summaryrefslogtreecommitdiff
path: root/drawinglayer/source/processor3d/zbufferprocessor3d.cxx
blob: af2b31e399fb0361e3485cbde7eec3a07b0389e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 */

#include <drawinglayer/processor3d/zbufferprocessor3d.hxx>
#include <basegfx/raster/bpixelraster.hxx>
#include <basegfx/raster/rasterconvert3d.hxx>
#include <basegfx/raster/bzpixelraster.hxx>
#include <drawinglayer/attribute/materialattribute3d.hxx>
#include <drawinglayer/texture/texture.hxx>
#include <drawinglayer/primitive3d/drawinglayer_primitivetypes3d.hxx>
#include <drawinglayer/primitive3d/textureprimitive3d.hxx>
#include <drawinglayer/primitive3d/polygonprimitive3d.hxx>
#include <drawinglayer/primitive3d/polypolygonprimitive3d.hxx>
#include <drawinglayer/geometry/viewinformation2d.hxx>
#include <basegfx/polygon/b3dpolygontools.hxx>
#include <basegfx/polygon/b3dpolypolygontools.hxx>
#include <drawinglayer/attribute/sdrlightingattribute3d.hxx>

using namespace com::sun::star;

class ZBufferRasterConverter3D : public basegfx::RasterConverter3D
{
private:
    const drawinglayer::processor3d::DefaultProcessor3D&    mrProcessor;
    basegfx::BZPixelRaster&                                 mrBuffer;

    // interpolators for a single line span
    basegfx::ip_single                                      maIntZ;
    basegfx::ip_triple                                      maIntColor;
    basegfx::ip_triple                                      maIntNormal;
    basegfx::ip_double                                      maIntTexture;
    basegfx::ip_triple                                      maIntInvTexture;

    // current material to use for rasterconversion
    const drawinglayer::attribute::MaterialAttribute3D*     mpCurrentMaterial;

    // some boolean flags for line span interpolator usages
    bool                                                    mbModifyColor : 1;
    bool                                                    mbUseTex : 1;
    bool                                                    mbHasTexCoor : 1;
    bool                                                    mbHasInvTexCoor : 1;
    bool                                                    mbUseNrm : 1;
    bool                                                    mbUseCol : 1;

    void getTextureCoor(basegfx::B2DPoint& rTarget) const
    {
        if(mbHasTexCoor)
        {
            rTarget.setX(maIntTexture.getX().getVal());
            rTarget.setY(maIntTexture.getY().getVal());
        }
        else if(mbHasInvTexCoor)
        {
            const double fZFactor(maIntInvTexture.getZ().getVal());
            const double fInvZFactor(basegfx::fTools::equalZero(fZFactor) ? 1.0 : 1.0 / fZFactor);
            rTarget.setX(maIntInvTexture.getX().getVal() * fInvZFactor);
            rTarget.setY(maIntInvTexture.getY().getVal() * fInvZFactor);
        }
    }

    void incrementLineSpanInterpolators(double fStep)
    {
        maIntZ.increment(fStep);

        if(mbUseTex)
        {
            if(mbHasTexCoor)
            {
                maIntTexture.increment(fStep);
            }
            else if(mbHasInvTexCoor)
            {
                maIntInvTexture.increment(fStep);
            }
        }

        if(mbUseNrm)
        {
            maIntNormal.increment(fStep);
        }

        if(mbUseCol)
        {
            maIntColor.increment(fStep);
        }
    }

    double decideColorAndOpacity(basegfx::BColor& rColor) const
    {
        // init values with full opacity and material color
        OSL_ENSURE(nullptr != mpCurrentMaterial, "CurrentMaterial not set (!)");
        double fOpacity(1.0);
        rColor = mpCurrentMaterial->getColor();

        if(mbUseTex)
        {
            basegfx::B2DPoint aTexCoor(0.0, 0.0);
            getTextureCoor(aTexCoor);

            if(mrProcessor.getGeoTexSvx().get())
            {
                // calc color in spot. This may also set to invisible already when
                // e.g. bitmap textures have transparent parts
                mrProcessor.getGeoTexSvx()->modifyBColor(aTexCoor, rColor, fOpacity);
            }

