z, depth_z);
#endif
} else {
highp vec4 splane = (shadow_matrix4 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
pssm_fade = smoothstep(shadow_split_offsets.z, shadow_split_offsets.w, depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend = false;
#endif
}
}
#endif //LIGHT_USE_PSSM4
#ifdef LIGHT_USE_PSSM2
if (depth_z < shadow_split_offsets.x) {
highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
splane = (shadow_matrix2 * vec4(vertex, 1.0));
pssm_coord2 = splane.xyz / splane.w;
pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z);
#endif
} else {
highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
pssm_fade = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend = false;
#endif
}
#endif //LIGHT_USE_PSSM2
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
{ //regular orthogonal
highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
}
#endif
//one one sample
float shadow = sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord.xy, pssm_coord.z, light_clamp);
#if defined(LIGHT_USE_PSSM_BLEND)
if (use_blend) {
shadow = mix(shadow, sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend);
}
#endif
#ifdef USE_CONTACT_SHADOWS
if (shadow > 0.01 && shadow_color_contact.a > 0.0) {
float contact_shadow = contact_shadow_compute(vertex, -light_direction_attenuation.xyz, shadow_color_contact.a);
shadow = min(shadow, contact_shadow);
}
#endif
light_attenuation = mix(mix(shadow_color_contact.rgb, vec3(1.0), shadow), vec3(1.0), pssm_fade);
}
#endif // !defined(SHADOWS_DISABLED)
#endif //LIGHT_DIRECTIONAL_SHADOW
#ifdef USE_VERTEX_LIGHTING
diffuse_light *= mix(vec3(1.0), light_attenuation, diffuse_light_interp.a);
specular_light *= mix(vec3(1.0), light_attenuation, specular_light_interp.a);
#else
light_compute(normal, -light_direction_attenuation.xyz, eye_vec, binormal, tangent, light_color_energy.rgb, light_attenuation, albedo, transmission, light_params.z * specular_blob_intensity, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light, alpha);
#endif
#endif //#USE_LIGHT_DIRECTIONAL
#ifdef USE_VERTEX_LIGHTING
diffuse_light *= albedo;
#endif
#ifdef USE_FORWARD_LIGHTING
#ifndef USE_VERTEX_LIGHTING
for (int i = 0; i < omni_light_count; i++) {
light_process_omni(omni_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light, alpha);
}
for (int i = 0; i < spot_light_count; i++) {
light_process_spot(spot_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light, alpha);
}
#endif //USE_VERTEX_LIGHTING
#endif
#ifdef USE_SHADOW_TO_OPACITY
alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
#if defined(ALPHA_SCISSOR_USED)
if (alpha < alpha_scissor) {
discard;
}
#endif // ALPHA_SCISSOR_USED
#ifdef USE_OPAQUE_PREPASS
if (alpha < opaque_prepass_threshold) {
discard;
}
#endif // USE_OPAQUE_PREPASS
#endif // USE_SHADOW_TO_OPACITY
#ifdef RENDER_DEPTH
//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
#else
specular_light *= reflection_multiplier;
ambient_light *= albedo; //ambient must be multiplied by albedo at the end
#if defined(ENABLE_AO)
ambient_light *= ao;
ao_light_affect = mix(1.0, ao, ao_light_affect);
specular_light *= ao_light_affect;
diffuse_light *= ao_light_affect;
#endif
// base color remapping
diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point
ambient_light *= 1.0 - metallic;
if (fog_color_enabled.a > 0.5) {
float fog_amount = 0.0;
#ifdef USE_LIGHT_DIRECTIONAL
vec3 fog_color = mix(fog_color_enabled.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex), -light_direction_attenuation.xyz), 0.0), 8.0));
#else
vec3 fog_color = fog_color_enabled.rgb;
#endif
//apply fog
if (fog_depth_enabled) {
float fog_far = fog_depth_end > 0.0 ? fog_depth_end : z_far;
float fog_z = smoothstep(fog_depth_begin, fog_far, length(vertex));
