diff options
Diffstat (limited to 'shaders/godot3.4/28-34.shader_test')
-rw-r--r-- | shaders/godot3.4/28-34.shader_test | 2385 |
1 files changed, 2385 insertions, 0 deletions
diff --git a/shaders/godot3.4/28-34.shader_test b/shaders/godot3.4/28-34.shader_test new file mode 100644 index 0000000..ac05fa2 --- /dev/null +++ b/shaders/godot3.4/28-34.shader_test @@ -0,0 +1,2385 @@ +[require] +GLSL >= 3.30 + +[fragment shader] +#version 330 +#define GLES_OVER_GL +#define MAX_LIGHT_DATA_STRUCTS 409 + +#define MAX_FORWARD_LIGHTS 32 + +#define MAX_REFLECTION_DATA_STRUCTS 455 + +#define MAX_SKELETON_BONES 1365 + +#define ENABLE_OCTAHEDRAL_COMPRESSION +#define USE_LIGHT_DIRECTIONAL +#define USE_FORWARD_LIGHTING +#define USE_RADIANCE_MAP +#define USE_RADIANCE_MAP_ARRAY +#define SHADOW_MODE_PCF_13 +#define USE_SHADOW +#define USE_LIGHTMAP_FILTER_BICUBIC +#define LIGHT_DIRECTIONAL_SHADOW +#define LIGHT_USE_PSSM4 +precision highp float; +precision highp int; + + +/* texture unit usage, N is max_texture_unity-N + +1-skeleton +2-radiance +3-reflection_atlas +4-directional_shadow +5-shadow_atlas +6-decal_atlas +7-screen +8-depth +9-probe1 +10-probe2 + +*/ + +uniform highp mat4 world_transform; +/* clang-format on */ + +#define M_PI 3.14159265359 +#define SHADER_IS_SRGB false + +/* Varyings */ + +#if defined(ENABLE_COLOR_INTERP) +in vec4 color_interp; +#endif + +#if defined(ENABLE_UV_INTERP) +in vec2 uv_interp; +#endif + +#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) +in vec2 uv2_interp; +#endif + +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) +in vec3 tangent_interp; +in vec3 binormal_interp; +#endif + +in highp vec3 vertex_interp; +in vec3 normal_interp; + +/* PBR CHANNELS */ + +#ifdef USE_RADIANCE_MAP + +layout(std140) uniform Radiance { // ubo:2 + + mat4 radiance_inverse_xform; + float radiance_ambient_contribution; +}; + +#define RADIANCE_MAX_LOD 5.0 + +uniform sampler2D irradiance_map; // texunit:-6 + +#ifdef USE_RADIANCE_MAP_ARRAY + +uniform sampler2DArray radiance_map; // texunit:-2 + +vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec, float p_roughness) { + vec3 norm = normalize(p_vec); + norm.xy /= 1.0 + abs(norm.z); + norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25); + + // we need to lie the derivatives (normg) and assume that DP side is always the same + // to get proper texture filtering + vec2 normg = norm.xy; + if (norm.z > 0.0) { + norm.y = 0.5 - norm.y + 0.5; + } + + // thanks to OpenGL spec using floor(layer + 0.5) for texture arrays, + // it's easy to have precision errors using fract() to interpolate layers + // as such, using fixed point to ensure it works. + + float index = p_roughness * RADIANCE_MAX_LOD; + int indexi = int(index * 256.0); + vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256)), dFdx(normg), dFdy(normg)).xyz; + vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256 + 1)), dFdx(normg), dFdy(normg)).xyz; + return mix(base, next, float(indexi % 256) / 256.0); +} + +#else + +uniform sampler2D radiance_map; // texunit:-2 + +vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec, float p_roughness) { + vec3 norm = normalize(p_vec); + norm.xy /= 1.0 + abs(norm.z); + norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25); + if (norm.z > 0.0) { + norm.y = 0.5 - norm.y + 0.5; + } + return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz; +} + +#endif + +#endif + +/* Material Uniforms */ + +#if defined(USE_MATERIAL) + +/* clang-format off */ +layout(std140) uniform UniformData { + + +}; +/* clang-format on */ + +#endif + +layout(std140) uniform SceneData { + highp mat4 projection_matrix; + highp mat4 inv_projection_matrix; + highp mat4 camera_inverse_matrix; + highp mat4 camera_matrix; + + mediump vec4 ambient_light_color; + mediump vec4 bg_color; + + mediump vec4 fog_color_enabled; + mediump vec4 fog_sun_color_amount; + + mediump float ambient_energy; + mediump float bg_energy; + + mediump float z_offset; + mediump float z_slope_scale; + highp float shadow_dual_paraboloid_render_zfar; + highp float shadow_dual_paraboloid_render_side; + + highp vec2 viewport_size; + highp vec2 screen_pixel_size; + highp vec2 shadow_atlas_pixel_size; + highp vec2 directional_shadow_pixel_size; + + highp float time; + highp float z_far; + mediump float reflection_multiplier; + mediump float subsurface_scatter_width; + mediump float ambient_occlusion_affect_light; + mediump float ambient_occlusion_affect_ao_channel; + mediump float opaque_prepass_threshold; + + bool fog_depth_enabled; + highp float fog_depth_begin; + highp float fog_depth_end; + mediump float fog_density; + highp float fog_depth_curve; + bool fog_transmit_enabled; + highp float fog_transmit_curve; + bool fog_height_enabled; + highp float fog_height_min; + highp float fog_height_max; + highp float fog_height_curve; + + int view_index; +}; + +/* clang-format off */ + + +/* clang-format on */ + +//directional light data + +#ifdef USE_LIGHT_DIRECTIONAL + +layout(std140) uniform DirectionalLightData { + highp vec4 light_pos_inv_radius; + mediump vec4 light_direction_attenuation; + mediump vec4 light_color_energy; + mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled, + mediump vec4 light_clamp; + mediump vec4 shadow_color_contact; + highp mat4 shadow_matrix1; + highp mat4 shadow_matrix2; + highp mat4 shadow_matrix3; + highp mat4 shadow_matrix4; + mediump vec4 shadow_split_offsets; +}; + +uniform highp sampler2DShadow directional_shadow; // texunit:-4 + +#endif + +#ifdef USE_VERTEX_LIGHTING +in vec4 diffuse_light_interp; +in vec4 specular_light_interp; +#endif +// omni and spot + +struct LightData { + highp vec4 light_pos_inv_radius; + mediump vec4 light_direction_attenuation; + mediump vec4 light_color_energy; + mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled, + mediump vec4 light_clamp; + mediump vec4 shadow_color_contact; + highp mat4 shadow_matrix; +}; + +layout(std140) uniform OmniLightData { // ubo:4 + + LightData omni_lights[MAX_LIGHT_DATA_STRUCTS]; +}; + +layout(std140) uniform SpotLightData { // ubo:5 + + LightData spot_lights[MAX_LIGHT_DATA_STRUCTS]; +}; + +uniform highp sampler2DShadow shadow_atlas; // texunit:-5 + +struct ReflectionData { + mediump vec4 box_extents; + mediump vec4 box_offset; + mediump vec4 params; // intensity, 0, interior , boxproject + mediump vec4 ambient; // ambient color, energy + mediump vec4 atlas_clamp; + highp mat4 local_matrix; // up to here for spot and omni, rest is for directional + // notes: for ambientblend, use distance to edge to blend between already existing global environment +}; + +layout(std140) uniform ReflectionProbeData { //ubo:6 + + ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS]; +}; +uniform mediump sampler2D reflection_atlas; // texunit:-3 + +#ifdef USE_FORWARD_LIGHTING + +uniform int omni_light_indices[MAX_FORWARD_LIGHTS]; +uniform int omni_light_count; + +uniform int spot_light_indices[MAX_FORWARD_LIGHTS]; +uniform int spot_light_count; + +uniform int reflection_indices[MAX_FORWARD_LIGHTS]; +uniform int reflection_count; + +#endif + +#if defined(SCREEN_TEXTURE_USED) + +uniform highp sampler2D screen_texture; // texunit:-7 + +#endif + +#ifdef USE_MULTIPLE_RENDER_TARGETS + +layout(location = 0) out vec4 diffuse_buffer; +layout(location = 1) out vec4 specular_buffer; +layout(location = 2) out vec4 normal_mr_buffer; +#if defined(ENABLE_SSS) +layout(location = 3) out float sss_buffer; +#endif + +#else + +layout(location = 0) out vec4 frag_color; + +#endif + +in highp vec4 position_interp; +uniform highp sampler2D depth_buffer; // texunit:-8 + +#ifdef USE_CONTACT_SHADOWS + +float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) { + if (abs(dir.z) > 0.99) + return 1.0; + + vec3 endpoint = pos + dir * max_distance; + vec4 source = position_interp; + vec4 dest = projection_matrix * vec4(endpoint, 1.0); + + vec2 from_screen = (source.xy / source.w) * 0.5 + 0.5; + vec2 to_screen = (dest.xy / dest.w) * 0.5 + 0.5; + + vec2 screen_rel = to_screen - from_screen; + + if (length(screen_rel) < 0.00001) + return 1.0; // too small, don't do anything + + /* + float pixel_size; // approximate pixel size + + if (screen_rel.x > screen_rel.y) { + + pixel_size = abs((pos.x - endpoint.x) / (screen_rel.x / screen_pixel_size.x)); + } else { + pixel_size = abs((pos.y - endpoint.y) / (screen_rel.y / screen_pixel_size.y)); + } + */ + vec4 bias = projection_matrix * vec4(pos + vec3(0.0, 0.0, max_distance * 0.5), 1.0); + + vec2 pixel_incr = normalize(screen_rel) * screen_pixel_size; + + float steps = length(screen_rel) / length(pixel_incr); + steps = min(2000.0, steps); // put a limit to avoid freezing in some strange situation + //steps = 10.0; + + vec4 incr = (dest - source) / steps; + float ratio = 0.0; + float ratio_incr = 1.0 / steps; + + while (steps > 0.0) { + source += incr * 2.0; + bias += incr * 2.0; + + vec3 uv_depth = (source.xyz / source.w) * 0.5 + 0.5; + if (uv_depth.x > 0.0 && uv_depth.x < 1.0 && uv_depth.y > 0.0 && uv_depth.y < 1.0) { + float depth = texture(depth_buffer, uv_depth.xy).r; + + if (depth < uv_depth.z) { + if (depth > (bias.z / bias.w) * 0.5 + 0.5) { + return min(pow(ratio, 4.0), 1.0); + } else { + return 1.0; + } + } + + ratio += ratio_incr; + steps -= 1.0; + } else { + return 1.0; + } + } + + return 1.0; +} + +#endif + +// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V. +// We're dividing this factor off because the overall term we'll end up looks like +// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012): +// +// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V) +// +// We're basically regouping this as +// +// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)] +// +// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V. +// +// The contents of the D and G (G1) functions (GGX) are taken from +// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014). +// Eqns 71-72 and 85-86 (see also Eqns 43 and 80). + +float G_GGX_2cos(float cos_theta_m, float alpha) { + // Schlick's approximation + // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994) + // Eq. (19), although see Heitz (2014) the about the problems with his derivation. + // It nevertheless approximates GGX well with k = alpha/2. + float k = 0.5 * alpha; + return 0.5 / (cos_theta_m * (1.0 - k) + k); + + // float cos2 = cos_theta_m * cos_theta_m; + // float sin2 = (1.0 - cos2); + // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2)); +} + +float D_GGX(float cos_theta_m, float alpha) { + float alpha2 = alpha * alpha; + float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m; + return alpha2 / (M_PI * d * d); +} + +float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { + float cos2 = cos_theta_m * cos_theta_m; + float sin2 = (1.0 - cos2); + float s_x = alpha_x * cos_phi; + float s_y = alpha_y * sin_phi; + return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001); +} + +float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { + float cos2 = cos_theta_m * cos_theta_m; + float sin2 = (1.0 - cos2); + float r_x = cos_phi / alpha_x; + float r_y = sin_phi / alpha_y; + float d = cos2 + sin2 * (r_x * r_x + r_y * r_y); + return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); +} + +float SchlickFresnel(float u) { + float m = 1.0 - u; + float m2 = m * m; + return m2 * m2 * m; // pow(m,5) +} + +float GTR1(float NdotH, float a) { + if (a >= 1.0) + return 1.0 / M_PI; + float a2 = a * a; + float t = 1.0 + (a2 - 1.0) * NdotH * NdotH; + return (a2 - 1.0) / (M_PI * log(a2) * t); +} + +vec3 F0(float metallic, float specular, vec3 albedo) { + float dielectric = 0.16 * specular * specular; + // use albedo * metallic as colored specular reflectance at 0 angle for metallic materials; + // see https://google.github.io/filament/Filament.md.html + return mix(vec3(dielectric), albedo, vec3(metallic)); +} + +void light_compute(vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec3 attenuation, vec3 diffuse_color, vec3 transmission, float specular_blob_intensity, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light, inout float alpha) { +#if defined(USE_LIGHT_SHADER_CODE) + // light is written by the light shader + + vec3 normal = N; + vec3 albedo = diffuse_color; + vec3 light = L; + vec3 view = V; + + /* clang-format off */ + + + /* clang-format on */ + +#else + float NdotL = dot(N, L); + float cNdotL = max(NdotL, 0.0); // clamped NdotL + float NdotV = dot(N, V); + float cNdotV = max(NdotV, 0.0); + +/* Make a default specular mode SPECULAR_SCHLICK_GGX. */ +#if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN) && !defined(SPECULAR_PHONG) && !defined(SPECULAR_TOON) +#define SPECULAR_SCHLICK_GGX +#endif + +#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT) + vec3 H = normalize(V + L); +#endif + +#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT) + float cNdotH = max(dot(N, H), 0.0); +#endif + +#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT) + float cLdotH = max(dot(L, H), 0.0); +#endif + + if (metallic < 1.0) { +#if defined(DIFFUSE_OREN_NAYAR) + vec3 diffuse_brdf_NL; +#else + float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance +#endif + +#if defined(DIFFUSE_LAMBERT_WRAP) + // energy conserving lambert wrap shader + diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); + +#elif defined(DIFFUSE_OREN_NAYAR) + + { + // see http://mimosa-pudica.net/improved-oren-nayar.html + float LdotV = dot(L, V); + + float s = LdotV - NdotL * NdotV; + float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); + + float sigma2 = roughness * roughness; // TODO: this needs checking + vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13)); + float B = 0.45 * sigma2 / (sigma2 + 0.09); + + diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI); + } + +#elif defined(DIFFUSE_TOON) + + diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL); + +#elif defined(DIFFUSE_BURLEY) + + { + float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5; + float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV); + float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL); + diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL; + /* + float energyBias = mix(roughness, 0.0, 0.5); + float energyFactor = mix(roughness, 1.0, 1.0 / 1.51); + float fd90 = energyBias + 2.0 * VoH * VoH * roughness; + float f0 = 1.0; + float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0); + float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0); + + diffuse_brdf_NL = lightScatter * viewScatter * energyFactor; + */ + } +#else + // lambert + diffuse_brdf_NL = cNdotL * (1.0 / M_PI); +#endif + + diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation; + +#if defined(TRANSMISSION_USED) + diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation; +#endif + +#if defined(LIGHT_USE_RIM) + float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0)); + diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color; +#endif + } + + if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely + + // D + +#if defined(SPECULAR_BLINN) + + //normalized blinn + float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; + float blinn = pow(cNdotH, shininess); + blinn *= (shininess + 2.0) * (1.0 / (8.0 * M_PI)); // Normalized NDF and Geometric term + float intensity = blinn; + + specular_light += light_color * intensity * specular_blob_intensity * attenuation * diffuse_color * specular; + +#elif defined(SPECULAR_PHONG) + + vec3 R = normalize(-reflect(L, N)); + float cRdotV = max(0.0, dot(R, V)); + float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; + float phong = pow(cRdotV, shininess); + phong *= (shininess + 1.0) * (1.0 / (8.0 * M_PI)); // Normalized NDF and Geometric term + float intensity = phong; + + specular_light += light_color * intensity * specular_blob_intensity * attenuation * diffuse_color * specular; + +#elif defined(SPECULAR_TOON) + + vec3 R = normalize(-reflect(L, N)); + float RdotV = dot(R, V); + float mid = 1.0 - roughness; + mid *= mid; + float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid; + diffuse_light += light_color * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection + +#elif defined(SPECULAR_DISABLED) + // none.. + +#elif defined(SPECULAR_SCHLICK_GGX) + // shlick+ggx as default + +#if defined(LIGHT_USE_ANISOTROPY) + + float alpha_ggx = roughness * roughness; + float aspect = sqrt(1.0 - anisotropy * 0.9); + float ax = alpha_ggx / aspect; + float ay = alpha_ggx * aspect; + float XdotH = dot(T, H); + float YdotH = dot(B, H); + float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH); + float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH); + +#else + float alpha_ggx = roughness * roughness; + float D = D_GGX(cNdotH, alpha_ggx); + float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx); +#endif + // F + vec3 f0 = F0(metallic, specular, diffuse_color); + float cLdotH5 = SchlickFresnel(cLdotH); + vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0); + + vec3 specular_brdf_NL = cNdotL * D * F * G; + + specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation; +#endif + +#if defined(LIGHT_USE_CLEARCOAT) + +#if !defined(SPECULAR_SCHLICK_GGX) + float cLdotH5 = SchlickFresnel(cLdotH); +#endif + float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss)); + float Fr = mix(.04, 1.0, cLdotH5); + float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25); + + float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL; + + specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation; +#endif + } + +#ifdef USE_SHADOW_TO_OPACITY + alpha = min(alpha, clamp(1.0 - length(attenuation), 0.0, 1.0)); +#endif + +#endif //defined(USE_LIGHT_SHADER_CODE) +} + +float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) { +#ifdef SHADOW_MODE_PCF_13 + + float avg = textureProj(shadow, vec4(pos, depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth, 1.0)); + return avg * (1.0 / 13.0); +#endif + +#ifdef SHADOW_MODE_PCF_5 + + float avg = textureProj(shadow, vec4(pos, depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0)); + return avg * (1.0 / 5.0); + +#endif + +#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13) + + return textureProj(shadow, vec4(pos, depth, 1.0)); + +#endif +} + +#ifdef RENDER_DEPTH_DUAL_PARABOLOID + +in highp float dp_clip; + +#endif + +#ifdef USE_PHYSICAL_LIGHT_ATTENUATION +float get_omni_attenuation(float distance, float inv_range, float decay) { + float nd = distance * inv_range; + nd *= nd; + nd *= nd; // nd^4 + nd = max(1.0 - nd, 0.0); + nd *= nd; // nd^2 + return nd * pow(max(distance, 0.0001), -decay); +} +#endif + +void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light, inout float alpha) { + vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex; + float light_length = length(light_rel_vec); + float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w; + float omni_attenuation; + if (normalized_distance < 1.0) { +#ifdef USE_PHYSICAL_LIGHT_ATTENUATION + omni_attenuation = get_omni_attenuation(light_length, omni_lights[idx].light_pos_inv_radius.w, omni_lights[idx].light_direction_attenuation.w); +#else + omni_attenuation = pow(1.0 - normalized_distance, omni_lights[idx].light_direction_attenuation.w); +#endif + } else { + omni_attenuation = 0.0; + } + vec3 light_attenuation = vec3(omni_attenuation); + +#if !defined(SHADOWS_DISABLED) +#ifdef USE_SHADOW + if (omni_lights[idx].light_params.w > 0.5) { + // there is a shadowmap + + highp vec3 splane = (omni_lights[idx].shadow_matrix * vec4(vertex, 1.0)).xyz; + float shadow_len = length(splane); + splane = normalize(splane); + vec4 clamp_rect = omni_lights[idx].light_clamp; + + if (splane.z >= 0.0) { + splane.z += 1.0; + + clamp_rect.y += clamp_rect.w; + + } else { + splane.z = 1.0 - splane.z; + + /* + if (clamp_rect.z < clamp_rect.w) { + clamp_rect.x += clamp_rect.z; + } else { + clamp_rect.y += clamp_rect.w; + } + */ + } + + splane.xy /= splane.z; + splane.xy = splane.xy * 0.5 + 0.5; + splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w; + + splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; + float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, clamp_rect); + +#ifdef USE_CONTACT_SHADOWS + + if (shadow > 0.01 && omni_lights[idx].shadow_color_contact.a > 0.0) { + float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, omni_lights[idx].shadow_color_contact.a)); + shadow = min(shadow, contact_shadow); + } +#endif + light_attenuation *= mix(omni_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow); + } +#endif //USE_SHADOW +#endif //SHADOWS_DISABLED + light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, omni_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, omni_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, specular, rim * omni_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light, alpha); +} + +void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light, inout float alpha) { + vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex; + float light_length = length(light_rel_vec); + float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w; + float spot_attenuation; + if (normalized_distance < 1.0) { +#ifdef USE_PHYSICAL_LIGHT_ATTENUATION + spot_attenuation = get_omni_attenuation(light_length, spot_lights[idx].light_pos_inv_radius.w, spot_lights[idx].light_direction_attenuation.w); +#else + spot_attenuation = pow(1.0 - normalized_distance, spot_lights[idx].light_direction_attenuation.w); +#endif + } else { + spot_attenuation = 0.0; + } + vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz; + float spot_cutoff = spot_lights[idx].light_params.y; + float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff); + float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff)); + spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].light_params.x); + vec3 light_attenuation = vec3(spot_attenuation); + +#if !defined(SHADOWS_DISABLED) +#ifdef USE_SHADOW + if (spot_lights[idx].light_params.w > 0.5) { + //there is a shadowmap + highp vec4 splane = (spot_lights[idx].shadow_matrix * vec4(vertex, 1.0)); + splane.xyz /= splane.w; + + float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, spot_lights[idx].light_clamp); + +#ifdef USE_CONTACT_SHADOWS + if (shadow > 0.01 && spot_lights[idx].shadow_color_contact.a > 0.0) { + float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, spot_lights[idx].shadow_color_contact.a)); + shadow = min(shadow, contact_shadow); + } +#endif + light_attenuation *= mix(spot_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow); + } +#endif //USE_SHADOW +#endif //SHADOWS_DISABLED + + light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, spot_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, spot_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, specular, rim * spot_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light, alpha); +} + +void reflection_process(int idx, vec3 vertex, vec3 normal, vec3 binormal, vec3 tangent, float roughness, float anisotropy, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) { + vec3 ref_vec = normalize(reflect(vertex, normal)); + vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex, 1.0)).xyz; + vec3 box_extents = reflections[idx].box_extents.xyz; + + if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box + return; + } + + vec3 inner_pos = abs(local_pos / box_extents); + float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); + //make blend more rounded + blend = mix(length(inner_pos), blend, blend); + blend *= blend; + blend = max(0.0, 1.0 - blend); + + if (reflections[idx].params.x > 0.0) { // compute reflection + + vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec, 0.0)).xyz; + + if (reflections[idx].params.w > 0.5) { //box project + + vec3 nrdir = normalize(local_ref_vec); + vec3 rbmax = (box_extents - local_pos) / nrdir; + vec3 rbmin = (-box_extents - local_pos) / nrdir; + + vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0))); + + float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z); + vec3 posonbox = local_pos + nrdir * fa; + local_ref_vec = posonbox - reflections[idx].box_offset.xyz; + } + + vec4 clamp_rect = reflections[idx].atlas_clamp; + vec3 norm = normalize(local_ref_vec); + norm.xy /= 1.0 + abs(norm.z); + norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25); + if (norm.z > 0.0) { + norm.y = 0.5 - norm.y + 0.5; + } + + vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy; + atlas_uv = clamp(atlas_uv, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw); + + highp vec4 reflection; + reflection.rgb = textureLod(reflection_atlas, atlas_uv, roughness * 5.0).rgb; + + if (reflections[idx].params.z < 0.5) { + reflection.rgb = mix(skybox, reflection.rgb, blend); + } + reflection.rgb *= reflections[idx].params.x; + reflection.a = blend; + reflection.rgb *= reflection.a; + + reflection_accum += reflection; + } +#if !defined(USE_LIGHTMAP) && !defined(USE_LIGHTMAP_CAPTURE) + if (reflections[idx].ambient.a > 0.0) { //compute ambient using skybox + + vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal, 0.0)).xyz; + + vec3 splane = normalize(local_amb_vec); + vec4 clamp_rect = reflections[idx].atlas_clamp; + + splane.z *= -1.0; + if (splane.z >= 0.0) { + splane.z += 1.0; + clamp_rect.y += clamp_rect.w; + } else { + splane.z = 1.0 - splane.z; + splane.y = -splane.y; + } + + splane.xy /= splane.z; + splane.xy = splane.xy * 0.5 + 0.5; + + splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy; + splane.xy = clamp(splane.xy, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw); + + highp vec4 ambient_out; + ambient_out.a = blend; + ambient_out.rgb = textureLod(reflection_atlas, splane.xy, 5.0).rgb; + ambient_out.rgb = mix(reflections[idx].ambient.rgb, ambient_out.rgb, reflections[idx].ambient.a); + if (reflections[idx].params.z < 0.5) { + ambient_out.rgb = mix(ambient, ambient_out.rgb, blend); + } + + ambient_out.rgb *= ambient_out.a; + ambient_accum += ambient_out; + } else { + highp vec4 ambient_out; + ambient_out.a = blend; + ambient_out.rgb = reflections[idx].ambient.rgb; + if (reflections[idx].params.z < 0.5) { + ambient_out.rgb = mix(ambient, ambient_out.rgb, blend); + } + ambient_out.rgb *= ambient_out.a; + ambient_accum += ambient_out; + } +#endif +} + +#ifdef USE_LIGHTMAP +#ifdef USE_LIGHTMAP_LAYERED +uniform mediump sampler2DArray lightmap; //texunit:-9 +uniform int lightmap_layer; +#else +uniform mediump sampler2D lightmap; //texunit:-9 +#endif + +uniform mediump float lightmap_energy; + +#ifdef USE_LIGHTMAP_FILTER_BICUBIC +uniform vec2 lightmap_texture_size; + +// w0, w1, w2, and w3 are the four cubic B-spline basis functions +float w0(float a) { + return (1.0 / 6.0) * (a * (a * (-a + 3.0) - 3.0) + 1.0); +} + +float w1(float a) { + return (1.0 / 6.0) * (a * a * (3.0 * a - 6.0) + 4.0); +} + +float w2(float a) { + return (1.0 / 6.0) * (a * (a * (-3.0 * a + 3.0) + 3.0) + 1.0); +} + +float w3(float a) { + return (1.0 / 6.0) * (a * a * a); +} + +// g0 and g1 are the two amplitude functions +float g0(float a) { + return w0(a) + w1(a); +} + +float g1(float a) { + return w2(a) + w3(a); +} + +// h0 and h1 are the two offset functions +float h0(float a) { + return -1.0 + w1(a) / (w0(a) + w1(a)); +} + +float h1(float a) { + return 1.0 + w3(a) / (w2(a) + w3(a)); +} + +vec4 texture_bicubic(sampler2D tex, vec2 uv) { + vec2 texel_size = vec2(1.0) / lightmap_texture_size; + + uv = uv * lightmap_texture_size + vec2(0.5); + + vec2 iuv = floor(uv); + vec2 fuv = fract(uv); + + float g0x = g0(fuv.x); + float g1x = g1(fuv.x); + float h0x = h0(fuv.x); + float h1x = h1(fuv.x); + float h0y = h0(fuv.y); + float h1y = h1(fuv.y); + + vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5)) * texel_size; + vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5)) * texel_size; + vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5)) * texel_size; + vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5)) * texel_size; + + return (g0(fuv.y) * (g0x * texture(tex, p0) + g1x * texture(tex, p1))) + + (g1(fuv.y) * (g0x * texture(tex, p2) + g1x * texture(tex, p3))); +} + +vec4 textureArray_bicubic(sampler2DArray tex, vec3 uv) { + vec2 texel_size = vec2(1.0) / lightmap_texture_size; + + uv.xy = uv.xy * lightmap_texture_size + vec2(0.5); + + vec2 iuv = floor(uv.xy); + vec2 fuv = fract(uv.xy); + + float g0x = g0(fuv.x); + float g1x = g1(fuv.x); + float h0x = h0(fuv.x); + float h1x = h1(fuv.x); + float h0y = h0(fuv.y); + float h1y = h1(fuv.y); + + vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5)) * texel_size; + vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5)) * texel_size; + vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5)) * texel_size; + vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5)) * texel_size; + + return (g0(fuv.y) * (g0x * texture(tex, vec3(p0, uv.z)) + g1x * texture(tex, vec3(p1, uv.z)))) + + (g1(fuv.y) * (g0x * texture(tex, vec3(p2, uv.z)) + g1x * texture(tex, vec3(p3, uv.z)))); +} + +#define LIGHTMAP_TEXTURE_SAMPLE(m_tex, m_uv) texture_bicubic(m_tex, m_uv) +#define LIGHTMAP_TEXTURE_LAYERED_SAMPLE(m_tex, m_uv) textureArray_bicubic(m_tex, m_uv) + +#else //!USE_LIGHTMAP_FILTER_BICUBIC +#define LIGHTMAP_TEXTURE_SAMPLE(m_tex, m_uv) texture(m_tex, m_uv) +#define LIGHTMAP_TEXTURE_LAYERED_SAMPLE(m_tex, m_uv) texture(m_tex, m_uv) + +#endif //USE_LIGHTMAP_FILTER_BICUBIC +#endif + +#ifdef USE_LIGHTMAP_CAPTURE +uniform mediump vec4[12] lightmap_captures; +#endif + +#ifdef USE_GI_PROBES + +uniform mediump sampler3D gi_probe1; //texunit:-9 +uniform highp mat4 gi_probe_xform1; +uniform highp vec3 gi_probe_bounds1; +uniform highp vec3 gi_probe_cell_size1; +uniform highp float gi_probe_multiplier1; +uniform highp float gi_probe_bias1; +uniform highp float gi_probe_normal_bias1; +uniform bool gi_probe_blend_ambient1; + +uniform mediump sampler3D gi_probe2; //texunit:-10 +uniform highp mat4 gi_probe_xform2; +uniform highp vec3 gi_probe_bounds2; +uniform highp vec3 gi_probe_cell_size2; +uniform highp float gi_probe_multiplier2; +uniform highp float gi_probe_bias2; +uniform highp float gi_probe_normal_bias2; +uniform bool gi_probe2_enabled; +uniform bool gi_probe_blend_ambient2; + +vec3 voxel_cone_trace(mediump sampler3D probe, vec3 cell_size, vec3 pos, vec3 ambient, bool blend_ambient, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { + float dist = p_bias; //1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0; + float alpha = 0.0; + vec3 color = vec3(0.0); + + while (dist < max_distance && alpha < 0.95) { + float diameter = max(1.0, 2.0 * tan_half_angle * dist); + vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter)); + float a = (1.0 - alpha); + color += scolor.rgb * a; + alpha += a * scolor.a; + dist += diameter * 0.5; + } + + if (blend_ambient) { + color.rgb = mix(ambient, color.rgb, min(1.0, alpha / 0.95)); + } + + return color; +} + +void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds, vec3 cell_size, vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient, float multiplier, mat3 normal_mtx, vec3 ref_vec, float roughness, float p_bias, float p_normal_bias, inout vec4 out_spec, inout vec4 out_diff) { + vec3 probe_pos = (probe_xform * vec4(pos, 1.0)).xyz; + vec3 ref_pos = (probe_xform * vec4(pos + ref_vec, 1.0)).xyz; + ref_vec = normalize(ref_pos - probe_pos); + + probe_pos += (probe_xform * vec4(normal_mtx[2], 0.0)).xyz * p_normal_bias; + + /* out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0); + out_diff.a = 1.0; + return;*/ + //out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0); + //return; + + //this causes corrupted pixels, i have no idea why.. + if (any(bvec2(any(lessThan(probe_pos, vec3(0.0))), any(greaterThan(probe_pos, bounds))))) { + return; + } + + vec3 blendv = abs(probe_pos / bounds * 2.0 - 1.0); + float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0); + //float blend=1.0; + + float max_distance = length(bounds); + + //radiance +#ifdef VCT_QUALITY_HIGH + +#define MAX_CONE_DIRS 6 + vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( + vec3(0.0, 0.0, 1.0), + vec3(0.866025, 0.0, 0.5), + vec3(0.267617, 0.823639, 0.5), + vec3(-0.700629, 0.509037, 0.5), + vec3(-0.700629, -0.509037, 0.5), + vec3(0.267617, -0.823639, 0.5)); + + float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15); + float cone_angle_tan = 0.577; + float min_ref_tan = 0.0; +#else + +#define MAX_CONE_DIRS 4 + + vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( + vec3(0.707107, 0.0, 0.707107), + vec3(0.0, 0.707107, 0.707107), + vec3(-0.707107, 0.0, 0.707107), + vec3(0.0, -0.707107, 0.707107)); + + float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25); + float cone_angle_tan = 0.98269; + max_distance *= 0.5; + float min_ref_tan = 0.2; + +#endif + vec3 light = vec3(0.0); + for (int i = 0; i < MAX_CONE_DIRS; i++) { + vec3 dir = normalize((probe_xform * vec4(pos + normal_mtx * cone_dirs[i], 1.0)).xyz - probe_pos); + light += cone_weights[i] * voxel_cone_trace(probe, cell_size, probe_pos, ambient, blend_ambient, dir, cone_angle_tan, max_distance, p_bias); + } + + light *= multiplier; + + out_diff += vec4(light * blend, blend); + + //irradiance + + vec3 irr_light = voxel_cone_trace(probe, cell_size, probe_pos, environment, blend_ambient, ref_vec, max(min_ref_tan, tan(roughness * 0.5 * M_PI * 0.99)), max_distance, p_bias); + + irr_light *= multiplier; + //irr_light=vec3(0.0); + + out_spec += vec4(irr_light * blend, blend); +} + +void gi_probes_compute(vec3 pos, vec3 normal, float roughness, inout vec3 out_specular, inout vec3 out_ambient) { + roughness = roughness * roughness; + + vec3 