            if(basegfx::fTools::more(fOpacity, 0.0) && mrProcessor.getTransparenceGeoTexSvx().get())
            {
                // calc opacity. Object has a 2nd texture, a transparence texture
                mrProcessor.getTransparenceGeoTexSvx()->modifyOpacity(aTexCoor, fOpacity);
            }
        }

        if(basegfx::fTools::more(fOpacity, 0.0))
        {
            if(mrProcessor.getGeoTexSvx().get())
            {
                if(mbUseNrm)
                {
                    // blend texture with phong
                    rColor = mrProcessor.getSdrLightingAttribute().solveColorModel(
                        basegfx::B3DVector(maIntNormal.getX().getVal(), maIntNormal.getY().getVal(), maIntNormal.getZ().getVal()),
                        rColor,
                        mpCurrentMaterial->getSpecular(),
                        mpCurrentMaterial->getEmission(),
                        mpCurrentMaterial->getSpecularIntensity());
                }
                else if(mbUseCol)
                {
                    // blend texture with gouraud
                    basegfx::BColor aBlendColor(maIntColor.getX().getVal(), maIntColor.getY().getVal(), maIntColor.getZ().getVal());
                    rColor *= aBlendColor;
                }
                else if(mrProcessor.getModulate())
                {
                    // blend texture with single material color
                    rColor *= mpCurrentMaterial->getColor();
                }
            }
            else
            {
                if(mbUseNrm)
                {
                    // modify color with phong
                    rColor = mrProcessor.getSdrLightingAttribute().solveColorModel(
                        basegfx::B3DVector(maIntNormal.getX().getVal(), maIntNormal.getY().getVal(), maIntNormal.getZ().getVal()),
                        rColor,
                        mpCurrentMaterial->getSpecular(),
                        mpCurrentMaterial->getEmission(),
                        mpCurrentMaterial->getSpecularIntensity());
                }
                else if(mbUseCol)
                {
                    // modify color with gouraud
                    rColor.setRed(maIntColor.getX().getVal());
                    rColor.setGreen(maIntColor.getY().getVal());
                    rColor.setBlue(maIntColor.getZ().getVal());
                }
            }

            if(mbModifyColor)
            {
                rColor = mrProcessor.getBColorModifierStack().getModifiedColor(rColor);
            }
        }

        return fOpacity;
    }

    void setupLineSpanInterpolators(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB)
    {
        // get inverse XDelta
        const double xInvDelta(1.0 / (rB.getX().getVal() - rA.getX().getVal()));

        // prepare Z-interpolator
        const double fZA(rA.getZ().getVal());
        const double fZB(rB.getZ().getVal());
        maIntZ = basegfx::ip_single(fZA, (fZB - fZA) * xInvDelta);

        // get bools and init other interpolators on demand accordingly
        mbModifyColor = mrProcessor.getBColorModifierStack().count();
        mbHasTexCoor = SCANLINE_EMPTY_INDEX != rA.getTextureIndex() && SCANLINE_EMPTY_INDEX != rB.getTextureIndex();
        mbHasInvTexCoor = SCANLINE_EMPTY_INDEX != rA.getInverseTextureIndex() && SCANLINE_EMPTY_INDEX != rB.getInverseTextureIndex();
        const bool bTextureActive(mrProcessor.getGeoTexSvx().get() || mrProcessor.getTransparenceGeoTexSvx().get());
        mbUseTex = bTextureActive && (mbHasTexCoor || mbHasInvTexCoor || mrProcessor.getSimpleTextureActive());
        const bool bUseColorTex(mbUseTex && mrProcessor.getGeoTexSvx().get());
        const bool bNeedNrmOrCol(!bUseColorTex || mrProcessor.getModulate());
        mbUseNrm = bNeedNrmOrCol && SCANLINE_EMPTY_INDEX != rA.getNormalIndex() && SCANLINE_EMPTY_INDEX != rB.getNormalIndex();
        mbUseCol = !mbUseNrm && bNeedNrmOrCol && SCANLINE_EMPTY_INDEX != rA.getColorIndex() && SCANLINE_EMPTY_INDEX != rB.getColorIndex();

