diff options
Diffstat (limited to 'shaders/godot3.4/28-37.shader_test')
-rw-r--r-- | shaders/godot3.4/28-37.shader_test | 501 |
1 files changed, 501 insertions, 0 deletions
diff --git a/shaders/godot3.4/28-37.shader_test b/shaders/godot3.4/28-37.shader_test new file mode 100644 index 0000000..b576a89 --- /dev/null +++ b/shaders/godot3.4/28-37.shader_test @@ -0,0 +1,501 @@ +[require] +GLSL >= 3.30 + +[fragment shader] +#version 330 +#define GLES_OVER_GL +#define USE_AUTO_EXPOSURE +#define USE_GLOW_FILTER_BICUBIC +#define USE_GLOW_LEVEL4 +#define USE_GLOW_LEVEL5 +#define USE_GLOW_LEVEL7 +precision highp float; +precision highp int; + +#if !defined(GLES_OVER_GL) +precision mediump float; +#endif +/* clang-format on */ + +in vec2 uv_interp; + +uniform highp sampler2D source; //texunit:0 + +uniform float exposure; +uniform float white; + +#ifdef USE_AUTO_EXPOSURE +uniform highp sampler2D source_auto_exposure; //texunit:1 +uniform highp float auto_exposure_grey; +#endif + +#if defined(USE_GLOW_LEVEL1) || defined(USE_GLOW_LEVEL2) || defined(USE_GLOW_LEVEL3) || defined(USE_GLOW_LEVEL4) || defined(USE_GLOW_LEVEL5) || defined(USE_GLOW_LEVEL6) || defined(USE_GLOW_LEVEL7) +#define USING_GLOW // only use glow when at least one glow level is selected + +uniform highp sampler2D source_glow; //texunit:2 +uniform highp float glow_intensity; +#endif + +#ifdef USE_BCS +uniform vec3 bcs; +#endif + +#ifdef USE_FXAA +uniform vec2 pixel_size; +#endif + +#ifdef USE_SHARPENING +uniform float sharpen_intensity; +#endif + +#ifdef USE_COLOR_CORRECTION +uniform sampler2D color_correction; //texunit:3 +#endif + +layout(location = 0) out vec4 frag_color; + +#ifdef USE_GLOW_FILTER_BICUBIC +// w0, w1, w2, and w3 are the four cubic B-spline basis functions +float w0(float a) { + return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f); +} + +float w1(float a) { + return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f); +} + +float w2(float a) { + return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f); +} + +float w3(float a) { + return (1.0f / 6.0f) * (a * a * a); +} + +// g0 and g1 are the two amplitude functions +float g0(float a) { + return w0(a) + w1(a); +} + +float g1(float a) { + return w2(a) + w3(a); +} + +// h0 and h1 are the two offset functions +float h0(float a) { + return -1.0f + w1(a) / (w0(a) + w1(a)); +} + +float h1(float a) { + return 1.0f + w3(a) / (w2(a) + w3(a)); +} + +uniform ivec2 glow_texture_size; + +vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod) { + float lod = float(p_lod); + vec2 tex_size = vec2(glow_texture_size >> p_lod); + vec2 texel_size = vec2(1.0f) / tex_size; + + uv = uv * tex_size + vec2(0.5f); + + vec2 iuv = floor(uv); + vec2 fuv = fract(uv); + + float g0x = g0(fuv.x); + float g1x = g1(fuv.x); + float h0x = h0(fuv.x); + float h1x = h1(fuv.x); + float h0y = h0(fuv.y); + float h1y = h1(fuv.y); + + vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * texel_size; + vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * texel_size; + vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * texel_size; + vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * texel_size; + + return (g0(fuv.y) * (g0x * textureLod(tex, p0, lod) + g1x * textureLod(tex, p1, lod))) + + (g1(fuv.y) * (g0x * textureLod(tex, p2, lod) + g1x * textureLod(tex, p3, lod))); +} + +#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod) +#else +#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, m_uv, float(m_lod)) +#endif + +vec3 tonemap_filmic(vec3 color, float white) { + // exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers + // also useful to scale the input to the range that the tonemapper is designed for (some require very high input values) + // has no effect on the curve's general shape or visual properties + const float exposure_bias = 2.0f; + const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance + const float B = 0.30f * exposure_bias; + const float C = 0.10f; + const float D = 0.20f; + const float E = 0.01f; + const float F = 0.30f; + + vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F; + float white_tonemapped = ((white * (A * white + C * B) + D * E) / (white * (A * white + B) + D * F)) - E / F; + + return clamp(color_tonemapped / white_tonemapped, vec3(0.0f), vec3(1.0f)); +} + +vec3 tonemap_aces(vec3 color, float white) { + const float exposure_bias = 0.85f; + const float A = 2.51f * exposure_bias * exposure_bias; + const float B = 0.03f * exposure_bias; + const float C = 2.43f * exposure_bias * exposure_bias; + const float D = 0.59f * exposure_bias; + const float E = 0.14f; + + vec3 color_tonemapped = (color * (A * color + B)) / (color * (C * color + D) + E); + float white_tonemapped = (white * (A * white + B)) / (white * (C * white + D) + E); + + return clamp(color_tonemapped / white_tonemapped, vec3(0.0f), vec3(1.0f)); +} + +// Adapted from https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl +// (MIT License). +vec3 tonemap_aces_fitted(vec3 color, float white) { + const float exposure_bias = 1.8f; + const float A = 0.0245786f; + const float B = 0.000090537f; + const float C = 0.983729f; + const float D = 0.432951f; + const float E = 0.238081f; + + // Exposure bias baked into transform to save shader instructions. Equivalent to `color *= exposure_bias` + const mat3 rgb_to_rrt = mat3( + vec3(0.59719f * exposure_bias, 0.35458f * exposure_bias, 0.04823f * exposure_bias), + vec3(0.07600f * exposure_bias, 0.90834f * exposure_bias, 0.01566f * exposure_bias), + vec3(0.02840f * exposure_bias, 0.13383f * exposure_bias, 0.83777f * exposure_bias)); + + const mat3 odt_to_rgb = mat3( + vec3(1.60475f, -0.53108f, -0.07367f), + vec3(-0.10208f, 1.10813f, -0.00605f), + vec3(-0.00327f, -0.07276f, 1.07602f)); + + color *= rgb_to_rrt; + vec3 color_tonemapped = (color * (color + A) - B) / (color * (C * color + D) + E); + color_tonemapped *= odt_to_rgb; + + white *= exposure_bias; + float white_tonemapped = (white * (white + A) - B) / (white * (C * white + D) + E); + + return clamp(color_tonemapped / white_tonemapped, vec3(0.0f), vec3(1.0f)); +} + +vec3 tonemap_reinhard(vec3 color, float white) { + return clamp((white * color + color) / (color * white + white), vec3(0.0f), vec3(1.0f)); +} + +vec3 linear_to_srgb(vec3 color) { // convert linear rgb to srgb, assumes clamped input in range [0;1] + const vec3 a = vec3(0.055f); + return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f))); +} + +// inputs are LINEAR, If Linear tonemapping is selected no transform is performed else outputs are clamped [0, 1] color +vec3 apply_tonemapping(vec3 color, float white) { + // Ensure color values are positive. + // They can be negative in the case of negative lights, which leads to undesired behavior. +#if