1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <CoinMP.h>
#include <CoinError.hpp>
#include "SolverComponent.hxx"
#include <strings.hrc>
#include <com/sun/star/frame/XModel.hpp>
#include <com/sun/star/table/CellAddress.hpp>
#include <unotools/resmgr.hxx>
#include <rtl/math.hxx>
#include <stdexcept>
#include <vector>
#include <float.h>
namespace com::sun::star::uno { class XComponentContext; }
using namespace com::sun::star;
namespace {
class CoinMPSolver : public SolverComponent
{
public:
CoinMPSolver() {}
private:
virtual void SAL_CALL solve() override;
virtual OUString SAL_CALL getImplementationName() override
{
return "com.sun.star.comp.Calc.CoinMPSolver";
}
virtual OUString SAL_CALL getComponentDescription() override
{
return SolverComponent::GetResourceString( RID_COINMP_SOLVER_COMPONENT );
}
};
}
void SAL_CALL CoinMPSolver::solve()
{
uno::Reference<frame::XModel> xModel( mxDoc, uno::UNO_QUERY_THROW );
maStatus.clear();
mbSuccess = false;
xModel->lockControllers();
// collect variables in vector (?)
auto aVariableCells = comphelper::sequenceToContainer<std::vector<table::CellAddress>>(maVariables);
size_t nVariables = aVariableCells.size();
size_t nVar = 0;
// collect all dependent cells
ScSolverCellHashMap aCellsHash;
aCellsHash[maObjective].reserve( nVariables + 1 ); // objective function
for (const auto& rConstr : std::as_const(maConstraints))
{
table::CellAddress aCellAddr = rConstr.Left;
aCellsHash[aCellAddr].reserve( nVariables + 1 ); // constraints: left hand side
if ( rConstr.Right >>= aCellAddr )
aCellsHash[aCellAddr].reserve( nVariables + 1 ); // constraints: right hand side
}
// set all variables to zero
//! store old values?
//! use old values as initial values?
for ( const auto& rVarCell : aVariableCells )
{
SolverComponent::SetValue( mxDoc, rVarCell, 0.0 );
}
// read initial values from all dependent cells
for ( auto& rEntry : aCellsHash )
{
double fValue = SolverComponent::GetValue( mxDoc, rEntry.first );
rEntry.second.push_back( fValue ); // store as first element, as-is
}
// loop through variables
for ( const auto& rVarCell : aVariableCells )
{
SolverComponent::SetValue( mxDoc, rVarCell, 1.0 ); // set to 1 to examine influence
// read value change from all dependent cells
for ( auto& rEntry : aCellsHash )
{
double fChanged = SolverComponent::GetValue( mxDoc, rEntry.first );
double fInitial = rEntry.second.front();
rEntry.second.push_back( fChanged - fInitial );
}
SolverComponent::SetValue( mxDoc, rVarCell, 2.0 ); // minimal test for linearity
for ( const auto& rEntry : aCellsHash )
{
double fInitial = rEntry.second.front();
double fCoeff = rEntry.second.back(); // last appended: coefficient for this variable
double fTwo = SolverComponent::GetValue( mxDoc, rEntry.first );
bool bLinear = rtl::math::approxEqual( fTwo, fInitial + 2.0 * fCoeff ) ||
rtl::math::approxEqual( fInitial, fTwo - 2.0 * fCoeff );
// second comparison is needed in case fTwo is zero
if ( !bLinear )
maStatus = SolverComponent::GetResourceString( RID_ERROR_NONLINEAR );
}
SolverComponent::SetValue( mxDoc, rVarCell, 0.0 ); // set back to zero for examining next variable
}
xModel->unlockControllers();
if ( !maStatus.isEmpty() )