        if(mbUseTex)
        {
            if(mbHasTexCoor)
            {
                const basegfx::ip_double& rTA(getTextureInterpolators()[rA.getTextureIndex()]);
                const basegfx::ip_double& rTB(getTextureInterpolators()[rB.getTextureIndex()]);
                maIntTexture = basegfx::ip_double(
                    rTA.getX().getVal(), (rTB.getX().getVal() - rTA.getX().getVal()) * xInvDelta,
                    rTA.getY().getVal(), (rTB.getY().getVal() - rTA.getY().getVal()) * xInvDelta);
            }
            else if(mbHasInvTexCoor)
            {
                const basegfx::ip_triple& rITA(getInverseTextureInterpolators()[rA.getInverseTextureIndex()]);
                const basegfx::ip_triple& rITB(getInverseTextureInterpolators()[rB.getInverseTextureIndex()]);
                maIntInvTexture = basegfx::ip_triple(
                    rITA.getX().getVal(), (rITB.getX().getVal() - rITA.getX().getVal()) * xInvDelta,
                    rITA.getY().getVal(), (rITB.getY().getVal() - rITA.getY().getVal()) * xInvDelta,
                    rITA.getZ().getVal(), (rITB.getZ().getVal() - rITA.getZ().getVal()) * xInvDelta);
            }
        }

        if(mbUseNrm)
        {
            const basegfx::ip_triple& rNA(getNormalInterpolators()[rA.getNormalIndex()]);
            const basegfx::ip_triple& rNB(getNormalInterpolators()[rB.getNormalIndex()]);
            maIntNormal = basegfx::ip_triple(
                rNA.getX().getVal(), (rNB.getX().getVal() - rNA.getX().getVal()) * xInvDelta,
                rNA.getY().getVal(), (rNB.getY().getVal() - rNA.getY().getVal()) * xInvDelta,
                rNA.getZ().getVal(), (rNB.getZ().getVal() - rNA.getZ().getVal()) * xInvDelta);
        }

        if(mbUseCol)
        {
            const basegfx::ip_triple& rCA(getColorInterpolators()[rA.getColorIndex()]);
            const basegfx::ip_triple& rCB(getColorInterpolators()[rB.getColorIndex()]);
            maIntColor = basegfx::ip_triple(
                rCA.getX().getVal(), (rCB.getX().getVal() - rCA.getX().getVal()) * xInvDelta,
                rCA.getY().getVal(), (rCB.getY().getVal() - rCA.getY().getVal()) * xInvDelta,
                rCA.getZ().getVal(), (rCB.getZ().getVal() - rCA.getZ().getVal()) * xInvDelta);
        }
    }

    virtual void processLineSpan(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB, sal_Int32 nLine, sal_uInt32 nSpanCount) override;

public:
    ZBufferRasterConverter3D(basegfx::BZPixelRaster& rBuffer, const drawinglayer::processor3d::ZBufferProcessor3D& rProcessor)
    :   basegfx::RasterConverter3D(),
        mrProcessor(rProcessor),
        mrBuffer(rBuffer),
        maIntZ(),
        maIntColor(),
        maIntNormal(),
        maIntTexture(),
        maIntInvTexture(),
        mpCurrentMaterial(nullptr),
        mbModifyColor(false),
        mbUseTex(false),
        mbHasTexCoor(false),
        mbHasInvTexCoor(false),
        mbUseNrm(false),
        mbUseCol(false)
    {}

    void setCurrentMaterial(const drawinglayer::attribute::MaterialAttribute3D& rMaterial)
    {
        mpCurrentMaterial = &rMaterial;
    }
};

void ZBufferRasterConverter3D::processLineSpan(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB, sal_Int32 nLine, sal_uInt32 nSpanCount)
{
    if(!(nSpanCount & 0x0001))
    {
        if(nLine >= 0 && nLine < (sal_Int32)mrBuffer.getHeight())
        {
            sal_uInt32 nXA(std::min(mrBuffer.getWidth(), (sal_uInt32)std::max((sal_Int32)0, basegfx::fround(rA.getX().getVal()))));
            const sal_uInt32 nXB(std::min(mrBuffer.getWidth(), (sal_uInt32)std::max((sal_Int32)0, basegfx::fround(rB.getX().getVal()))));

            if(nXA < nXB)
            {
                // prepare the span interpolators
                setupLineSpanInterpolators(rA, rB);