defined(USE_REINHARD_TONEMAPPER) || defined(USE_FILMIC_TONEMAPPER) || defined(USE_ACES_TONEMAPPER) || defined(USE_ACES_FITTED_TONEMAPPER) + color = max(vec3(0.0f), color); +#endif + +#ifdef USE_REINHARD_TONEMAPPER + return tonemap_reinhard(color, white); +#endif + +#ifdef USE_FILMIC_TONEMAPPER + return tonemap_filmic(color, white); +#endif + +#ifdef USE_ACES_TONEMAPPER + return tonemap_aces(color, white); +#endif + +#ifdef USE_ACES_FITTED_TONEMAPPER + return tonemap_aces_fitted(color, white); +#endif + + return color; // no other selected -> linear: no color transform applied +} + +vec3 gather_glow(sampler2D tex, vec2 uv) { // sample all selected glow levels + vec3 glow = vec3(0.0f); + +#ifdef USE_GLOW_LEVEL1 + glow += GLOW_TEXTURE_SAMPLE(tex, uv, 1).rgb; +#endif + +#ifdef USE_GLOW_LEVEL2 + glow += GLOW_TEXTURE_SAMPLE(tex, uv, 2).rgb; +#endif + +#ifdef USE_GLOW_LEVEL3 + glow += GLOW_TEXTURE_SAMPLE(tex, uv, 3).rgb; +#endif + +#ifdef USE_GLOW_LEVEL4 + glow += GLOW_TEXTURE_SAMPLE(tex, uv, 4).rgb; +#endif + +#ifdef USE_GLOW_LEVEL5 + glow += GLOW_TEXTURE_SAMPLE(tex, uv, 5).rgb; +#endif + +#ifdef USE_GLOW_LEVEL6 + glow += GLOW_TEXTURE_SAMPLE(tex, uv, 6).rgb; +#endif + +#ifdef USE_GLOW_LEVEL7 + glow += GLOW_TEXTURE_SAMPLE(tex, uv, 7).rgb; +#endif + + return glow; +} + +vec3 apply_glow(vec3 color, vec3 glow) { // apply glow using the selected blending mode +#ifdef USE_GLOW_REPLACE + color = glow; +#endif + +#ifdef USE_GLOW_SCREEN + //need color clamping + color = clamp(color, vec3(0.0f), vec3(1.0f)); + color = max((color + glow) - (color * glow), vec3(0.0)); +#endif + +#ifdef USE_GLOW_SOFTLIGHT + //need color clamping + color = clamp(color, vec3(0.0f), vec3(1.0)); + glow = glow * vec3(0.5f) + vec3(0.5f); + + color.r = (glow.r <= 0.5f) ? (color.r - (1.0f - 2.0f * glow.r) * color.r * (1.0f - color.r)) : (((glow.r > 0.5f) && (color.r <= 0.25f)) ? (color.r + (2.0f * glow.r - 1.0f) * (4.0f * color.r * (4.0f * color.r + 1.0f) * (color.r - 1.0f) + 7.0f * color.r)) : (color.r + (2.0f * glow.r - 1.0f) * (sqrt(color.r) - color.r))); + color.g = (glow.g <= 0.5f) ? (color.g - (1.0f - 2.0f * glow.g) * color.g * (1.0f - color.g)) : (((glow.g > 0.5f) && (color.g <= 0.25f)) ? (color.g + (2.0f * glow.g - 1.0f) * (4.0f * color.g * (4.0f * color.g + 1.0f) * (color.g - 1.0f) + 7.0f * color.g)) : (color.g + (2.0f * glow.g - 1.0f) * (sqrt(color.g) - color.g))); + color.b = (glow.b <= 0.5f) ? (color.b - (1.0f - 2.0f * glow.b) * color.b * (1.0f - color.b)) : (((glow.b > 0.5f) && (color.b <= 0.25f)) ? (color.b + (2.0f * glow.b - 1.0f) * (4.0f * color.b * (4.0f * color.b + 1.0f) * (color.b - 1.0f) + 7.0f * color.b)) : (color.b + (2.0f * glow.b - 1.0f) * (sqrt(color.b) - color.b))); +#endif + +#if !defined(USE_GLOW_SCREEN) && !defined(USE_GLOW_SOFTLIGHT) && !defined(USE_GLOW_REPLACE) // no other selected -> additive + color += glow; +#endif + + return color; +} + +vec3 apply_bcs(vec3 color, vec3 bcs) { + color = mix(vec3(0.0f), color, bcs.x); + color = mix(vec3(0.5f), color, bcs.y); + color = mix(vec3(dot(vec3(1.0f), color) * 0.33333f), color, bcs.z); + + return color; +} + +vec3 apply_color_correction(vec3 color, sampler2D correction_tex) { + color.r = texture(correction_tex, vec2(color.r, 0.0f)).r; + color.g = texture(correction_tex, vec2(color.g, 0.0f)).g; + color.b = texture(correction_tex, vec2(color.b, 0.0f)).b; + + return color; +} + +vec3 apply_fxaa(vec3 color, float exposure, vec2 uv_interp, vec2 pixel_size) { + const