return;
//
// build parameter arrays for CoinMP
//
// set objective function
const std::vector<double>& rObjCoeff = aCellsHash[maObjective];
std::unique_ptr<double[]> pObjectCoeffs(new double[nVariables]);
for (nVar=0; nVar<nVariables; nVar++)
pObjectCoeffs[nVar] = rObjCoeff[nVar+1];
double nObjectConst = rObjCoeff[0]; // constant term of objective
// add rows
size_t nRows = maConstraints.getLength();
size_t nCompSize = nVariables * nRows;
std::unique_ptr<double[]> pCompMatrix(new double[nCompSize]); // first collect all coefficients, row-wise
for (size_t i=0; i<nCompSize; i++)
pCompMatrix[i] = 0.0;
std::unique_ptr<double[]> pRHS(new double[nRows]);
std::unique_ptr<char[]> pRowType(new char[nRows]);
for (size_t i=0; i<nRows; i++)
{
pRHS[i] = 0.0;
pRowType[i] = 'N';
}
for (sal_Int32 nConstrPos = 0; nConstrPos < maConstraints.getLength(); ++nConstrPos)
{
// integer constraints are set later
sheet::SolverConstraintOperator eOp = maConstraints[nConstrPos].Operator;
if ( eOp == sheet::SolverConstraintOperator_LESS_EQUAL ||
eOp == sheet::SolverConstraintOperator_GREATER_EQUAL ||
eOp == sheet::SolverConstraintOperator_EQUAL )
{
double fDirectValue = 0.0;
bool bRightCell = false;
table::CellAddress aRightAddr;
const uno::Any& rRightAny = maConstraints[nConstrPos].Right;
if ( rRightAny >>= aRightAddr )
bRightCell = true; // cell specified as right-hand side
else
rRightAny >>= fDirectValue; // constant value
table::CellAddress aLeftAddr = maConstraints[nConstrPos].Left;
const std::vector<double>& rLeftCoeff = aCellsHash[aLeftAddr];
double* pValues = &pCompMatrix[nConstrPos * nVariables];
for (nVar=0; nVar<nVariables; nVar++)
pValues[nVar] = rLeftCoeff[nVar+1];
// if left hand cell has a constant term, put into rhs value
double fRightValue = -rLeftCoeff[0];
if ( bRightCell )
{
const std::vector<double>& rRightCoeff = aCellsHash[aRightAddr];
// modify pValues with rhs coefficients
for (nVar=0; nVar<nVariables; nVar++)
pValues[nVar] -= rRightCoeff[nVar+1];
fRightValue += rRightCoeff[0]; // constant term
}
else
fRightValue += fDirectValue;
switch ( eOp )
{
case sheet::SolverConstraintOperator_LESS_EQUAL: pRowType[nConstrPos] = 'L'; break;
case sheet::SolverConstraintOperator_GREATER_EQUAL: pRowType[nConstrPos] = 'G'; break;
case sheet::SolverConstraintOperator_EQUAL: pRowType[nConstrPos] = 'E'; break;
default:
OSL_ENSURE( false, "unexpected enum type" );
}
pRHS[nConstrPos] = fRightValue;
}
}
// Find non-zero coefficients, column-wise
std::unique_ptr<int[]> pMatrixBegin(new int[nVariables+1]);
std::unique_ptr<int[]> pMatrixCount(new int[nVariables]);
std::unique_ptr<double[]> pMatrix(new double[nCompSize]); // not always completely used
std::unique_ptr<int[]> pMatrixIndex(new int[nCompSize]);
int nMatrixPos = 0;
for (nVar=0; nVar<nVariables; nVar++)
{
int nBegin = nMatrixPos;
for (size_t nRow=0; nRow<nRows; nRow++)
{
double fCoeff = pCompMatrix[ nRow * nVariables + nVar ]; // row-wise
if ( fCoeff != 0.0 )
{
pMatrix[nMatrixPos] = fCoeff;
pMatrixIndex[nMatrixPos] = nRow;
++nMatrixPos;
}
}
pMatrixBegin[nVar] = nBegin;
pMatrixCount[nVar] = nMatrixPos - nBegin;
}
pMatrixBegin[nVariables] = nMatrixPos;
pCompMatrix.reset();