ref_vec = normalize(reflect(normalize(pos), normal)); + + //find arbitrary tangent and bitangent, then build a matrix + vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0); + vec3 tangent = normalize(cross(v0, normal)); + vec3 bitangent = normalize(cross(tangent, normal)); + mat3 normal_mat = mat3(tangent, bitangent, normal); + + vec4 diff_accum = vec4(0.0); + vec4 spec_accum = vec4(0.0); + + vec3 ambient = out_ambient; + out_ambient = vec3(0.0); + + vec3 environment = out_specular; + + out_specular = vec3(0.0); + + gi_probe_compute(gi_probe1, gi_probe_xform1, gi_probe_bounds1, gi_probe_cell_size1, pos, ambient, environment, gi_probe_blend_ambient1, gi_probe_multiplier1, normal_mat, ref_vec, roughness, gi_probe_bias1, gi_probe_normal_bias1, spec_accum, diff_accum); + + if (gi_probe2_enabled) { + gi_probe_compute(gi_probe2, gi_probe_xform2, gi_probe_bounds2, gi_probe_cell_size2, pos, ambient, environment, gi_probe_blend_ambient2, gi_probe_multiplier2, normal_mat, ref_vec, roughness, gi_probe_bias2, gi_probe_normal_bias2, spec_accum, diff_accum); + } + + if (diff_accum.a > 0.0) { + diff_accum.rgb /= diff_accum.a; + } + + if (spec_accum.a > 0.0) { + spec_accum.rgb /= spec_accum.a; + } + + out_specular += spec_accum.rgb; + out_ambient += diff_accum.rgb; +} + +#endif + +void main() { +#ifdef RENDER_DEPTH_DUAL_PARABOLOID + + if (dp_clip > 0.0) + discard; +#endif + + //lay out everything, whathever is unused is optimized away anyway + highp vec3 vertex = vertex_interp; + vec3 view = -normalize(vertex_interp); + vec3 albedo = vec3(1.0); + vec3 transmission = vec3(0.0); + float metallic = 0.0; + float specular = 0.5; + vec3 emission = vec3(0.0); + float roughness = 1.0; + float rim = 0.0; + float rim_tint = 0.0; + float clearcoat = 0.0; + float clearcoat_gloss = 0.0; + float anisotropy = 0.0; + vec2 anisotropy_flow = vec2(1.0, 0.0); + +#if defined(ENABLE_AO) + float ao = 1.0; + float ao_light_affect = 0.0; +#endif + + float alpha = 1.0; + +#if defined(ALPHA_SCISSOR_USED) + float alpha_scissor = 0.5; +#endif + +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) + vec3 binormal = normalize(binormal_interp); + vec3 tangent = normalize(tangent_interp); +#else + vec3 binormal = vec3(0.0); + vec3 tangent = vec3(0.0); +#endif + vec3 normal = normalize(normal_interp); + +#if defined(DO_SIDE_CHECK) + if (!gl_FrontFacing) { + normal = -normal; + } +#endif + +#if defined(ENABLE_UV_INTERP) + vec2 uv = uv_interp; +#endif + +#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) + vec2 uv2 = uv2_interp; +#endif + +#if defined(ENABLE_COLOR_INTERP) + vec4 color = color_interp; +#endif + +#if defined(ENABLE_NORMALMAP) + + vec3 normalmap = vec3(0.5); +#endif + + float normaldepth = 1.0; + +#if defined(SCREEN_UV_USED) + vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size; +#endif + +#if defined(ENABLE_SSS) + float sss_strength = 0.0; +#endif + + { + /* clang-format off */ + + + /* clang-format on */ + } + +#if !defined(USE_SHADOW_TO_OPACITY) + +#if defined(ALPHA_SCISSOR_USED) + if (alpha < alpha_scissor) { + discard; + } +#endif // ALPHA_SCISSOR_USED + +#ifdef USE_OPAQUE_PREPASS + + if (alpha < opaque_prepass_threshold) { + discard; + } + +#endif // USE_OPAQUE_PREPASS + +#endif // !USE_SHADOW_TO_OPACITY + +#if defined(ENABLE_NORMALMAP) + + normalmap.xy = normalmap.xy * 2.0 - 1.0; + normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc. + + normal = normalize(mix(normal, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)); + +#endif + +#if defined(LIGHT_USE_ANISOTROPY) + + if (anisotropy > 0.01) { + //rotation matrix + mat3 rot = mat3(tangent, binormal, normal); + //make local to space + tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0)); + binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0)); + } + +#endif + +#ifdef ENABLE_CLIP_ALPHA + if (albedo.a < 0.99) { + //used for doublepass and shadowmapping + discard; + } +#endif + + /////////////////////// LIGHTING ////////////////////////////// + + //apply energy conservation + +#ifdef USE_VERTEX_LIGHTING + + vec3 specular_light = specular_light_interp.rgb; + vec3 diffuse_light = diffuse_light_interp.rgb; +#else + + vec3 specular_light = vec3(0.0, 0.0, 0.0); + vec3 diffuse_light = vec3(0.0, 0.0, 0.0); + +#endif + + vec3 ambient_light; + vec3 env_reflection_light = vec3(0.0, 0.0, 0.0); + + vec3 eye_vec = view; + + // IBL precalculations + float ndotv = clamp(dot(normal, eye_vec), 0.0, 1.0); + vec3 f0 = F0(metallic, specular, albedo); + vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0); + +#ifdef USE_RADIANCE_MAP + +#ifdef AMBIENT_LIGHT_DISABLED + ambient_light = vec3(0.0, 0.0, 0.0); +#else + { + { //read radiance from dual paraboloid + + vec3 ref_vec = reflect(-eye_vec, normal); + float horizon = min(1.0 + dot(ref_vec, normal), 1.0); + ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz); + vec3 radiance = textureDualParaboloid(radiance_map, ref_vec, roughness) * bg_energy; + env_reflection_light = radiance; + env_reflection_light *= horizon * horizon; + } + } +#ifndef USE_LIGHTMAP + { + vec3 norm = normal; + norm = normalize((radiance_inverse_xform * vec4(norm, 0.0)).xyz); + norm.xy /= 1.0 + abs(norm.z); + norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25); + if (norm.z > 0.0001) { + norm.y = 0.5 - norm.y + 0.5; + } + + vec3 env_ambient = texture(irradiance_map, norm.xy).rgb * bg_energy; + env_ambient *= 1.0 - F; + + ambient_light = mix(ambient_light_color.rgb, env_ambient, radiance_ambient_contribution); + } +#endif +#endif //AMBIENT_LIGHT_DISABLED + +#else + +#ifdef AMBIENT_LIGHT_DISABLED + ambient_light = vec3(0.0, 0.0, 0.0); +#else + ambient_light = ambient_light_color.rgb; + env_reflection_light = bg_color.rgb * bg_energy; +#endif //AMBIENT_LIGHT_DISABLED + +#endif + + ambient_light *= ambient_energy; + + float specular_blob_intensity = 1.0; + +#if defined(SPECULAR_TOON) + specular_blob_intensity *= specular * 2.0; +#endif + +#ifdef USE_GI_PROBES + gi_probes_compute(vertex, normal, roughness, env_reflection_light, ambient_light); + +#endif + +#ifdef USE_LIGHTMAP +#ifdef USE_LIGHTMAP_LAYERED + ambient_light = LIGHTMAP_TEXTURE_LAYERED_SAMPLE(lightmap, vec3(uv2, float(lightmap_layer))).rgb * lightmap_energy; +#else + ambient_light = LIGHTMAP_TEXTURE_SAMPLE(lightmap, uv2).rgb * lightmap_energy; +#endif +#endif + +#ifdef USE_LIGHTMAP_CAPTURE + { + vec3 cone_dirs[12] = vec3[]( + vec3(0.0, 0.0, 1.0), + vec3(0.866025, 0.0, 0.5), + vec3(0.267617, 0.823639, 0.5), + vec3(-0.700629, 0.509037, 0.5), + vec3(-0.700629, -0.509037, 0.5), + vec3(0.267617, -0.823639, 0.5), + vec3(0.0, 0.0, -1.0), + vec3(0.866025, 0.0, -0.5), + vec3(0.267617, 0.823639, -0.5), + vec3(-0.700629, 0.509037, -0.5), + vec3(-0.700629, -0.509037, -0.5), + vec3(0.267617, -0.823639, -0.5)); + + vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz; + vec4 captured = vec4(0.0); + float sum = 0.0; + for (int i = 0; i < 12; i++) { + float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect + captured += lightmap_captures[i] * amount; + sum += amount; + } + + captured /= sum; + + // Alpha channel is used to indicate if dynamic objects keep the environment lighting + if (lightmap_captures[0].a > 0.5) { + ambient_light += captured.rgb; + } else { + ambient_light = captured.rgb; + } + } +#endif + +#ifdef USE_FORWARD_LIGHTING + + highp vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0); + highp vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0); + for (int i = 0; i < reflection_count; i++) { + reflection_process(reflection_indices[i], vertex, normal, binormal, tangent, roughness, anisotropy, ambient_light, env_reflection_light, reflection_accum, ambient_accum); + } + + if (reflection_accum.a > 0.0) { + specular_light += reflection_accum.rgb / reflection_accum.a; + } else { + specular_light += env_reflection_light; + } +#if !defined(USE_LIGHTMAP) && !defined(USE_LIGHTMAP_CAPTURE) + if (ambient_accum.a > 0.0) { + ambient_light = ambient_accum.rgb / ambient_accum.a; + } +#endif +#endif + + { +#if defined(DIFFUSE_TOON) + //simplify for toon, as + specular_light *= specular * metallic * albedo * 2.0; +#else + + // scales the specular reflections, needs to be be computed before lighting happens, + // but after environment, GI, and reflection probes are added + // Environment brdf approximation (Lazarov 2013) + // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile + const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); + const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04); + vec4 r = roughness * c0 + c1; + float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y; + vec2 env = vec2(-1.04, 1.04) * a004 + r.zw; + specular_light *= env.x * F + env.y; +#endif + } + +#if defined(USE_LIGHT_DIRECTIONAL) + + vec3 light_attenuation = vec3(1.0); + + float depth_z = -vertex.z; +#ifdef LIGHT_DIRECTIONAL_SHADOW +#if !defined(SHADOWS_DISABLED) + +#ifdef LIGHT_USE_PSSM4 + if (depth_z < shadow_split_offsets.w) { +#elif defined(LIGHT_USE_PSSM2) + if (depth_z < shadow_split_offsets.y) { +#else + if (depth_z < shadow_split_offsets.x) { +#endif //LIGHT_USE_PSSM4 + + vec3 pssm_coord; + float pssm_fade = 0.0; + +#ifdef LIGHT_USE_PSSM_BLEND + float pssm_blend; + vec3 pssm_coord2; + bool use_blend = true; +#endif + +#ifdef LIGHT_USE_PSSM4 + + if (depth_z < shadow_split_offsets.y) { + if (depth_z < shadow_split_offsets.x) { + highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; + +#if defined(LIGHT_USE_PSSM_BLEND) + + splane = (shadow_matrix2 * vec4(vertex, 1.0)); + pssm_coord2 = splane.xyz / splane.w; + pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z); +#endif + + } else { + highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; + +#if defined(LIGHT_USE_PSSM_BLEND) + splane = (shadow_matrix3 * vec4(vertex, 1.0)); + pssm_coord2 = splane.xyz / splane.w; + pssm_blend = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z); +#endif + } + } else { + if (depth_z < shadow_split_offsets.z) { + highp vec4 splane = (shadow_matrix3 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; + +#if defined(LIGHT_USE_PSSM_BLEND) + splane = (shadow_matrix4 * vec4(vertex, 1.0)); + pssm_coord2 = splane.xyz / splane.w; + pssm_blend = smoothstep(shadow_split_offsets.y, shadow_split_offsets.z, depth_z); +#endif + + } else { + highp vec4 splane = (shadow_matrix4 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; + pssm_fade = smoothstep(shadow_split_offsets.z, shadow_split_offsets.w, depth_z); + +#if defined(LIGHT_USE_PSSM_BLEND) + use_blend = false; + +#endif + } + } + +#endif //LIGHT_USE_PSSM4 + +#ifdef LIGHT_USE_PSSM2 + + if (depth_z < shadow_split_offsets.x) { + highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; + +#if defined(LIGHT_USE_PSSM_BLEND) + + splane = (shadow_matrix2 * vec4(vertex, 1.0)); + pssm_coord2 = splane.xyz / splane.w; + pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z); +#endif + + } else { + highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; + pssm_fade = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z); +#if defined(LIGHT_USE_PSSM_BLEND) + use_blend = false; + +#endif + } + +#endif //LIGHT_USE_PSSM2 + +#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2) + { //regular orthogonal + highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; + } +#endif + + //one one sample + + float shadow = sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord.xy, pssm_coord.z, light_clamp); + +#if defined(LIGHT_USE_PSSM_BLEND) + + if (use_blend) { + shadow = mix(shadow, sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend); + } +#endif + +#ifdef USE_CONTACT_SHADOWS + if (shadow > 0.01 && shadow_color_contact.a > 0.0) { + float contact_shadow = contact_shadow_compute(vertex, -light_direction_attenuation.xyz, shadow_color_contact.a); + shadow = min(shadow, contact_shadow); + } +#endif + light_attenuation = mix(mix(shadow_color_contact.rgb, vec3(1.0), shadow), vec3(1.0), pssm_fade); + } + +#endif // !defined(SHADOWS_DISABLED) +#endif //LIGHT_DIRECTIONAL_SHADOW + +#ifdef USE_VERTEX_LIGHTING + diffuse_light *= mix(vec3(1.0), light_attenuation, diffuse_light_interp.a); + specular_light *= mix(vec3(1.0), light_attenuation, specular_light_interp.a); + +#else + light_compute(normal, -light_direction_attenuation.xyz, eye_vec, binormal, tangent, light_color_energy.rgb, light_attenuation, albedo, transmission, light_params.z * specular_blob_intensity, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light, alpha); +#endif + +#endif //#USE_LIGHT_DIRECTIONAL + +#ifdef USE_VERTEX_LIGHTING + diffuse_light *= albedo; +#endif + +#ifdef USE_FORWARD_LIGHTING + +#ifndef USE_VERTEX_LIGHTING + + for (int i = 0; i < omni_light_count; i++) { + light_process_omni(omni_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light, alpha); + } + + for (int i = 0; i < spot_light_count; i++) { + light_process_spot(spot_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light, alpha); + } + +#endif //USE_VERTEX_LIGHTING + +#endif + +#ifdef USE_SHADOW_TO_OPACITY + alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0)); + +#if defined(ALPHA_SCISSOR_USED) + if (alpha < alpha_scissor) { + discard; + } +#endif // ALPHA_SCISSOR_USED + +#ifdef USE_OPAQUE_PREPASS + + if (alpha < opaque_prepass_threshold) { + discard; + } + +#endif // USE_OPAQUE_PREPASS + +#endif // USE_SHADOW_TO_OPACITY + +#ifdef RENDER_DEPTH +//nothing happens, so a tree-ssa optimizer will result in no fragment shader :) +#else + + specular_light *= reflection_multiplier; + ambient_light *= albedo; //ambient must be multiplied by albedo at the end + +#if defined(ENABLE_AO) + ambient_light *= ao; + ao_light_affect = mix(1.0, ao, ao_light_affect); + specular_light *= ao_light_affect; + diffuse_light *= ao_light_affect; +#endif + + // base color remapping + diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point + ambient_light *= 1.0 - metallic; + + if (fog_color_enabled.a > 0.5) { + float fog_amount = 0.0; + +#ifdef USE_LIGHT_DIRECTIONAL + + vec3 fog_color = mix(fog_color_enabled.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex), -light_direction_attenuation.xyz), 0.0), 8.0)); +#else + + vec3 fog_color = fog_color_enabled.rgb; +#endif + + //apply fog + + if (fog_depth_enabled) { + float fog_far = fog_depth_end > 0.0 ? fog_depth_end : z_far; + + float fog_z = smoothstep(fog_depth_begin, fog_far, length(vertex)); + + fog_amount = pow(fog_z, fog_depth_curve) * fog_density; + if (fog_transmit_enabled) { + vec3 total_light = emission + ambient_light + specular_light + diffuse_light; + float transmit = pow(fog_z, fog_transmit_curve); + fog_color = mix(max(total_light, fog_color), fog_color, transmit); + } + } + + if (fog_height_enabled) { + float y = (camera_matrix * vec4(vertex, 1.0)).y; + fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve)); + } + + float rev_amount = 1.0 - fog_amount; + + emission = emission * rev_amount + fog_color * fog_amount; + ambient_light *= rev_amount; + specular_light *= rev_amount; + diffuse_light *= rev_amount; + } + +#ifdef USE_MULTIPLE_RENDER_TARGETS + +#ifdef SHADELESS + diffuse_buffer = vec4(albedo.rgb, 0.0); + specular_buffer = vec4(0.0); + +#else + + //approximate ambient scale for SSAO, since we will lack full ambient + float max_emission = max(emission.r, max(emission.g, emission.b)); + float max_ambient = max(ambient_light.r, max(ambient_light.g, ambient_light.b)); + float max_diffuse = max(diffuse_light.r, max(diffuse_light.g, diffuse_light.b)); + float total_ambient = max_ambient + max_diffuse; +#ifdef USE_FORWARD_LIGHTING + total_ambient += max_emission; +#endif + float ambient_scale = (total_ambient > 0.0) ? (max_ambient + ambient_occlusion_affect_light * max_diffuse) / total_ambient : 0.0; + +#if defined(ENABLE_AO) + ambient_scale = mix(0.0, ambient_scale, ambient_occlusion_affect_ao_channel); +#endif + diffuse_buffer = vec4(diffuse_light + ambient_light, ambient_scale); + specular_buffer = vec4(specular_light, metallic); + +#ifdef USE_FORWARD_LIGHTING + diffuse_buffer.rgb += emission; +#endif +#endif //SHADELESS + + normal_mr_buffer = vec4(normalize(normal) * 0.5 + 0.5, roughness); + +#if defined(ENABLE_SSS) + sss_buffer = sss_strength; +#endif + +#else //USE_MULTIPLE_RENDER_TARGETS + +#ifdef SHADELESS + frag_color = vec4(albedo, alpha); +#else + frag_color = vec4(ambient_light + diffuse_light + specular_light, alpha); +#ifdef USE_FORWARD_LIGHTING + frag_color.rgb += emission; +#endif +#endif //SHADELESS + +#endif //USE_MULTIPLE_RENDER_TARGETS + +#endif //RENDER_DEPTH +} + +[vertex shader] +#version 330 +#define GLES_OVER_GL +#define MAX_LIGHT_DATA_STRUCTS 409 + +#define MAX_FORWARD_LIGHTS 32 + +#define MAX_REFLECTION_DATA_STRUCTS 455 + +#define MAX_SKELETON_BONES 1365 + +#define ENABLE_OCTAHEDRAL_COMPRESSION +#define USE_LIGHT_DIRECTIONAL +#define