1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <vcl/bitmapaccess.hxx>
#include <bitmap/Octree.hxx>
namespace
{
constexpr size_t OCTREE_BITS = 5;
constexpr size_t OCTREE_BITS_1 = 10;
constexpr sal_uLong gnBits = 8 - OCTREE_BITS;
} // end anonymous namespace
Octree::Octree(const BitmapReadAccess& rReadAcc, sal_uLong nColors)
: mnLeafCount(0)
, mnLevel(0)
, mpReduce(OCTREE_BITS + 1, nullptr)
, mpColor(nullptr)
, mpAccess(&rReadAcc)
, mnPalIndex(0)
{
sal_uLong nMax(nColors);
if (!!*mpAccess)
{
const long nWidth = mpAccess->Width();
const long nHeight = mpAccess->Height();
if (mpAccess->HasPalette())
{
for (long nY = 0; nY < nHeight; nY++)
{
Scanline pScanline = mpAccess->GetScanline(nY);
for (long nX = 0; nX < nWidth; nX++)
{
mpColor = &mpAccess->GetPaletteColor(mpAccess->GetIndexFromData(pScanline, nX));
mnLevel = 0;
add(pTree);
while (mnLeafCount > nMax)
reduce();
}
}
}
else
{
BitmapColor aColor;
mpColor = &aColor;
for (long nY = 0; nY < nHeight; nY++)
{
Scanline pScanline = mpAccess->GetScanline(nY);
for (long nX = 0; nX < nWidth; nX++)
{
aColor = mpAccess->GetPixelFromData(pScanline, nX);
mnLevel = 0;
add(pTree);
while (mnLeafCount > nMax)
reduce();
}
}
}
}
}
Octree::~Octree() {}
void Octree::add(std::unique_ptr<OctreeNode>& rpNode)
{
// possibly generate new nodes
if (!rpNode)
{
rpNode.reset(new OctreeNode);
rpNode->bLeaf = (OCTREE_BITS == mnLevel);
if (rpNode->bLeaf)
mnLeafCount++;
else
{
rpNode->pNext = mpReduce[mnLevel];
mpReduce[mnLevel] = rpNode.get();
}
}
if (rpNode->bLeaf)
{
rpNode->nCount++;
rpNode->nRed += mpColor->GetRed();
rpNode->nGreen += mpColor->GetGreen();
rpNode->nBlue += mpColor->GetBlue();
}
else
{
const sal_uLong nShift = 7 - mnLevel;
const sal_uInt8 cMask = 0x80 >> mnLevel;
const sal_uLong nIndex = (((mpColor->GetRed() & cMask) >> nShift) << 2)
| (((mpColor->GetGreen() & cMask) >> nShift) << 1)
| ((mpColor->GetBlue() & cMask) >> nShift);
mnLevel++;
add(rpNode->pChild[nIndex]);
}
}
void Octree::reduce()
{
OctreeNode* pNode;
sal_uLong nRedSum = 0;
sal_uLong nGreenSum = 0;
sal_uLong nBlueSum = 0;
sal_uLong nChildren = 0;
sal_uLong nIndex = OCTREE_BITS - 1;
while (nIndex > 0 && !mpReduce[nIndex])
{
nIndex--;
}
pNode = mpReduce[nIndex];
mpReduce[nIndex] = pNode->pNext;
for (sal_uLong i = 0; i < 8; i++)
{
if (pNode->pChild[i])
{
OctreeNode* pChild = pNode->pChild[i].get();
nRedSum += pChild->nRed;
nGreenSum += pChild->nGreen;
nBlueSum += pChild->nBlue;
pNode->nCount += pChild->nCount;
pNode->pChild[i].reset();
nChildren++;
}
}
pNode->bLeaf = true;
pNode->nRed = nRedSum;
pNode->nGreen = nGreenSum;
pNode->nBlue = nBlueSum;
mnLeafCount -= --nChildren;
}
void Octree::CreatePalette(OctreeNode* pNode)
{
if (pNode->bLeaf)
{
pNode->nPalIndex = mnPalIndex;
maPalette[mnPalIndex++] = BitmapColor(sal_uInt8(double(pNode->nRed) / pNode->nCount),
sal_uInt8(double(pNode->nGreen) / pNode->nCount),