float FXAA_REDUCE_MIN = (1.0 / 128.0); + const float FXAA_REDUCE_MUL = (1.0 / 8.0); + const float FXAA_SPAN_MAX = 8.0; + + vec3 rgbNW = textureLod(source, uv_interp + vec2(-1.0, -1.0) * pixel_size, 0.0).xyz * exposure; + vec3 rgbNE = textureLod(source, uv_interp + vec2(1.0, -1.0) * pixel_size, 0.0).xyz * exposure; + vec3 rgbSW = textureLod(source, uv_interp + vec2(-1.0, 1.0) * pixel_size, 0.0).xyz * exposure; + vec3 rgbSE = textureLod(source, uv_interp + vec2(1.0, 1.0) * pixel_size, 0.0).xyz * exposure; + vec3 rgbM = color; + vec3 luma = vec3(0.299, 0.587, 0.114); + float lumaNW = dot(rgbNW, luma); + float lumaNE = dot(rgbNE, luma); + float lumaSW = dot(rgbSW, luma); + float lumaSE = dot(rgbSE, luma); + float lumaM = dot(rgbM, luma); + float lumaMin = min(lumaM, min(min(lumaNW, lumaNE), min(lumaSW, lumaSE))); + float lumaMax = max(lumaM, max(max(lumaNW, lumaNE), max(lumaSW, lumaSE))); + + vec2 dir; + dir.x = -((lumaNW + lumaNE) - (lumaSW + lumaSE)); + dir.y = ((lumaNW + lumaSW) - (lumaNE + lumaSE)); + + float dirReduce = max((lumaNW + lumaNE + lumaSW + lumaSE) * + (0.25 * FXAA_REDUCE_MUL), + FXAA_REDUCE_MIN); + + float rcpDirMin = 1.0 / (min(abs(dir.x), abs(dir.y)) + dirReduce); + dir = min(vec2(FXAA_SPAN_MAX, FXAA_SPAN_MAX), + max(vec2(-FXAA_SPAN_MAX, -FXAA_SPAN_MAX), + dir * rcpDirMin)) * + pixel_size; + + vec3 rgbA = 0.5 * exposure * (textureLod(source, uv_interp + dir * (1.0 / 3.0 - 0.5), 0.0).xyz + textureLod(source, uv_interp + dir * (2.0 / 3.0 - 0.5), 0.0).xyz); + vec3 rgbB = rgbA * 0.5 + 0.25 * exposure * (textureLod(source, uv_interp + dir * -0.5, 0.0).xyz + textureLod(source, uv_interp + dir * 0.5, 0.0).xyz); + + float lumaB = dot(rgbB, luma); + if ((lumaB < lumaMin) || (lumaB > lumaMax)) { + return rgbA; + } else { + return rgbB; + } +} + +// From http://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf +// and https://www.shadertoy.com/view/MslGR8 (5th one starting from the bottom) +// NOTE: `frag_coord` is in pixels (i.e. not normalized UV). +vec3 screen_space_dither(vec2 frag_coord) { + // Iestyn's RGB dither (7 asm instructions) from Portal 2 X360, slightly modified for VR. + vec3 dither = vec3(dot(vec2(171.0, 231.0), frag_coord)); + dither.rgb = fract(dither.rgb / vec3(103.0, 71.0, 97.0)); + + // Subtract 0.5 to avoid slightly brightening the whole viewport. + return (dither.rgb - 0.5) / 255.0; +} + +// Adapted from https://github.com/DadSchoorse/vkBasalt/blob/b929505ba71dea21d6c32a5a59f2d241592b30c4/src/shader/cas.frag.glsl +// (MIT license). +vec3 apply_cas(vec3 color, float exposure, vec2 uv_interp, float sharpen_intensity) { + // Fetch a 3x3 neighborhood around the pixel 'e', + // a b c + // d(e)f + // g h i + vec3 a = textureLodOffset(source, uv_interp, 0.0, ivec2(-1, -1)).rgb * exposure; + vec3 b = textureLodOffset(source, uv_interp, 0.0, ivec2(0, -1)).rgb * exposure; + vec3 c = textureLodOffset(source, uv_interp, 0.0, ivec2(1, -1)).rgb * exposure; + vec3 d = textureLodOffset(source, uv_interp, 0.0, ivec2(-1, 0)).rgb * exposure; + vec3 e = color.rgb; + vec3 f = textureLodOffset(source, uv_interp, 0.0, ivec2(1, 0)).rgb * exposure; + vec3 g = textureLodOffset(source, uv_interp, 0.0, ivec2(-1, 1)).rgb * exposure; + vec3 h = textureLodOffset(source, uv_interp, 0.0, ivec2(0, 1)).rgb * exposure; + vec3 i = textureLodOffset(source, uv_interp, 0.0, ivec2(1, 1)).rgb * exposure; + + // Soft min and max. + // a