USE_FORWARD_LIGHTING +#define USE_RADIANCE_MAP +#define USE_RADIANCE_MAP_ARRAY +#define SHADOW_MODE_PCF_13 +#define USE_SHADOW +#define USE_LIGHTMAP_FILTER_BICUBIC +#define LIGHT_DIRECTIONAL_SHADOW +#define LIGHT_USE_PSSM4 +precision highp float; +precision highp int; + +#define M_PI 3.14159265359 + +#define SHADER_IS_SRGB false + +/* +from VisualServer: + +ARRAY_VERTEX=0, +ARRAY_NORMAL=1, +ARRAY_TANGENT=2, +ARRAY_COLOR=3, +ARRAY_TEX_UV=4, +ARRAY_TEX_UV2=5, +ARRAY_BONES=6, +ARRAY_WEIGHTS=7, +ARRAY_INDEX=8, +*/ + +// hack to use uv if no uv present so it works with lightmap + +/* INPUT ATTRIBS */ + +layout(location = 0) in highp vec4 vertex_attrib; +/* clang-format on */ +#ifdef ENABLE_OCTAHEDRAL_COMPRESSION +layout(location = 1) in vec4 normal_tangent_attrib; +#else +layout(location = 1) in vec3 normal_attrib; +#endif +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) +#ifdef ENABLE_OCTAHEDRAL_COMPRESSION +// packed into normal_attrib zw component +#else +layout(location = 2) in vec4 tangent_attrib; +#endif +#endif + +#if defined(ENABLE_COLOR_INTERP) +layout(location = 3) in vec4 color_attrib; +#endif + +#if defined(ENABLE_UV_INTERP) +layout(location = 4) in vec2 uv_attrib; +#endif + +#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) +layout(location = 5) in vec2 uv2_attrib; +#endif + +#ifdef USE_SKELETON +layout(location = 6) in uvec4 bone_indices; // attrib:6 +layout(location = 7) in highp vec4 bone_weights; // attrib:7 +#endif + +#ifdef USE_INSTANCING + +layout(location = 8) in highp vec4 instance_xform0; +layout(location = 9) in highp vec4 instance_xform1; +layout(location = 10) in highp vec4 instance_xform2; +layout(location = 11) in lowp vec4 instance_color; + +#if defined(ENABLE_INSTANCE_CUSTOM) +layout(location = 12) in highp vec4 instance_custom_data; +#endif + +#endif + +layout(std140) uniform SceneData { // ubo:0 + + highp mat4 projection_matrix; + highp mat4 inv_projection_matrix; + highp mat4 camera_inverse_matrix; + highp mat4 camera_matrix; + + mediump vec4 ambient_light_color; + mediump vec4 bg_color; + + mediump vec4 fog_color_enabled; + mediump vec4 fog_sun_color_amount; + + mediump float ambient_energy; + mediump float bg_energy; + + mediump float z_offset; + mediump float z_slope_scale; + highp float shadow_dual_paraboloid_render_zfar; + highp float shadow_dual_paraboloid_render_side; + + highp vec2 viewport_size; + highp vec2 screen_pixel_size; + highp vec2 shadow_atlas_pixel_size; + highp vec2 directional_shadow_pixel_size; + + highp float time; + highp float z_far; + mediump float reflection_multiplier; + mediump float subsurface_scatter_width; + mediump float ambient_occlusion_affect_light; + mediump float ambient_occlusion_affect_ao_channel; + mediump float opaque_prepass_threshold; + + bool fog_depth_enabled; + highp float fog_depth_begin; + highp float fog_depth_end; + mediump float fog_density; + highp float fog_depth_curve; + bool fog_transmit_enabled; + highp float fog_transmit_curve; + bool fog_height_enabled; + highp float fog_height_min; + highp float fog_height_max; + highp float fog_height_curve; + + int view_index; +}; + +uniform highp mat4 world_transform; + +#ifdef USE_LIGHTMAP +uniform highp vec4 lightmap_uv_rect; +#endif + +#ifdef USE_LIGHT_DIRECTIONAL + +layout(std140) uniform DirectionalLightData { //ubo:3 + + highp vec4 light_pos_inv_radius; + mediump vec4 light_direction_attenuation; + mediump vec4 light_color_energy; + mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled, + mediump vec4 light_clamp; + mediump vec4 shadow_color_contact; + highp mat4 shadow_matrix1; + highp mat4 shadow_matrix2; + highp mat4 shadow_matrix3; + highp mat4 shadow_matrix4; + mediump vec4 shadow_split_offsets; +}; + +#endif + +#ifdef USE_VERTEX_LIGHTING +//omni and spot + +struct LightData { + highp vec4 light_pos_inv_radius; + mediump vec4 light_direction_attenuation; + mediump vec4 light_color_energy; + mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled, + mediump vec4 light_clamp; + mediump vec4 shadow_color_contact; + highp mat4 shadow_matrix; +}; + +layout(std140) uniform OmniLightData { //ubo:4 + + LightData omni_lights[MAX_LIGHT_DATA_STRUCTS]; +}; + +layout(std140) uniform SpotLightData { //ubo:5 + + LightData spot_lights[MAX_LIGHT_DATA_STRUCTS]; +}; + +#ifdef USE_FORWARD_LIGHTING + +uniform int omni_light_indices[MAX_FORWARD_LIGHTS]; +uniform int omni_light_count; + +uniform int spot_light_indices[MAX_FORWARD_LIGHTS]; +uniform int spot_light_count; + +#endif + +out vec4 diffuse_light_interp; +out vec4 specular_light_interp; + +void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float roughness, inout vec3 diffuse, inout vec3 specular) { + float NdotL = dot(N, L); + float cNdotL = max(NdotL, 0.0); // clamped NdotL + float NdotV = dot(N, V); + float cNdotV = max(NdotV, 0.0); + +#if defined(DIFFUSE_OREN_NAYAR) + vec3 diffuse_brdf_NL; +#else + float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance +#endif + +#if defined(DIFFUSE_LAMBERT_WRAP) + // energy conserving lambert wrap shader + diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); + +#elif defined(DIFFUSE_OREN_NAYAR) + + { + // see http://mimosa-pudica.net/improved-oren-nayar.html + float LdotV = dot(L, V); + + float s = LdotV - NdotL * NdotV; + float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); + + float sigma2 = roughness * roughness; // TODO: this needs checking + vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse / (sigma2 + 0.13)); + float B = 0.45 * sigma2 / (sigma2 + 0.09); + + diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI); + } +#else + // lambert by default for everything else + diffuse_brdf_NL = cNdotL * (1.0 / M_PI); +#endif + + diffuse += light_color * diffuse_brdf_NL; + + if (roughness > 0.0) { + // D + float specular_brdf_NL = 0.0; + +#if !defined(SPECULAR_DISABLED) + //normalized blinn always unless disabled + vec3 H = normalize(V + L); + float cNdotH = max(dot(N, H), 0.0); + float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; + float blinn = pow(cNdotH, shininess); + blinn *= (shininess + 2.0) * (1.0 / (8.0 * M_PI)); + specular_brdf_NL = blinn; +#endif + + specular += specular_brdf_NL * light_color; + } +} + +#ifdef USE_PHYSICAL_LIGHT_ATTENUATION +float get_omni_attenuation(float distance, float inv_range, float decay) { + float nd = distance * inv_range; + nd *= nd; + nd *= nd; // nd^4 + nd = max(1.0 - nd, 0.0); + nd *= nd; // nd^2 + return nd * pow(max(distance, 0.0001), -decay); +} +#endif + +void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) { + vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex; + float light_length = length(light_rel_vec); + +#ifdef USE_PHYSICAL_LIGHT_ATTENUATION + vec3 light_attenuation = vec3(get_omni_attenuation(light_length, omni_lights[idx].light_pos_inv_radius.w, omni_lights[idx].light_direction_attenuation.w)); +#else + float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w; + vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w)); +#endif + + light_compute(normal, normalize(light_rel_vec), eye_vec, omni_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular); +} + +void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) { + vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex; + float light_length = length(light_rel_vec); + +#ifdef USE_PHYSICAL_LIGHT_ATTENUATION + vec3 light_attenuation = vec3(get_omni_attenuation(light_length, spot_lights[idx].light_pos_inv_radius.w, spot_lights[idx].light_direction_attenuation.w)); +#else + float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w; + vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w)); +#endif + + vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz; + float spot_cutoff = spot_lights[idx].light_params.y; + float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff); + float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff); + light_attenuation *= 1.0 - pow(max(spot_rim, 0.001), spot_lights[idx].light_params.x); + + light_compute(normal, normalize(light_rel_vec), eye_vec, spot_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular); +} + +#endif + +#ifdef ENABLE_OCTAHEDRAL_COMPRESSION +vec3 oct_to_vec3(vec2 e) { + vec3 v = vec3(e.xy, 1.0 - abs(e.x) - abs(e.y)); + float t = max(-v.z, 0.0); + v.xy += t * -sign(v.xy); + return normalize(v); +} +#endif + +/* Varyings */ + +out highp vec3 vertex_interp; +out