fog_amount = pow(fog_z, fog_depth_curve) * fog_density;
if (fog_transmit_enabled) {
vec3 total_light = emission + ambient_light + specular_light + diffuse_light;
float transmit = pow(fog_z, fog_transmit_curve);
fog_color = mix(max(total_light, fog_color), fog_color, transmit);
}
}
if (fog_height_enabled) {
float y = (camera_matrix * vec4(vertex, 1.0)).y;
fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
}
float rev_amount = 1.0 - fog_amount;
emission = emission * rev_amount + fog_color * fog_amount;
ambient_light *= rev_amount;
specular_light *= rev_amount;
diffuse_light *= rev_amount;
}
#ifdef USE_MULTIPLE_RENDER_TARGETS
#ifdef SHADELESS
diffuse_buffer = vec4(albedo.rgb, 0.0);
specular_buffer = vec4(0.0);
#else
//approximate ambient scale for SSAO, since we will lack full ambient
float max_emission = max(emission.r, max(emission.g, emission.b));
float max_ambient = max(ambient_light.r, max(ambient_light.g, ambient_light.b));
float max_diffuse = max(diffuse_light.r, max(diffuse_light.g, diffuse_light.b));
float total_ambient = max_ambient + max_diffuse;
#ifdef USE_FORWARD_LIGHTING
total_ambient += max_emission;
#endif
float ambient_scale = (total_ambient > 0.0) ? (max_ambient + ambient_occlusion_affect_light * max_diffuse) / total_ambient : 0.0;
#if defined(ENABLE_AO)
ambient_scale = mix(0.0, ambient_scale, ambient_occlusion_affect_ao_channel);
#endif
diffuse_buffer = vec4(diffuse_light + ambient_light, ambient_scale);
specular_buffer = vec4(specular_light, metallic);
#ifdef USE_FORWARD_LIGHTING
diffuse_buffer.rgb += emission;
#endif
#endif //SHADELESS
normal_mr_buffer = vec4(normalize(normal) * 0.5 + 0.5, roughness);
#if defined(ENABLE_SSS)
sss_buffer = sss_strength;
#endif
#else //USE_MULTIPLE_RENDER_TARGETS
#ifdef SHADELESS
frag_color = vec4(albedo, alpha);
#else
frag_color = vec4(ambient_light + diffuse_light + specular_light, alpha);
#ifdef USE_FORWARD_LIGHTING
frag_color.rgb += emission;
#endif
#endif //SHADELESS
#endif //USE_MULTIPLE_RENDER_TARGETS
#endif //RENDER_DEPTH
}
[vertex shader]
#version 330
#define GLES_OVER_GL
#define MAX_LIGHT_DATA_STRUCTS 409
#define MAX_FORWARD_LIGHTS 32
#define MAX_REFLECTION_DATA_STRUCTS 455
#define MAX_SKELETON_BONES 1365
#define USE_SKELETON
#define USE_LIGHT_DIRECTIONAL
#define USE_FORWARD_LIGHTING
#define SHADOW_MODE_PCF_13
#define USE_LIGHTMAP_FILTER_BICUBIC
#define DIFFUSE_BURLEY
#define SPECULAR_SCHLICK_GGX
#define USE_MATERIAL
#define ENABLE_UV_INTERP
precision highp float;
precision highp int;
#define M_PI 3.14159265359
#define SHADER_IS_SRGB false
/*
from VisualServer:
ARRAY_VERTEX=0,
ARRAY_NORMAL=1,
ARRAY_TANGENT=2,
ARRAY_COLOR=3,
ARRAY_TEX_UV=4,
ARRAY_TEX_UV2=5,
ARRAY_BONES=6,
ARRAY_WEIGHTS=7,
ARRAY_INDEX=8,
*/
// hack to use uv if no uv present so it works with lightmap
/* INPUT ATTRIBS */
layout(location = 0) in highp vec4 vertex_attrib;
/* clang-format on */
#ifdef ENABLE_OCTAHEDRAL_COMPRESSION
layout(location = 1) in vec4 normal_tangent_attrib;
#else
layout(location = 1) in vec3 normal_attrib;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
#ifdef ENABLE_OCTAHEDRAL_COMPRESSION
// packed into normal_attrib zw component
#else
layout(location = 2) in vec4 tangent_attrib;
#endif
#endif
#if defined(ENABLE_COLOR_INTERP)
layout(location = 3) in vec4 color_attrib;
#endif
#if defined(ENABLE_UV_INTERP)
layout(location = 4) in vec2 uv_attrib;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
layout(location = 5) in vec2 uv2_attrib;
#endif
#ifdef USE_SKELETON
layout(location = 6) in uvec4 bone_indices; // attrib:6
layout(location = 7) in highp vec4 bone_weights; // attrib:7
#endif
#ifdef USE_INSTANCING
layout(location = 8) in highp vec4 instance_xform0;