b c b + // d e f * 0.5 + d e f * 0.5 + // g h i h + // These are 2.0x bigger (factored out the extra multiply). + vec3 min_rgb = min(min(min(d, e), min(f, b)), h); + vec3 min_rgb2 = min(min(min(min_rgb, a), min(g, c)), i); + min_rgb += min_rgb2; + + vec3 max_rgb = max(max(max(d, e), max(f, b)), h); + vec3 max_rgb2 = max(max(max(max_rgb, a), max(g, c)), i); + max_rgb += max_rgb2; + + // Smooth minimum distance to signal limit divided by smooth max. + vec3 rcp_max_rgb = vec3(1.0) / max_rgb; + vec3 amp_rgb = clamp((min(min_rgb, 2.0 - max_rgb) * rcp_max_rgb), 0.0, 1.0); + + // Shaping amount of sharpening. + amp_rgb = inversesqrt(amp_rgb); + float peak = 8.0 - 3.0 * sharpen_intensity; + vec3 w_rgb = -vec3(1) / (amp_rgb * peak); + vec3 rcp_weight_rgb = vec3(1.0) / (1.0 + 4.0 * w_rgb); + + // 0 w 0 + // Filter shape: w 1 w + // 0 w 0 + vec3 window = b + d + f + h; + + return max(vec3(0.0), (window * w_rgb + e) * rcp_weight_rgb); +} + +void main() { + vec3 color = textureLod(source, uv_interp, 0.0f).rgb; + + // Exposure + float full_exposure = exposure; + +#ifdef USE_AUTO_EXPOSURE + full_exposure /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / auto_exposure_grey; +#endif + + color *= full_exposure; + +#ifdef USE_FXAA + // FXAA must be applied before tonemapping. + color = apply_fxaa(color, full_exposure, uv_interp, pixel_size); +#endif + +#ifdef USE_SHARPENING + // CAS gives best results when applied after tonemapping, but `source` isn't tonemapped. + // As a workaround, apply CAS before tonemapping so that the image still has a correct appearance when tonemapped. + color = apply_cas(color, full_exposure, uv_interp, sharpen_intensity); +#endif + +#ifdef USE_DEBANDING + // For best results, debanding should be done before tonemapping. + // Otherwise, we're adding noise to an already-quantized image. + color += screen_space_dither(gl_FragCoord.xy); +#endif + + // Early Tonemap & SRGB Conversion; note that Linear tonemapping does not clamp to [0, 1]; some operations below expect a [0, 1] range and will clamp + color = apply_tonemapping(color, white); + +#ifdef KEEP_3D_LINEAR + // leave color as is (-> don't convert to SRGB) +#else + //need color clamping + color = clamp(color, vec3(0.0f), vec3(1.0f)); + color = linear_to_srgb(color); // regular linear -> SRGB conversion (needs clamped values) +#endif + + // Glow + +#ifdef USING_GLOW + vec3 glow = gather_glow(source_glow, uv_interp) * glow_intensity; + + // high dynamic range -> SRGB + glow = apply_tonemapping(glow, white); + glow = clamp(glow, vec3(0.0f), vec3(1.0f)); + glow = linear_to_srgb(glow); + + color = apply_glow(color, glow); +#endif + + // Additional effects + +#ifdef USE_BCS + color = apply_bcs(color, bcs); +#endif + +#ifdef USE_COLOR_CORRECTION + color = apply_color_correction(color, color_correction); +#endif + + frag_color = vec4(color, 1.0f); +} + +[vertex shader] +#version 330 +#define GLES_OVER_GL +#define USE_AUTO_EXPOSURE +#define USE_GLOW_FILTER_BICUBIC +#define USE_GLOW_LEVEL4 +#define USE_GLOW_LEVEL5 +#define USE_GLOW_LEVEL7 +precision highp float; +precision highp int; + +layout(location = 0) in highp vec4 vertex_attrib; +/* clang-format on */ +layout(location = 4) in vec2 uv_in; + +out vec2 uv_interp; + +void main() { + gl_Position = vertex_attrib; + + uv_interp = uv_in; + +#ifdef V_FLIP + uv_interp.y = 1.0f - uv_interp.y; +#endif +} + +/* clang-format off */ + |