1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
[require]
GLSL >= 3.30
[fragment shader]
#version 330
#define GLES_OVER_GL
#define LINEAR_TO_SRGB
precision highp float;
precision highp int;
#define M_PI 3.14159265359
#if !defined(USE_GLES_OVER_GL)
precision mediump float;
#endif
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
in vec3 cube_interp;
#else
in vec2 uv_interp;
#endif
#ifdef USE_ASYM_PANO
uniform highp mat4 pano_transform;
uniform highp vec4 asym_proj;
#endif
// These definitions are here because the shader-wrapper builder does
// not understand `#elif defined()`
#ifdef USE_TEXTURE3D
#endif
#ifdef USE_TEXTURE2DARRAY
#endif
#ifdef YCBCR_TO_SRGB
#endif
#ifdef USE_CUBEMAP
uniform samplerCube source_cube; //texunit:0
#elif defined(USE_TEXTURE3D)
uniform sampler3D source_3d; //texunit:0
#elif defined(USE_TEXTURE2DARRAY)
uniform sampler2DArray source_2d_array; //texunit:0
#else
uniform sampler2D source; //texunit:0
#endif
#ifdef SEP_CBCR_TEXTURE
uniform sampler2D CbCr; //texunit:1
#endif
/* clang-format on */
#ifdef USE_LOD
uniform float mip_level;
#endif
#if defined(USE_TEXTURE3D) || defined(USE_TEXTURE2DARRAY)
uniform float layer;
#endif
#ifdef USE_MULTIPLIER
uniform float multiplier;
#endif
#if defined(USE_PANORAMA) || defined(USE_ASYM_PANO)
uniform highp mat4 sky_transform;
vec4 texturePanorama(vec3 normal, sampler2D pano) {
vec2 st = vec2(
atan(normal.x, normal.z),
acos(normal.y));
if (st.x < 0.0)
st.x += M_PI * 2.0;
st /= vec2(M_PI * 2.0, M_PI);
return textureLod(pano, st, 0.0);
}
#endif
uniform vec2 pixel_size;
in vec2 uv2_interp;
#ifdef USE_BCS
uniform vec3 bcs;
#endif
#ifdef USE_COLOR_CORRECTION
uniform sampler2D color_correction; //texunit:1
#endif
layout(location = 0) out vec4 frag_color;
void main() {
//vec4 color = color_interp;
#ifdef USE_PANORAMA
vec3 cube_normal = normalize(cube_interp);
cube_normal.z = -cube_normal.z;
cube_normal = mat3(sky_transform) * cube_normal;
cube_normal.z = -cube_normal.z;
vec4 color = texturePanorama(cube_normal, source);
#elif defined(USE_ASYM_PANO)
// When an asymmetrical projection matrix is used (applicable for stereoscopic rendering i.e. VR) we need to do this calculation per fragment to get a perspective correct result.
// Asymmetrical projection means the center of projection is no longer in the center of the screen but shifted.
// The Matrix[2][0] (= asym_proj.x) and Matrix[2][1] (= asym_proj.z) values are what provide the right shift in the image.
vec3 cube_normal;
cube_normal.z = -1.0;
cube_normal.x = (cube_normal.z * (-uv_interp.x - asym_proj.x)) / asym_proj.y;
cube_normal.y = (cube_normal.z * (-uv_interp.y - asym_proj.z)) / asym_proj.a;
cube_normal = mat3(sky_transform) * mat3(pano_transform) * cube_normal;
cube_normal.z = -cube_normal.z;
vec4 color = texturePanorama(normalize(cube_normal.xyz), source);
#elif defined(USE_CUBEMAP)
vec4 color = texture(source_cube, normalize(cube_interp));
#elif defined(USE_TEXTURE3D)
vec4 color = textureLod(source_3d, vec3(uv_interp, layer), 0.0);
#elif defined(USE_TEXTURE2DARRAY)
vec4 color = textureLod(source_2d_array, vec3(uv_interp, layer), 0.0);
#elif defined(SEP_CBCR_TEXTURE)
vec4 color;
color.r = textureLod(source, uv_interp, 0.0).r;
color.gb = textureLod(CbCr, uv_interp, 0.0).rg - vec2(0.5, 0.5);
color.a = 1.0;
#else
#ifdef USE_LOD
vec4 color = textureLod(source, uv_interp, mip_level);
#else