layout(location = 9) in highp vec4 instance_xform1;
layout(location = 10) in highp vec4 instance_xform2;
layout(location = 11) in lowp vec4 instance_color;
#if defined(ENABLE_INSTANCE_CUSTOM)
layout(location = 12) in highp vec4 instance_custom_data;
#endif
#endif
layout(std140) uniform SceneData { // ubo:0
highp mat4 projection_matrix;
highp mat4 inv_projection_matrix;
highp mat4 camera_inverse_matrix;
highp mat4 camera_matrix;
mediump vec4 ambient_light_color;
mediump vec4 bg_color;
mediump vec4 fog_color_enabled;
mediump vec4 fog_sun_color_amount;
mediump float ambient_energy;
mediump float bg_energy;
mediump float z_offset;
mediump float z_slope_scale;
highp float shadow_dual_paraboloid_render_zfar;
highp float shadow_dual_paraboloid_render_side;
highp vec2 viewport_size;
highp vec2 screen_pixel_size;
highp vec2 shadow_atlas_pixel_size;
highp vec2 directional_shadow_pixel_size;
highp float time;
highp float z_far;
mediump float reflection_multiplier;
mediump float subsurface_scatter_width;
mediump float ambient_occlusion_affect_light;
mediump float ambient_occlusion_affect_ao_channel;
mediump float opaque_prepass_threshold;
bool fog_depth_enabled;
highp float fog_depth_begin;
highp float fog_depth_end;
mediump float fog_density;
highp float fog_depth_curve;
bool fog_transmit_enabled;
highp float fog_transmit_curve;
bool fog_height_enabled;
highp float fog_height_min;
highp float fog_height_max;
highp float fog_height_curve;
int view_index;
};
uniform highp mat4 world_transform;
#ifdef USE_LIGHTMAP
uniform highp vec4 lightmap_uv_rect;
#endif
#ifdef USE_LIGHT_DIRECTIONAL
layout(std140) uniform DirectionalLightData { //ubo:3
highp vec4 light_pos_inv_radius;
mediump vec4 light_direction_attenuation;
mediump vec4 light_color_energy;
mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
mediump vec4 light_clamp;
mediump vec4 shadow_color_contact;
highp mat4 shadow_matrix1;
highp mat4 shadow_matrix2;
highp mat4 shadow_matrix3;
highp mat4 shadow_matrix4;
mediump vec4 shadow_split_offsets;
};
#endif
#ifdef USE_VERTEX_LIGHTING
//omni and spot
struct LightData {
highp vec4 light_pos_inv_radius;
mediump vec4 light_direction_attenuation;
mediump vec4 light_color_energy;
mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
mediump vec4 light_clamp;
mediump vec4 shadow_color_contact;
highp mat4 shadow_matrix;
};
layout(std140) uniform OmniLightData { //ubo:4
LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
};
layout(std140) uniform SpotLightData { //ubo:5
LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
};
#ifdef USE_FORWARD_LIGHTING
uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
uniform int omni_light_count;
uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
uniform int spot_light_count;
#endif
out vec4 diffuse_light_interp;
out vec4 specular_light_interp;
void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float roughness, inout vec3 diffuse, inout vec3 specular) {
float NdotL = dot(N, L);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
float cNdotV = max(NdotV, 0.0);
#if defined(DIFFUSE_OREN_NAYAR)
vec3 diffuse_brdf_NL;
#else
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
#endif
#if defined(DIFFUSE_LAMBERT_WRAP)
// energy conserving lambert wrap shader
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
#elif defined(DIFFUSE_OREN_NAYAR)
{
// see http://mimosa-pudica.net/improved-oren-nayar.html
float LdotV = dot(L, V);
float s = LdotV - NdotL * NdotV;
float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
float sigma2 = roughness * roughness; // TODO: this needs checking
vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse / (sigma2 + 0.13));
float B = 0.45 * sigma2 / (sigma2 + 0.09);
diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
}
#else
// lambert by default for everything else
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
diffuse += light_color * diffuse_brdf_NL;
if (roughness > 0.0) {
// D
float specular_brdf_NL = 0.0;
#if !defined(SPECULAR_DISABLED)
//normalized blinn always unless disabled
vec3 H = normalize(V + L);
float cNdotH = max(dot(N, H), 0.0);
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float blinn = pow(cNdotH, shininess);
blinn *= (shininess + 2.0) * (1.0 / (8.0 * M_PI));
specular_brdf_NL = blinn;
#endif
specular += specular_brdf_NL * light_color;
}
}
#ifdef USE_PHYSICAL_LIGHT_ATTENUATION
float get_omni_attenuation(float distance, float inv_range, float decay) {
float nd = distance * inv_range;
nd *= nd;
nd *= nd; // nd^4
nd = max(1.0 - nd, 0.0);
nd *= nd; // nd^2
return nd * pow(max(distance, 0.0001), -decay);
}
#endif
void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) {
vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex;
float light_length = length(light_rel_vec);
#ifdef USE_PHYSICAL_LIGHT_ATTENUATION
vec3 light_attenuation = vec3(get_omni_attenuation(light_length, omni_lights[idx].light_pos_inv_radius.w, omni_lights[idx].light_direction_attenuation.w));
#else
float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w;
vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w));
#endif
light_compute(normal, normalize(light_rel_vec), eye_vec, omni_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular);
}
void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) {
vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex;
float light_length = length(light_rel_vec);
#ifdef USE_PHYSICAL_LIGHT_ATTENUATION
vec3 light_attenuation = vec3(get_omni_attenuation(light_length, spot_lights[idx].light_pos_inv_radius.w, spot_lights[idx].light_direction_attenuation.w));
#else
float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w;
vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w));
#endif
vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
float spot_cutoff = spot_lights[idx].light_params.y;
float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff);
float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff);
light_attenuation *= 1.0 - pow(max(spot_rim, 0.001), spot_lights[idx].light_params.x);
light_compute(normal, normalize(light_rel_vec), eye_vec, spot_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular);
}
#endif
#ifdef ENABLE_OCTAHEDRAL_COMPRESSION
vec3 oct_to_vec3(vec2 e) {
vec3 v = vec3(e.xy, 1.0 - abs(e.x) - abs(e.y));
float t = max(-v.z, 0.0);
v.xy += t * -sign(v.xy);
return normalize(v);
}
#endif
/* Varyings */
out highp vec3 vertex_interp;
out vec3 normal_interp;
#if defined(ENABLE_COLOR_INTERP)
out vec4 color_interp;
#endif
#if defined(ENABLE_UV_INTERP)
out vec2 uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
out vec2 uv2_interp;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
out vec3 tangent_interp;
out vec3 binormal_interp;
#endif
#if defined(USE_MATERIAL)
/* clang-format off */
layout(std140) uniform UniformData { // ubo:1
vec4 m_albedo;
float m_specular;
float m_metallic;
float m_roughness;
float m_point_size;
vec3 m_uv1_scale;
vec3 m_uv1_offset;
vec3 m_uv2_scale;
vec3 m_uv2_offset;
};
/* clang-format on */
#endif
/* clang-format off */
uniform sampler2D m_texture_albedo;
/* clang-format on */
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
out highp float dp_clip;
#endif
#define SKELETON_TEXTURE_WIDTH 256
#ifdef USE_SKELETON
uniform highp sampler2D skeleton_texture; // texunit:-1
#endif
out highp vec4 position_interp;
// FIXME: This triggers a Mesa bug that breaks rendering, so disabled for now.
// See GH-13450 and https://bugs.freedesktop.org/show_bug.cgi?id=100316
//invariant gl_Position;
void main() {
highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0);
highp mat4 world_matrix = world_transform;
#ifdef USE_INSTANCING
{
highp mat4 m = mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0));
world_matrix = world_matrix * transpose(m);
}
#endif
#ifdef ENABLE_OCTAHEDRAL_COMPRESSION
vec3 normal = oct_to_vec3(normal_tangent_attrib.xy);
#else
vec3 normal = normal_attrib;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
#ifdef ENABLE_OCTAHEDRAL_COMPRESSION
vec3 tangent = oct_to_vec3(vec2(normal_tangent_attrib.z, abs(normal_tangent_attrib.w) * 2.0 - 1.0));
float binormalf = sign(normal_tangent_attrib.w);
#else
vec3 tangent = tangent_attrib.xyz;
float binormalf = tangent_attrib.a;
#endif
#endif
#if defined(ENABLE_COLOR_INTERP)
color_interp = color_attrib;
#if defined(USE_INSTANCING)
color_interp *= instance_color;
#endif
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif
#if defined(ENABLE_UV_INTERP)
uv_interp = uv_attrib;
#endif
#if defined(USE_LIGHTMAP)
uv2_interp = lightmap_uv_rect.zw * uv2_attrib + lightmap_uv_rect.xy;
#elif defined(ENABLE_UV2_INTERP)
uv2_interp = uv2_attrib;
#endif
#ifdef OVERRIDE_POSITION
highp vec4 position;
#endif
#if defined(USE_INSTANCING) && defined(ENABLE_INSTANCE_CUSTOM)
vec4 instance_custom = instance_custom_data;
#else
vec4 instance_custom = vec4(0.0);
#endif
highp mat4 local_projection = projection_matrix;
//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = world_matrix * vertex;
#if defined(ENSURE_CORRECT_NORMALS)
mat3 normal_matrix = mat3(transpose(inverse(world_matrix)));
normal = normal_matrix * normal;
#else
normal = normalize((world_matrix * vec4(normal, 0.0)).xyz);
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
tangent = normalize((world_matrix * vec4(tangent, 0.0)).xyz);
binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif
float roughness = 1.0;
//defines that make writing custom shaders easier
#define projection_matrix local_projection
#define world_transform world_matrix
#ifdef USE_SKELETON
{
//skeleton transform
ivec4 bone_indicesi = ivec4(bone_indices); // cast to signed int
ivec2 tex_ofs = ivec2(bone_indicesi.x % 256, (bone_indicesi.x / 256) * 3);
highp mat4 m;
m = mat4(
texelFetch(skeleton_texture, tex_ofs, 0),
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0),
vec4(0.0, 0.0, 0.0, 1.0)) *
bone_weights.x;
tex_ofs = ivec2(bone_indicesi.y % 256, (bone_indicesi.y / 256) * 3);
m += mat4(
texelFetch(skeleton_texture, tex_ofs, 0),
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0),
vec4(0.0, 0.0, 0.0, 1.0)) *
bone_weights.y;
tex_ofs = ivec2(bone_indicesi.z % 256, (bone_indicesi.z / 256) * 3);
m += mat4(
texelFetch(skeleton_texture, tex_ofs, 0),
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0),
vec4(0.0, 0.0, 0.0, 1.0)) *
bone_weights.z;
tex_ofs = ivec2(bone_indicesi.w % 256, (bone_indicesi.w / 256) * 3);
m += mat4(
texelFetch(skeleton_texture, tex_ofs, 0),
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0),
vec4(0.0, 0.0, 0.0, 1.0)) *
bone_weights.w;
world_matrix = world_matrix * transpose(m);
}
#endif
float point_size = 1.0;
highp mat4 modelview = camera_inverse_matrix * world_matrix;
{
/* clang-format off */