                // bring span interpolators to start condition by incrementing with the possible difference of
                // clamped and non-clamped XStart. Interpolators are setup relying on double precision
                // X-values, so that difference is the correct value to compensate for possible clampings
                incrementLineSpanInterpolators(static_cast<double>(nXA) - rA.getX().getVal());

                // prepare scanline index
                sal_uInt32 nScanlineIndex(mrBuffer.getIndexFromXY(nXA, static_cast<sal_uInt32>(nLine)));
                basegfx::BColor aNewColor;

                while(nXA < nXB)
                {
                    // early-test Z values if we need to do anything at all
                    const double fNewZ(std::max(0.0, std::min((double)0xffff, maIntZ.getVal())));
                    const sal_uInt16 nNewZ(static_cast< sal_uInt16 >(fNewZ));
                    sal_uInt16& rOldZ(mrBuffer.getZ(nScanlineIndex));

                    if(nNewZ > rOldZ)
                    {
                        // detect color and opacity for this pixel
                        const sal_uInt16 nOpacity(std::max((sal_Int16)0, static_cast< sal_Int16 >(decideColorAndOpacity(aNewColor) * 255.0)));

                        if(nOpacity > 0)
                        {
                            // avoid color overrun
                            aNewColor.clamp();

                            if(nOpacity >= 0x00ff)
                            {
                                // full opacity (not transparent), set z and color
                                rOldZ = nNewZ;
                                mrBuffer.getBPixel(nScanlineIndex) = basegfx::BPixel(aNewColor, 0xff);
                            }
                            else
                            {
                                basegfx::BPixel& rDest = mrBuffer.getBPixel(nScanlineIndex);

                                if(rDest.getOpacity())
                                {
                                    // mix new color by using
                                    // color' = color * (1 - opacity) + newcolor * opacity
                                    const sal_uInt16 nTransparence(0x0100 - nOpacity);
                                    rDest.setRed((sal_uInt8)(((rDest.getRed() * nTransparence) + ((sal_uInt16)(255.0 * aNewColor.getRed()) * nOpacity)) >> 8));
                                    rDest.setGreen((sal_uInt8)(((rDest.getGreen() * nTransparence) + ((sal_uInt16)(255.0 * aNewColor.getGreen()) * nOpacity)) >> 8));
                                    rDest.setBlue((sal_uInt8)(((rDest.getBlue() * nTransparence) + ((sal_uInt16)(255.0 * aNewColor.getBlue()) * nOpacity)) >> 8));

                                    if(0xff != rDest.getOpacity())
                                    {
                                        // both are transparent, mix new opacity by using
                                        // opacity = newopacity * (1 - oldopacity) + oldopacity
                                        rDest.setOpacity(((sal_uInt8)((nOpacity * (0x0100 - rDest.getOpacity())) >> 8)) + rDest.getOpacity());
                                    }
                                }
                                else
                                {
                                    // dest is unused, set color
                                    rDest = basegfx::BPixel(aNewColor, (sal_uInt8)nOpacity);
                                }
                            }
                        }
                    }

                    // increments
                    nScanlineIndex++;
                    nXA++;
                    incrementLineSpanInterpolators(1.0);
                }
            }
        }
    }
}