sal_uInt8(double(pNode->nBlue) / pNode->nCount));
}
else
{
for (auto const& i : pNode->pChild)
{
if (i)
{
CreatePalette(i.get());
}
}
}
}
void Octree::GetPalIndex(OctreeNode* pNode)
{
if (pNode->bLeaf)
mnPalIndex = pNode->nPalIndex;
else
{
const sal_uLong nShift = 7 - mnLevel;
const sal_uInt8 cMask = 0x80 >> mnLevel;
mnLevel++;
const sal_uLong nIndex = (((mpColor->GetRed() & cMask) >> nShift) << 2)
| (((mpColor->GetGreen() & cMask) >> nShift) << 1)
| ((mpColor->GetBlue() & cMask) >> nShift);
GetPalIndex(pNode->pChild[nIndex].get());
}
}
const BitmapPalette& Octree::GetPalette()
{
maPalette.SetEntryCount(sal_uInt16(mnLeafCount));
mnPalIndex = 0;
CreatePalette(pTree.get());
return maPalette;
}
sal_uInt16 Octree::GetBestPaletteIndex(const BitmapColor& rColor)
{
mpColor = &rColor;
mnPalIndex = 65535;
mnLevel = 0;
GetPalIndex(pTree.get());
return mnPalIndex;
}
constexpr int nColorMax = 1 << OCTREE_BITS;
InverseColorMap::InverseColorMap(const BitmapPalette& rPal)
{
const unsigned long xsqr = 1 << (gnBits << 1);
const unsigned long xsqr2 = xsqr << 1;
const int nColors = rPal.GetEntryCount();
const long x = 1 << gnBits;
const long x2 = x >> 1;
sal_uLong r, g, b;
long rxx, gxx, bxx;
ImplCreateBuffers();
for (int nIndex = 0; nIndex < nColors; nIndex++)
{
const BitmapColor& rColor = rPal[static_cast<sal_uInt16>(nIndex)];
const long cRed = rColor.GetRed();
const long cGreen = rColor.GetGreen();
const long cBlue = rColor.GetBlue();
long rdist = cRed - x2;
long gdist = cGreen - x2;
long bdist = cBlue - x2;
rdist = rdist * rdist + gdist * gdist + bdist * bdist;
const long crinc = (xsqr - (cRed << gnBits)) << 1;
const long cginc = (xsqr - (cGreen << gnBits)) << 1;
const long cbinc = (xsqr - (cBlue << gnBits)) << 1;
sal_uLong* cdp = reinterpret_cast<sal_uLong*>(mpBuffer.data());
sal_uInt8* crgbp = mpMap.data();
for (r = 0, rxx = crinc; r < nColorMax; rdist += rxx, r++, rxx += xsqr2)
{
for (g = 0, gdist = rdist, gxx = cginc; g < nColorMax; gdist += gxx, g++, gxx += xsqr2)
{
for (b = 0, bdist = gdist, bxx = cbinc; b < nColorMax;
bdist += bxx, b++, cdp++, crgbp++, bxx += xsqr2)
if (!nIndex || static_cast<long>(*cdp) > bdist)
{
*cdp = bdist;
*crgbp = static_cast<sal_uInt8>(nIndex);
}
}
}
}
}
InverseColorMap::~InverseColorMap() {}
void InverseColorMap::ImplCreateBuffers()
{
const sal_uLong nCount = nColorMax * nColorMax * nColorMax;
const sal_uLong nSize = nCount * sizeof(sal_uLong);
mpMap.resize(nCount, 0x00);
mpBuffer.resize(nSize, 0xff);
}
sal_uInt16 InverseColorMap::GetBestPaletteIndex(const BitmapColor& rColor)
{
return mpMap[((static_cast<sal_uLong>(rColor.GetRed()) >> gnBits) << OCTREE_BITS_1)
| ((static_cast<sal_uLong>(rColor.GetGreen()) >> gnBits) << OCTREE_BITS)
| (static_cast<sal_uLong>(rColor.GetBlue()) >> gnBits)];
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|