vec3 normal_interp; + +#if defined(ENABLE_COLOR_INTERP) +out vec4 color_interp; +#endif + +#if defined(ENABLE_UV_INTERP) +out vec2 uv_interp; +#endif + +#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) +out vec2 uv2_interp; +#endif + +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) +out vec3 tangent_interp; +out vec3 binormal_interp; +#endif + +#if defined(USE_MATERIAL) + +/* clang-format off */ +layout(std140) uniform UniformData { // ubo:1 + + +}; +/* clang-format on */ + +#endif + +/* clang-format off */ + + +/* clang-format on */ + +#ifdef RENDER_DEPTH_DUAL_PARABOLOID + +out highp float dp_clip; + +#endif + +#define SKELETON_TEXTURE_WIDTH 256 + +#ifdef USE_SKELETON +uniform highp sampler2D skeleton_texture; // texunit:-1 +#endif + +out highp vec4 position_interp; + +// FIXME: This triggers a Mesa bug that breaks rendering, so disabled for now. +// See GH-13450 and https://bugs.freedesktop.org/show_bug.cgi?id=100316 +//invariant gl_Position; + +void main() { + highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0); + + highp mat4 world_matrix = world_transform; + +#ifdef USE_INSTANCING + + { + highp mat4 m = mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0)); + world_matrix = world_matrix * transpose(m); + } +#endif + +#ifdef ENABLE_OCTAHEDRAL_COMPRESSION + vec3 normal = oct_to_vec3(normal_tangent_attrib.xy); +#else + vec3 normal = normal_attrib; +#endif + +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) +#ifdef ENABLE_OCTAHEDRAL_COMPRESSION + vec3 tangent = oct_to_vec3(vec2(normal_tangent_attrib.z, abs(normal_tangent_attrib.w) * 2.0 - 1.0)); + float binormalf = sign(normal_tangent_attrib.w); +#else + vec3 tangent = tangent_attrib.xyz; + float binormalf = tangent_attrib.a; +#endif +#endif + +#if defined(ENABLE_COLOR_INTERP) + color_interp = color_attrib; +#if defined(USE_INSTANCING) + color_interp *= instance_color; +#endif + +#endif + +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) + vec3 binormal = normalize(cross(normal, tangent) * binormalf); +#endif + +#if defined(ENABLE_UV_INTERP) + uv_interp = uv_attrib; +#endif + +#if defined(USE_LIGHTMAP) + uv2_interp = lightmap_uv_rect.zw * uv2_attrib + lightmap_uv_rect.xy; +#elif defined(ENABLE_UV2_INTERP) + uv2_interp = uv2_attrib; +#endif + +#ifdef OVERRIDE_POSITION + highp vec4 position; +#endif + +#if defined(USE_INSTANCING) && defined(ENABLE_INSTANCE_CUSTOM) + vec4 instance_custom = instance_custom_data; +#else + vec4 instance_custom = vec4(0.0); +#endif + + highp mat4 local_projection = projection_matrix; + +//using world coordinates +#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) + + vertex = world_matrix * vertex; + +#if defined(ENSURE_CORRECT_NORMALS) + mat3 normal_matrix = mat3(transpose(inverse(world_matrix))); + normal = normal_matrix * normal; +#else + normal = normalize((world_matrix * vec4(normal, 0.0)).xyz); +#endif + +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) + + tangent = normalize((world_matrix * vec4(tangent, 0.0)).xyz); + binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz); +#endif +#endif + + float roughness = 1.0; + +//defines that make writing custom shaders easier +#define projection_matrix local_projection +#define world_transform world_matrix + +#ifdef USE_SKELETON + { + //skeleton transform + ivec4 bone_indicesi = ivec4(bone_indices); // cast to signed int + + ivec2 tex_ofs = ivec2(bone_indicesi.x % 256, (bone_indicesi.x / 256) * 3); + highp mat4 m; + m = mat4( + texelFetch(skeleton_texture, tex_ofs, 0), + texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0), + texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0), + vec4(0.0, 0.0, 0.0, 1.0)) * + bone_weights.x; + + tex_ofs = ivec2(bone_indicesi.y % 256, (bone_indicesi.y / 256) * 3); + + m += mat4( + texelFetch(skeleton_texture, tex_ofs, 0), + texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0), + texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0), + vec4(0.0, 0.0, 0.0, 1.0)) * + bone_weights.y; + + tex_ofs = ivec2(bone_indicesi.z % 256, (bone_indicesi.z / 256) * 3); + + m += mat4( + texelFetch(skeleton_texture, tex_ofs, 0), + texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0), + texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0), + vec4(0.0, 0.0, 0.0, 1.0)) * + bone_weights.z; + + tex_ofs = ivec2(bone_indicesi.w % 256, (bone_indicesi.w / 256) * 3); + + m += mat4( + texelFetch(skeleton_texture, tex_ofs, 0), + texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0), + texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0), + vec4(0.0, 0.0, 0.0, 1.0)) * + bone_weights.w; + + world_matrix = world_matrix * transpose(m); + } +#endif + + float point_size = 1.0; + + highp mat4 modelview = camera_inverse_matrix * world_matrix; + { + /* clang-format off */ + + + /* clang-format on */ + } + + gl_PointSize = point_size; + +// using local coordinates (default) +#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) + + vertex = modelview * vertex; + +#if defined(ENSURE_CORRECT_NORMALS) + mat3 normal_matrix = mat3(transpose(inverse(modelview))); + normal = normal_matrix * normal; +#else + normal = normalize((modelview * vec4(normal, 0.0)).xyz); +#endif + +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) + + tangent = normalize((modelview * vec4(tangent, 0.0)).xyz); + binormal = normalize((modelview * vec4(binormal, 0.0)).xyz); +#endif +#endif + +//using world coordinates +#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) + + vertex = camera_inverse_matrix * vertex; + normal = normalize((camera_inverse_matrix * vec4(normal, 0.0)).xyz); + +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) + + tangent = normalize((camera_inverse_matrix * vec4(tangent, 0.0)).xyz); + binormal = normalize((camera_inverse_matrix * vec4(binormal, 0.0)).xyz); +#endif +#endif + + vertex_interp = vertex.xyz; + normal_interp = normal; + +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) + tangent_interp = tangent; + binormal_interp = binormal; +#endif + +#ifdef RENDER_DEPTH + +#ifdef RENDER_DEPTH_DUAL_PARABOLOID + + vertex_interp.z *= shadow_dual_paraboloid_render_side; + normal_interp.z *= shadow_dual_paraboloid_render_side; + + dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias + + //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges + + highp vec3 vtx = vertex_interp + normalize(vertex_interp) * z_offset; + highp float distance = length(vtx); + vtx = normalize(vtx); + vtx.xy /= 1.0 - vtx.z; + vtx.z = (distance / shadow_dual_paraboloid_render_zfar); + vtx.z = vtx.z * 2.0 - 1.0; + + vertex_interp = vtx; + +#else + + float z_ofs = z_offset; + z_ofs += (1.0 - abs(normal_interp.z)) * z_slope_scale; + vertex_interp.z -= z_ofs; + +#endif //RENDER_DEPTH_DUAL_PARABOLOID + +#endif //RENDER_DEPTH + +#ifdef OVERRIDE_POSITION + gl_Position = position; +#else + gl_Position = projection_matrix * vec4(vertex_interp, 1.0); +#endif + + position_interp = gl_Position; + +#ifdef USE_VERTEX_LIGHTING + + diffuse_light_interp = vec4(0.0); + specular_light_interp = vec4(0.0); + +#ifdef USE_FORWARD_LIGHTING + + for (int i = 0; i < omni_light_count; i++) { + light_process_omni(omni_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb); + } + + for (int i = 0; i < spot_light_count; i++) { + light_process_spot(spot_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb); + } +#endif + +#ifdef USE_LIGHT_DIRECTIONAL + + vec3 directional_diffuse = vec3(0.0); + vec3 directional_specular = vec3(0.0); + light_compute(normal_interp, -light_direction_attenuation.xyz, -normalize(vertex_interp), light_color_energy.rgb, roughness, directional_diffuse, directional_specular); + + float diff_avg = dot(diffuse_light_interp.rgb, vec3(0.33333)); + float diff_dir_avg = dot(directional_diffuse, vec3(0.33333)); + if (diff_avg > 0.0) { + diffuse_light_interp.a = diff_dir_avg / (diff_avg + diff_dir_avg); + } else { + diffuse_light_interp.a = 1.0; + } + + diffuse_light_interp.rgb += directional_diffuse; + + float spec_avg = dot(specular_light_interp.rgb, vec3(0.33333)); + float spec_dir_avg = dot(directional_specular, vec3(0.33333)); + if (spec_avg > 0.0) { + specular_light_interp.a = spec_dir_avg / (spec_avg + spec_dir_avg); + } else { + specular_light_interp.a = 1.0; + } + + specular_light_interp.rgb += directional_specular; + +#endif //USE_LIGHT_DIRECTIONAL + +#endif // USE_VERTEX_LIGHTING +} + +/* clang-format off */ + |