// helper class to buffer output for transparent rasterprimitives (filled areas
// and lines) until the end of processing. To ensure correct transparent
// visualisation, ZBuffers require to not set Z and to mix with the transparent
// color. If transparent rasterprimitives overlap, it gets necessary to
// paint transparent rasterprimitives from back to front to ensure that the
// mixing happens from back to front. For that purpose, transparent
// rasterprimitives are held in this class during the processing run, remember
// all data and will be rendered

class RasterPrimitive3D
{
private:
    std::shared_ptr< drawinglayer::texture::GeoTexSvx >     mpGeoTexSvx;
    std::shared_ptr< drawinglayer::texture::GeoTexSvx >     mpTransparenceGeoTexSvx;
    drawinglayer::attribute::MaterialAttribute3D              maMaterial;
    basegfx::B3DPolyPolygon                                   maPolyPolygon;
    double                                                    mfCenterZ;

    bool                                                      mbModulate : 1;
    bool                                                      mbFilter : 1;
    bool                                                      mbSimpleTextureActive : 1;
    bool                                                      mbIsLine : 1;

public:
    RasterPrimitive3D(
        const std::shared_ptr< drawinglayer::texture::GeoTexSvx >& pGeoTexSvx,
        const std::shared_ptr< drawinglayer::texture::GeoTexSvx >& pTransparenceGeoTexSvx,
        const drawinglayer::attribute::MaterialAttribute3D& rMaterial,
        const basegfx::B3DPolyPolygon& rPolyPolygon,
        bool bModulate,
        bool bFilter,
        bool bSimpleTextureActive,
        bool bIsLine)
    :   mpGeoTexSvx(pGeoTexSvx),
        mpTransparenceGeoTexSvx(pTransparenceGeoTexSvx),
        maMaterial(rMaterial),
        maPolyPolygon(rPolyPolygon),
        mfCenterZ(basegfx::utils::getRange(rPolyPolygon).getCenter().getZ()),
        mbModulate(bModulate),
        mbFilter(bFilter),
        mbSimpleTextureActive(bSimpleTextureActive),
        mbIsLine(bIsLine)
    {
    }

    bool operator<(const RasterPrimitive3D& rComp) const
    {
        return mfCenterZ < rComp.mfCenterZ;
    }

    const std::shared_ptr< drawinglayer::texture::GeoTexSvx >& getGeoTexSvx() const { return mpGeoTexSvx; }
    const std::shared_ptr< drawinglayer::texture::GeoTexSvx >& getTransparenceGeoTexSvx() const { return mpTransparenceGeoTexSvx; }
    const drawinglayer::attribute::MaterialAttribute3D& getMaterial() const { return maMaterial; }
    const basegfx::B3DPolyPolygon& getPolyPolygon() const { return maPolyPolygon; }
    bool getModulate() const { return mbModulate; }
    bool getFilter() const { return mbFilter; }
    bool getSimpleTextureActive() const { return mbSimpleTextureActive; }
    bool getIsLine() const { return mbIsLine; }
};

namespace drawinglayer
{
    namespace processor3d
    {
        void ZBufferProcessor3D::rasterconvertB3DPolygon(const attribute::MaterialAttribute3D& rMaterial, const basegfx::B3DPolygon& rHairline) const
        {
            if(getTransparenceCounter())
            {
                // transparent output; record for later sorting and painting from
                // back to front
                if(!mpRasterPrimitive3Ds)
                {
                    const_cast< ZBufferProcessor3D* >(this)->mpRasterPrimitive3Ds = new std::vector< RasterPrimitive3D >;
                }

                mpRasterPrimitive3Ds->push_back(RasterPrimitive3D(
                    getGeoTexSvx(),
                    getTransparenceGeoTexSvx(),
                    rMaterial,
                    basegfx::B3DPolyPolygon(rHairline),
                    getModulate(),
                    getFilter(),
                    getSimpleTextureActive(),
                    true));
            }
            else
            {
                // do rasterconversion
                mpZBufferRasterConverter3D->setCurrentMaterial(rMaterial);

                if(mnAntiAlialize > 1)
                {
                    const bool bForceLineSnap(getOptionsDrawinglayer().IsAntiAliasing() && getOptionsDrawinglayer().IsSnapHorVerLinesToDiscrete());

                    if(bForceLineSnap)
                    {
                        basegfx::B3DHomMatrix aTransform;
                        basegfx::B3DPolygon aSnappedHairline(rHairline);
                        const double fScaleDown(1.0 / mnAntiAlialize);
                        const double fScaleUp(mnAntiAlialize);

                        // take oversampling out
                        aTransform.scale(fScaleDown, fScaleDown, 1.0);
                        aSnappedHairline.transform(aTransform);