{
uv_interp=((uv_interp*m_uv1_scale.xy)+m_uv1_offset.xy);
}
/* clang-format on */
}
gl_PointSize = point_size;
// using local coordinates (default)
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
vertex = modelview * vertex;
#if defined(ENSURE_CORRECT_NORMALS)
mat3 normal_matrix = mat3(transpose(inverse(modelview)));
normal = normal_matrix * normal;
#else
normal = normalize((modelview * vec4(normal, 0.0)).xyz);
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
tangent = normalize((modelview * vec4(tangent, 0.0)).xyz);
binormal = normalize((modelview * vec4(binormal, 0.0)).xyz);
#endif
#endif
//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = camera_inverse_matrix * vertex;
normal = normalize((camera_inverse_matrix * vec4(normal, 0.0)).xyz);
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
tangent = normalize((camera_inverse_matrix * vec4(tangent, 0.0)).xyz);
binormal = normalize((camera_inverse_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif
vertex_interp = vertex.xyz;
normal_interp = normal;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
#ifdef RENDER_DEPTH
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
vertex_interp.z *= shadow_dual_paraboloid_render_side;
normal_interp.z *= shadow_dual_paraboloid_render_side;
dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
highp vec3 vtx = vertex_interp + normalize(vertex_interp) * z_offset;
highp float distance = length(vtx);
vtx = normalize(vtx);
vtx.xy /= 1.0 - vtx.z;
vtx.z = (distance / shadow_dual_paraboloid_render_zfar);
vtx.z = vtx.z * 2.0 - 1.0;
vertex_interp = vtx;
#else
float z_ofs = z_offset;
z_ofs += (1.0 - abs(normal_interp.z)) * z_slope_scale;
vertex_interp.z -= z_ofs;
#endif //RENDER_DEPTH_DUAL_PARABOLOID
#endif //RENDER_DEPTH
#ifdef OVERRIDE_POSITION
gl_Position = position;
#else
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
#endif
position_interp = gl_Position;
#ifdef USE_VERTEX_LIGHTING
diffuse_light_interp = vec4(0.0);
specular_light_interp = vec4(0.0);
#ifdef USE_FORWARD_LIGHTING
for (int i = 0; i < omni_light_count; i++) {
light_process_omni(omni_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb);
}
for (int i = 0; i < spot_light_count; i++) {
light_process_spot(spot_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb);
}
#endif
#ifdef USE_LIGHT_DIRECTIONAL
vec3 directional_diffuse = vec3(0.0);
vec3 directional_specular = vec3(0.0);
light_compute(normal_interp, -light_direction_attenuation.xyz, -normalize(vertex_interp), light_color_energy.rgb, roughness, directional_diffuse, directional_specular);
float diff_avg = dot(diffuse_light_interp.rgb, vec3(0.33333));
float diff_dir_avg = dot(directional_diffuse, vec3(0.33333));
if (diff_avg > 0.0) {
diffuse_light_interp.a = diff_dir_avg / (diff_avg + diff_dir_avg);
} else {
diffuse_light_interp.a = 1.0;
}
diffuse_light_interp.rgb += directional_diffuse;
float spec_avg = dot(specular_light_interp.rgb, vec3(0.33333));
float spec_dir_avg = dot(directional_specular, vec3(0.33333));
if (spec_avg > 0.0) {
specular_light_interp.a = spec_dir_avg / (spec_avg + spec_dir_avg);
} else {
specular_light_interp.a = 1.0;
}
specular_light_interp.rgb += directional_specular;
#endif //USE_LIGHT_DIRECTIONAL
#endif // USE_VERTEX_LIGHTING
}
/* clang-format off */
|