// apply settings to all variables
std::unique_ptr<double[]> pLowerBounds(new double[nVariables]);
std::unique_ptr<double[]> pUpperBounds(new double[nVariables]);
for (nVar=0; nVar<nVariables; nVar++)
{
pLowerBounds[nVar] = mbNonNegative ? 0.0 : -DBL_MAX;
pUpperBounds[nVar] = DBL_MAX;
// bounds could possibly be further restricted from single-cell constraints
}
std::unique_ptr<char[]> pColType(new char[nVariables]);
for (nVar=0; nVar<nVariables; nVar++)
pColType[nVar] = mbInteger ? 'I' : 'C';
// apply single-var integer constraints
for (const auto& rConstr : std::as_const(maConstraints))
{
sheet::SolverConstraintOperator eOp = rConstr.Operator;
if ( eOp == sheet::SolverConstraintOperator_INTEGER ||
eOp == sheet::SolverConstraintOperator_BINARY )
{
table::CellAddress aLeftAddr = rConstr.Left;
// find variable index for cell
for (nVar=0; nVar<nVariables; nVar++)
if ( AddressEqual( aVariableCells[nVar], aLeftAddr ) )
{
if ( eOp == sheet::SolverConstraintOperator_INTEGER )
pColType[nVar] = 'I';
else
{
pColType[nVar] = 'B';
pLowerBounds[nVar] = 0.0;
pUpperBounds[nVar] = 1.0;
}
}
}
}
int nObjectSense = mbMaximize ? SOLV_OBJSENS_MAX : SOLV_OBJSENS_MIN;
HPROB hProb = CoinCreateProblem("");
int nResult = CoinLoadProblem( hProb, nVariables, nRows, nMatrixPos, 0,
nObjectSense, nObjectConst, pObjectCoeffs.get(),
pLowerBounds.get(), pUpperBounds.get(), pRowType.get(), pRHS.get(), nullptr,
pMatrixBegin.get(), pMatrixCount.get(), pMatrixIndex.get(), pMatrix.get(),
nullptr, nullptr, nullptr );
if (nResult == SOLV_CALL_SUCCESS)
{
nResult = CoinLoadInteger( hProb, pColType.get() );
}
pColType.reset();
pMatrixIndex.reset();
pMatrix.reset();
pMatrixCount.reset();
pMatrixBegin.reset();
pUpperBounds.reset();
pLowerBounds.reset();
pRowType.reset();
pRHS.reset();
pObjectCoeffs.reset();
CoinSetRealOption( hProb, COIN_REAL_MAXSECONDS, mnTimeout );
CoinSetRealOption( hProb, COIN_REAL_MIPMAXSEC, mnTimeout );
// TODO: handle (or remove) settings: epsilon, B&B depth
// solve model
if (nResult == SOLV_CALL_SUCCESS)
{
nResult = CoinCheckProblem( hProb );
}
if (nResult == SOLV_CALL_SUCCESS)
{
try
{
nResult = CoinOptimizeProblem( hProb, 0 );
}
catch (const CoinError& e)
{
CoinUnloadProblem(hProb);
throw std::runtime_error(e.message());
}
}
mbSuccess = ( nResult == SOLV_CALL_SUCCESS );
if ( mbSuccess )
{
// get solution
maSolution.realloc( nVariables );
CoinGetSolutionValues( hProb, maSolution.getArray(), nullptr, nullptr, nullptr );
mfResultValue = CoinGetObjectValue( hProb );
}
else
{
int nSolutionStatus = CoinGetSolutionStatus( hProb );
if ( nSolutionStatus == 1 )
maStatus = SolverComponent::GetResourceString( RID_ERROR_INFEASIBLE );
else if ( nSolutionStatus == 2 )
maStatus = SolverComponent::GetResourceString( RID_ERROR_UNBOUNDED );
// TODO: detect timeout condition and report as RID_ERROR_TIMEOUT
// (currently reported as infeasible)
}
CoinUnloadProblem( hProb );
}
extern "C" SAL_DLLPUBLIC_EXPORT css::uno::XInterface *
com_sun_star_comp_Calc_CoinMPSolver_get_implementation(
css::uno::XComponentContext *,
css::uno::Sequence<css::uno::Any> const &)
{
return cppu::acquire(new CoinMPSolver());
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|