                        // snap to integer
                        aSnappedHairline = basegfx::utils::snapPointsOfHorizontalOrVerticalEdges(aSnappedHairline);

                        // add oversampling again
                        aTransform.identity();
                        aTransform.scale(fScaleUp, fScaleUp, 1.0);

                        aSnappedHairline.transform(aTransform);

                        mpZBufferRasterConverter3D->rasterconvertB3DPolygon(aSnappedHairline, mnStartLine, mnStopLine, mnAntiAlialize);
                    }
                    else
                    {
                        mpZBufferRasterConverter3D->rasterconvertB3DPolygon(rHairline, mnStartLine, mnStopLine, mnAntiAlialize);
                    }
                }
                else
                {
                    mpZBufferRasterConverter3D->rasterconvertB3DPolygon(rHairline, mnStartLine, mnStopLine, 1);
                }
            }
        }

        void ZBufferProcessor3D::rasterconvertB3DPolyPolygon(const attribute::MaterialAttribute3D& rMaterial, const basegfx::B3DPolyPolygon& rFill) const
        {
            if(getTransparenceCounter())
            {
                // transparent output; record for later sorting and painting from
                // back to front
                if(!mpRasterPrimitive3Ds)
                {
                    const_cast< ZBufferProcessor3D* >(this)->mpRasterPrimitive3Ds = new std::vector< RasterPrimitive3D >;
                }

                mpRasterPrimitive3Ds->push_back(RasterPrimitive3D(
                    getGeoTexSvx(),
                    getTransparenceGeoTexSvx(),
                    rMaterial,
                    rFill,
                    getModulate(),
                    getFilter(),
                    getSimpleTextureActive(),
                    false));
            }
            else
            {
                mpZBufferRasterConverter3D->setCurrentMaterial(rMaterial);
                mpZBufferRasterConverter3D->rasterconvertB3DPolyPolygon(rFill, &maInvEyeToView, mnStartLine, mnStopLine);
            }
        }

        ZBufferProcessor3D::ZBufferProcessor3D(
            const geometry::ViewInformation3D& rViewInformation3D,
            const attribute::SdrSceneAttribute& rSdrSceneAttribute,
            const attribute::SdrLightingAttribute& rSdrLightingAttribute,
            const basegfx::B2DRange& rVisiblePart,
            sal_uInt16 nAntiAlialize,
            double fFullViewSizeX,
            double fFullViewSizeY,
            basegfx::BZPixelRaster& rBZPixelRaster,
            sal_uInt32 nStartLine,
            sal_uInt32 nStopLine)
        :   DefaultProcessor3D(rViewInformation3D, rSdrSceneAttribute, rSdrLightingAttribute),
            mrBZPixelRaster(rBZPixelRaster),
            maInvEyeToView(),
            mpZBufferRasterConverter3D(nullptr),
            mnAntiAlialize(nAntiAlialize),
            mpRasterPrimitive3Ds(nullptr),
            mnStartLine(nStartLine),
            mnStopLine(nStopLine)
        {
            // create DeviceToView for Z-Buffer renderer since Z is handled
            // different from standard 3D transformations (Z is mirrored). Also
            // the transformation includes the step from unit device coordinates
            // to discrete units ([-1.0 .. 1.0] -> [minDiscrete .. maxDiscrete]
            basegfx::B3DHomMatrix aDeviceToView;

            {
                // step one:
                //
                // bring from [-1.0 .. 1.0] in X,Y and Z to [0.0 .. 1.0]. Also
                // necessary to
                // - flip Y due to screen orientation
                // - flip Z due to Z-Buffer orientation from back to front

                aDeviceToView.scale(0.5, -0.5, -0.5);
                aDeviceToView.translate(0.5, 0.5, 0.5);
            }