vec4 color = textureLod(source, uv_interp, 0.0);
#endif
#endif
#ifdef LINEAR_TO_SRGB
// regular Linear -> SRGB conversion
vec3 a = vec3(0.055);
color.rgb = mix((vec3(1.0) + a) * pow(color.rgb, vec3(1.0 / 2.4)) - a, 12.92 * color.rgb, lessThan(color.rgb, vec3(0.0031308)));
#elif defined(YCBCR_TO_SRGB)
// YCbCr -> SRGB conversion
// Using BT.709 which is the standard for HDTV
color.rgb = mat3(
vec3(1.00000, 1.00000, 1.00000),
vec3(0.00000, -0.18732, 1.85560),
vec3(1.57481, -0.46813, 0.00000)) *
color.rgb;
#endif
#ifdef SRGB_TO_LINEAR
color.rgb = mix(pow((color.rgb + vec3(0.055)) * (1.0 / (1.0 + 0.055)), vec3(2.4)), color.rgb * (1.0 / 12.92), lessThan(color.rgb, vec3(0.04045)));
#endif
#ifdef DEBUG_GRADIENT
color.rg = uv_interp;
color.b = 0.0;
#endif
#ifdef DISABLE_ALPHA
color.a = 1.0;
#endif
#ifdef GAUSSIAN_HORIZONTAL
color *= 0.38774;
color += texture(source, uv_interp + vec2(1.0, 0.0) * pixel_size) * 0.24477;
color += texture(source, uv_interp + vec2(2.0, 0.0) * pixel_size) * 0.06136;
color += texture(source, uv_interp + vec2(-1.0, 0.0) * pixel_size) * 0.24477;
color += texture(source, uv_interp + vec2(-2.0, 0.0) * pixel_size) * 0.06136;
#endif
#ifdef GAUSSIAN_VERTICAL
color *= 0.38774;
color += texture(source, uv_interp + vec2(0.0, 1.0) * pixel_size) * 0.24477;
color += texture(source, uv_interp + vec2(0.0, 2.0) * pixel_size) * 0.06136;
color += texture(source, uv_interp + vec2(0.0, -1.0) * pixel_size) * 0.24477;
color += texture(source, uv_interp + vec2(0.0, -2.0) * pixel_size) * 0.06136;
#endif
#ifdef USE_BCS
color.rgb = mix(vec3(0.0), color.rgb, bcs.x);
color.rgb = mix(vec3(0.5), color.rgb, bcs.y);
color.rgb = mix(vec3(dot(vec3(1.0), color.rgb) * 0.33333), color.rgb, bcs.z);
#endif
#ifdef USE_COLOR_CORRECTION
color.r = texture(color_correction, vec2(color.r, 0.0)).r;
color.g = texture(color_correction, vec2(color.g, 0.0)).g;
color.b = texture(color_correction, vec2(color.b, 0.0)).b;
#endif
#ifdef USE_MULTIPLIER
color.rgb *= multiplier;
#endif
frag_color = color;
}
[vertex shader]
#version 330
#define GLES_OVER_GL
#define LINEAR_TO_SRGB
precision highp float;
precision highp int;
layout(location = 0) in highp vec4 vertex_attrib;
/* clang-format on */
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
layout(location = 4) in vec3 cube_in;
#else
layout(location = 4) in vec2 uv_in;
#endif
layout(location = 5) in vec2 uv2_in;
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
out vec3 cube_interp;
#else
out vec2 uv_interp;
#endif
out vec2 uv2_interp;
// These definitions are here because the shader-wrapper builder does
// not understand `#elif defined()`
#ifdef USE_DISPLAY_TRANSFORM
#endif
#ifdef USE_COPY_SECTION
uniform vec4 copy_section;
#elif defined(USE_DISPLAY_TRANSFORM)
uniform highp mat4 display_transform;
#endif
void main() {
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
cube_interp = cube_in;
#elif defined(USE_ASYM_PANO)
uv_interp = vertex_attrib.xy;
#else
uv_interp = uv_in;
#ifdef V_FLIP
uv_interp.y = 1.0 - uv_interp.y;
#endif
#endif
uv2_interp = uv2_in;
gl_Position = vertex_attrib;
#ifdef USE_COPY_SECTION
uv_interp = copy_section.xy + uv_interp * copy_section.zw;
gl_Position.xy = (copy_section.xy + (gl_Position.xy * 0.5 + 0.5) * copy_section.zw) * 2.0 - 1.0;
#elif defined(USE_DISPLAY_TRANSFORM)
uv_interp = (display_transform * vec4(uv_in, 1.0, 1.0)).xy;
#endif
}
/* clang-format off */
|