            {
                // step two:
                //
                // bring from [0.0 .. 1.0] in X,Y and Z to view coordinates
                //
                // #i102611#
                // also: scale Z to [1.5 .. 65534.5]. Normally, a range of [0.0 .. 65535.0]
                // could be used, but a 'unused' value is needed, so '0' is used what reduces
                // the range to [1.0 .. 65535.0]. It has also shown that small numerical errors
                // (smaller as basegfx::fTools::mfSmallValue, which is 0.000000001) happen.
                // Instead of checking those by basegfx::fTools methods which would cost
                // runtime, just add another 0.5 tolerance to the start and end of the Z-Buffer
                // range, thus resulting in [1.5 .. 65534.5]
                const double fMaxZDepth(65533.0);
                aDeviceToView.translate(-rVisiblePart.getMinX(), -rVisiblePart.getMinY(), 0.0);

                if(mnAntiAlialize)
                    aDeviceToView.scale(fFullViewSizeX * mnAntiAlialize, fFullViewSizeY * mnAntiAlialize, fMaxZDepth);
                else
                    aDeviceToView.scale(fFullViewSizeX, fFullViewSizeY, fMaxZDepth);

                aDeviceToView.translate(0.0, 0.0, 1.5);
            }

            // update local ViewInformation3D with own DeviceToView
            const geometry::ViewInformation3D aNewViewInformation3D(
                getViewInformation3D().getObjectTransformation(),
                getViewInformation3D().getOrientation(),
                getViewInformation3D().getProjection(),
                aDeviceToView,
                getViewInformation3D().getViewTime(),
                getViewInformation3D().getExtendedInformationSequence());
            updateViewInformation(aNewViewInformation3D);

            // prepare inverse EyeToView transformation. This can be done in constructor
            // since changes in object transformations when processing TransformPrimitive3Ds
            // do not influence this prepared partial transformation
            maInvEyeToView = getViewInformation3D().getDeviceToView() * getViewInformation3D().getProjection();
            maInvEyeToView.invert();

            // prepare maRasterRange
            maRasterRange.reset();
            maRasterRange.expand(basegfx::B2DPoint(0.0, nStartLine));
            maRasterRange.expand(basegfx::B2DPoint(mrBZPixelRaster.getWidth(), nStopLine));

            // create the raster converter
            mpZBufferRasterConverter3D = new ZBufferRasterConverter3D(mrBZPixelRaster, *this);
        }

        ZBufferProcessor3D::~ZBufferProcessor3D()
        {
            delete mpZBufferRasterConverter3D;

            if(mpRasterPrimitive3Ds)
            {
                OSL_FAIL("ZBufferProcessor3D: destructed, but there are unrendered transparent geometries. Use ZBufferProcessor3D::finish() to render these (!)");
                delete mpRasterPrimitive3Ds;
            }
        }

        void ZBufferProcessor3D::finish()
        {
            if(mpRasterPrimitive3Ds)
            {
                // there are transparent rasterprimitives
                const sal_uInt32 nSize(mpRasterPrimitive3Ds->size());

                if(nSize > 1)
                {
                    // sort them from back to front
                    std::sort(mpRasterPrimitive3Ds->begin(), mpRasterPrimitive3Ds->end());
                }

                for(sal_uInt32 a(0); a < nSize; a++)
                {
                    // paint each one by setting the remembered data and calling
                    // the render method
                    const RasterPrimitive3D& rCandidate = (*mpRasterPrimitive3Ds)[a];

                    mpGeoTexSvx = rCandidate.getGeoTexSvx();
                    mpTransparenceGeoTexSvx = rCandidate.getTransparenceGeoTexSvx();
                    mbModulate = rCandidate.getModulate();
                    mbFilter = rCandidate.getFilter();
                    mbSimpleTextureActive = rCandidate.getSimpleTextureActive();

                    if(rCandidate.getIsLine())
                    {
                        rasterconvertB3DPolygon(
                            rCandidate.getMaterial(),
                            rCandidate.getPolyPolygon().getB3DPolygon(0));
                    }
                    else
                    {
                        rasterconvertB3DPolyPolygon(
                            rCandidate.getMaterial(),
                            rCandidate.getPolyPolygon());
                    }
                }

                // delete them to signal the destructor that all is done and
                // to allow asserting there
                delete mpRasterPrimitive3Ds;
                mpRasterPrimitive3Ds = nullptr;
            }
        }
    } // end of namespace processor3d
} // end of namespace drawinglayer

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */