summaryrefslogtreecommitdiff
path: root/net/sched/sch_netem.c
blob: 6ef3021e1169a376494d610ac8c3f1c04fb911c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
// SPDX-License-Identifier: GPL-2.0-only
/*
 * net/sched/sch_netem.c	Network emulator
 *
 *  		Many of the algorithms and ideas for this came from
 *		NIST Net which is not copyrighted.
 *
 * Authors:	Stephen Hemminger <shemminger@osdl.org>
 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/vmalloc.h>
#include <linux/rtnetlink.h>
#include <linux/reciprocal_div.h>
#include <linux/rbtree.h>

#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/inet_ecn.h>

#define VERSION "1.3"

/*	Network Emulation Queuing algorithm.
	====================================

	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
		 Network Emulation Tool
		 [2] Luigi Rizzo, DummyNet for FreeBSD

	 ----------------------------------------------------------------

	 This started out as a simple way to delay outgoing packets to
	 test TCP but has grown to include most of the functionality
	 of a full blown network emulator like NISTnet. It can delay
	 packets and add random jitter (and correlation). The random
	 distribution can be loaded from a table as well to provide
	 normal, Pareto, or experimental curves. Packet loss,
	 duplication, and reordering can also be emulated.

	 This qdisc does not do classification that can be handled in
	 layering other disciplines.  It does not need to do bandwidth
	 control either since that can be handled by using token
	 bucket or other rate control.

     Correlated Loss Generator models

	Added generation of correlated loss according to the
	"Gilbert-Elliot" model, a 4-state markov model.

	References:
	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
	and intuitive loss model for packet networks and its implementation
	in the Netem module in the Linux kernel", available in [1]

	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
		 Fabio Ludovici <fabio.ludovici at yahoo.it>
*/

struct disttable {
	u32  size;
	s16 table[];
};

struct netem_sched_data {
	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
	struct rb_root t_root;

	/* a linear queue; reduces rbtree rebalancing when jitter is low */
	struct sk_buff	*t_head;
	struct sk_buff	*t_tail;

	/* optional qdisc for classful handling (NULL at netem init) */
	struct Qdisc	*qdisc;

	struct qdisc_watchdog watchdog;

	s64 latency;
	s64 jitter;

	u32 loss;
	u32 ecn;
	u32 limit;
	u32 counter;
	u32 gap;
	u32 duplicate;
	u32 reorder;
	u32 corrupt;
	u64 rate;
	s32 packet_overhead;
	u32 cell_size;
	struct reciprocal_value cell_size_reciprocal;
	s32 cell_overhead;

	struct crndstate {
		u32 last;
		u32 rho;
	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;

	struct disttable *delay_dist;

	enum  {
		CLG_RANDOM,
		CLG_4_STATES,
		CLG_GILB_ELL,
	} loss_model;

	enum {
		TX_IN_GAP_PERIOD = 1,
		TX_IN_BURST_PERIOD,
		LOST_IN_GAP_PERIOD,
		LOST_IN_BURST_PERIOD,
	} _4_state_model;

	enum {
		GOOD_STATE = 1,
		BAD_STATE,
	} GE_state_model;

	/* Correlated Loss Generation models */
	struct clgstate {
		/* state of the Markov chain */
		u8 state;

		/* 4-states and Gilbert-Elliot models */
		u32 a1;	/* p13 for 4-states or p for GE */
		u32 a2;	/* p31 for 4-states or r for GE */
		u32 a3;	/* p32 for 4-states or h for GE */
		u32 a4;	/* p14 for 4-states or 1-k for GE */
		u32 a5; /* p23 used only in 4-states */
	} clg;

	struct tc_netem_slot slot_config;
	struct slotstate {
		u64 slot_next;
		s32 packets_left;
		s32 bytes_left;
	} slot;

	struct disttable *slot_dist;
};

/* Time stamp put into socket buffer control block
 * Only valid when skbs are in our internal t(ime)fifo queue.
 *
 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
 * and skb->next & skb->prev are scratch space for a qdisc,
 * we save skb->tstamp value in skb->cb[] before destroying it.
 */
struct netem_skb_cb {
	u64	        time_to_send;
};

static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
{
	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
}

/* init_crandom - initialize correlated random number generator
 * Use entropy source for initial seed.
 */
static void init_crandom(struct crndstate *state, unsigned long rho)
{
	state->rho = rho;
	state->last = get_random_u32();
}

/* get_crandom - correlated random number generator
 * Next number depends on last value.
 * rho is scaled to avoid floating point.
 */
static u32 get_crandom(struct crndstate *state)
{
	u64 value, rho;
	unsigned long answer;

	if (!state || state->rho == 0)	/* no correlation */
		return get_random_u32();

	value = get_random_u32();
	rho = (u64)state->rho + 1;
	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
	state->last = answer;
	return answer;
}

/* loss_4state - 4-state model loss generator
 * Generates losses according to the 4-state Markov chain adopted in
 * the GI (General and Intuitive) loss model.
 */
static bool loss_4state(struct netem_sched_data *q)
{
	struct clgstate *clg = &q->clg;
	u32 rnd = get_random_u32();

	/*
	 * Makes a comparison between rnd and the transition
	 * probabilities outgoing from the current state, then decides the
	 * next state and if the next packet has to be transmitted or lost.
	 * The four states correspond to:
	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
	 *   LOST_IN_GAP_PERIOD => isolated losses within a gap period
	 *   LOST_IN_BURST_PERIOD => lost packets within a burst period
	 *   TX_IN_BURST_PERIOD => successfully transmitted packets within a burst period
	 */
	switch (clg->state) {
	case TX_IN_GAP_PERIOD:
		if (rnd < clg->a4) {
			clg->state = LOST_IN_GAP_PERIOD;
			return true;
		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
			clg->state = LOST_IN_BURST_PERIOD;
			return true;
		} else if (clg->a1 + clg->a4 < rnd) {
			clg->state = TX_IN_GAP_PERIOD;
		}

		break;
	case TX_IN_BURST_PERIOD:
		if (rnd < clg->a5) {
			clg->state = LOST_IN_BURST_PERIOD;
			return true;
		} else {
			clg->state = TX_IN_BURST_PERIOD;
		}

		break;
	case LOST_IN_BURST_PERIOD:
		if (rnd < clg->a3)
			clg->state = TX_IN_BURST_PERIOD;
		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
			clg->state = TX_IN_GAP_PERIOD;
		} else if (clg->a2 + clg->a3 < rnd) {
			clg->state = LOST_IN_BURST_PERIOD;
			return true;
		}
		break;
	case LOST_IN_GAP_PERIOD:
		clg->state = TX_IN_GAP_PERIOD;
		break;
	}

	return false;
}

/* loss_gilb_ell - Gilbert-Elliot model loss generator
 * Generates losses according to the Gilbert-Elliot loss model or
 * its special cases  (Gilbert or Simple Gilbert)
 *
 * Makes a comparison between random number and the transition
 * probabilities outgoing from the current state, then decides the
 * next state. A second random number is extracted and the comparison
 * with the loss probability of the current state decides if the next
 * packet will be transmitted or lost.
 */
static bool loss_gilb_ell(struct netem_sched_data *q)
{
	struct clgstate *clg = &q->clg;

	switch (clg->state) {
	case GOOD_STATE:
		if (get_random_u32() < clg->a1)
			clg->state = BAD_STATE;
		if (get_random_u32() < clg->a4)
			return true;
		break;
	case BAD_STATE:
		if (get_random_u32() < clg->a2)
			clg->state = GOOD_STATE;
		if (get_random_u32() > clg->a3)
			return true;
	}

	return false;
}

static bool loss_event(struct netem_sched_data *q)
{
	switch (q->loss_model) {
	case CLG_RANDOM:
		/* Random packet drop 0 => none, ~0 => all */
		return q->loss && q->loss >= get_crandom(&q->loss_cor);

	case CLG_4_STATES:
		/* 4state loss model algorithm (used also for GI model)
		* Extracts a value from the markov 4 state loss generator,
		* if it is 1 drops a packet and if needed writes the event in
		* the kernel logs
		*/
		return loss_4state(q);

	case CLG_GILB_ELL:
		/* Gilbert-Elliot loss model algorithm
		* Extracts a value from the Gilbert-Elliot loss generator,
		* if it is 1 drops a packet and if needed writes the event in
		* the kernel logs
		*/
		return loss_gilb_ell(q);
	}

	return false;	/* not reached */
}


/* tabledist - return a pseudo-randomly distributed value with mean mu and
 * std deviation sigma.  Uses table lookup to approximate the desired
 * distribution, and a uniformly-distributed pseudo-random source.
 */
static s64 tabledist(s64 mu, s32 sigma,
		     struct crndstate *state,
		     const struct disttable *dist)
{
	s64 x;
	long t;
	u32 rnd;

	if (sigma == 0)
		return mu;

	rnd = get_crandom(state);

	/* default uniform distribution */
	if (dist == NULL)
		return ((rnd % (2 * (u32)sigma)) + mu) - sigma;

	t = dist->table[rnd % dist->size];
	x = (sigma % NETEM_DIST_SCALE) * t;
	if (x >= 0)
		x += NETEM_DIST_SCALE/2;
	else
		x -= NETEM_DIST_SCALE/2;

	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
}

static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
{
	len += q->packet_overhead;

	if (q->cell_size) {
		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);

		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
			cells++;
		len = cells * (q->cell_size + q->cell_overhead);
	}

	return div64_u64(len * NSEC_PER_SEC, q->rate);
}

static void tfifo_reset(struct Qdisc *sch)
{
	struct netem_sched_data *q = qdisc_priv(sch);
	struct rb_node *p = rb_first(&q->t_root);

	while (p) {
		struct sk_buff *skb = rb_to_skb(p);

		p = rb_next(p);
		rb_erase(&skb->rbnode, &q->t_root);
		rtnl_kfree_skbs(skb, skb);
	}

	rtnl_kfree_skbs(q->t_head, q->t_tail);
	q->t_head = NULL;
	q->t_tail = NULL;
}

static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
{
	struct netem_sched_data *q = qdisc_priv(sch);
	u64 tnext = netem_skb_cb(nskb)->time_to_send;

	if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) {
		if (q->t_tail)
			q->t_tail->next = nskb;
		else
			q->t_head = nskb;
		q->t_tail = nskb;
	} else {
		struct rb_node **p = &q->t_root.rb_node, *parent = NULL;

		while (*p) {
			struct sk_buff *skb;

			parent = *p;
			skb = rb_to_skb(parent);
			if (tnext >= netem_skb_cb(skb)->time_to_send)
				p = &parent->rb_right;
			else
				p = &parent->rb_left;
		}
		rb_link_node(&nskb->rbnode, parent, p);
		rb_insert_color(&nskb->rbnode, &q->t_root);
	}
	sch->q.qlen++;
}

/* netem can't properly corrupt a megapacket (like we get from GSO), so instead
 * when we statistically choose to corrupt one, we instead segment it, returning
 * the first packet to be corrupted, and re-enqueue the remaining frames
 */
static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
				     struct sk_buff **to_free)
{
	struct sk_buff *segs;
	netdev_features_t features = netif_skb_features(skb);

	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);

	if (IS_ERR_OR_NULL(segs)) {
		qdisc_drop(skb, sch, to_free);
		return NULL;
	}
	consume_skb(skb);
	return segs;
}

/*
 * Insert one skb into qdisc.
 * Note: parent depends on return value to account for queue length.
 * 	NET_XMIT_DROP: queue length didn't change.
 *      NET_XMIT_SUCCESS: one skb was queued.
 */
static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
			 struct sk_buff **to_free)
{
	struct netem_sched_data *q = qdisc_priv(sch);
	/* We don't fill cb now as skb_unshare() may invalidate it */
	struct netem_skb_cb *cb;
	struct sk_buff *skb2;
	struct sk_buff *segs = NULL;
	unsigned int prev_len = qdisc_pkt_len(skb);
	int count = 1;
	int rc = NET_XMIT_SUCCESS;
	int rc_drop = NET_XMIT_DROP;

	/* Do not fool qdisc_drop_all() */
	skb->prev = NULL;

	/* Random duplication */
	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
		++count;

	/* Drop packet? */
	if (loss_event(q)) {
		if (q->ecn && INET_ECN_set_ce(skb))
			qdisc_qstats_drop(sch); /* mark packet */
		else
			--count;
	}
	if (count == 0) {
		qdisc_qstats_drop(sch);
		__qdisc_drop(skb, to_free);
		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
	}

	/* If a delay is expected, orphan the skb. (orphaning usually takes
	 * place at TX completion time, so _before_ the link transit delay)
	 */
	if (q->latency || q->jitter || q->rate)
		skb_orphan_partial(skb);

	/*
	 * If we need to duplicate packet, then re-insert at top of the
	 * qdisc tree, since parent queuer expects that only one
	 * skb will be queued.
	 */
	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
		struct Qdisc *rootq = qdisc_root_bh(sch);
		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */

		q->duplicate = 0;
		rootq->enqueue(skb2, rootq, to_free);
		q->duplicate = dupsave;
		rc_drop = NET_XMIT_SUCCESS;
	}

	/*
	 * Randomized packet corruption.
	 * Make copy if needed since we are modifying
	 * If packet is going to be hardware checksummed, then
	 * do it now in software before we mangle it.
	 */
	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
		if (skb_is_gso(skb)) {
			skb = netem_segment(skb, sch, to_free);
			if (!skb)
				return rc_drop;
			segs = skb->next;
			skb_mark_not_on_list(skb);
			qdisc_skb_cb(skb)->pkt_len = skb->len;
		}

		skb = skb_unshare(skb, GFP_ATOMIC);
		if (unlikely(!skb)) {
			qdisc_qstats_drop(sch);
			goto finish_segs;
		}
		if (skb->ip_summed == CHECKSUM_PARTIAL &&
		    skb_checksum_help(skb)) {
			qdisc_drop(skb, sch, to_free);
			skb = NULL;
			goto finish_segs;
		}

		skb->data[get_random_u32_below(skb_headlen(skb))] ^=
			1<<get_random_u32_below(8);
	}

	if (unlikely(sch->q.qlen >= sch->limit)) {
		/* re-link segs, so that qdisc_drop_all() frees them all */
		skb->next = segs;
		qdisc_drop_all(skb, sch, to_free);
		return rc_drop;
	}

	qdisc_qstats_backlog_inc(sch, skb);

	cb = netem_skb_cb(skb);
	if (q->gap == 0 ||		/* not doing reordering */
	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
	    q->reorder < get_crandom(&q->reorder_cor)) {
		u64 now;
		s64 delay;

		delay = tabledist(q->latency, q->jitter,
				  &q->delay_cor, q->delay_dist);

		now = ktime_get_ns();

		if (q->rate) {
			struct netem_skb_cb *last = NULL;

			if (sch->q.tail)
				last = netem_skb_cb(sch->q.tail);
			if (q->t_root.rb_node) {
				struct sk_buff *t_skb;
				struct netem_skb_cb *t_last;

				t_skb = skb_rb_last(&q->t_root);
				t_last = netem_skb_cb(t_skb);
				if (!last ||
				    t_last->time_to_send > last->time_to_send)
					last = t_last;
			}
			if (q->t_tail) {
				struct netem_skb_cb *t_last =
					netem_skb_cb(q->t_tail);

				if (!last ||
				    t_last->time_to_send > last->time_to_send)
					last = t_last;
			}

			if (last) {
				/*
				 * Last packet in queue is reference point (now),
				 * calculate this time bonus and subtract
				 * from delay.
				 */
				delay -= last->time_to_send - now;
				delay = max_t(s64, 0, delay);
				now = last->time_to_send;
			}

			delay += packet_time_ns(qdisc_pkt_len(skb), q);
		}

		cb->time_to_send = now + delay;
		++q->counter;
		tfifo_enqueue(skb, sch);
	} else {
		/*
		 * Do re-ordering by putting one out of N packets at the front
		 * of the queue.
		 */
		cb->time_to_send = ktime_get_ns();
		q->counter = 0;

		__qdisc_enqueue_head(skb, &sch->q);
		sch->qstats.requeues++;
	}

finish_segs:
	if (segs) {
		unsigned int len, last_len;
		int nb;

		len = skb ? skb->len : 0;
		nb = skb ? 1 : 0;

		while (segs) {
			skb2 = segs->next;
			skb_mark_not_on_list(segs);
			qdisc_skb_cb(segs)->pkt_len = segs->len;
			last_len = segs->len;
			rc = qdisc_enqueue(segs, sch, to_free);
			if (rc != NET_XMIT_SUCCESS) {
				if (net_xmit_drop_count(rc))
					qdisc_qstats_drop(sch);
			} else {
				nb++;
				len += last_len;
			}
			segs = skb2;
		}
		/* Parent qdiscs accounted for 1 skb of size @prev_len */
		qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len));
	} else if (!skb) {
		return NET_XMIT_DROP;
	}
	return NET_XMIT_SUCCESS;
}

/* Delay the next round with a new future slot with a
 * correct number of bytes and packets.
 */

static void get_slot_next(struct netem_sched_data *q, u64 now)
{
	s64 next_delay;

	if (!q->slot_dist)
		next_delay = q->slot_config.min_delay +
				(get_random_u32() *
				 (q->slot_config.max_delay -
				  q->slot_config.min_delay) >> 32);
	else
		next_delay = tabledist(q->slot_config.dist_delay,
				       (s32)(q->slot_config.dist_jitter),
				       NULL, q->slot_dist);

	q->slot.slot_next = now + next_delay;
	q->slot.packets_left = q->slot_config.max_packets;
	q->slot.bytes_left = q->slot_config.max_bytes;
}

static struct sk_buff *netem_peek(struct netem_sched_data *q)
{
	struct sk_buff *skb = skb_rb_first(&q->t_root);
	u64 t1, t2;

	if (!skb)
		return q->t_head;
	if (!q->t_head)
		return skb;

	t1 = netem_skb_cb(skb)->time_to_send;
	t2 = netem_skb_cb(q->t_head)->time_to_send;
	if (t1 < t2)
		return skb;
	return q->t_head;
}

static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb)
{
	if (skb == q->t_head) {
		q->t_head = skb->next;
		if (!q->t_head)
			q->t_tail = NULL;
	} else {
		rb_erase(&skb->rbnode, &q->t_root);
	}
}

static struct sk_buff *netem_dequeue(struct Qdisc *sch)
{
	struct netem_sched_data *q = qdisc_priv(sch);
	struct sk_buff *skb;

tfifo_dequeue:
	skb = __qdisc_dequeue_head(&sch->q);
	if (skb) {
		qdisc_qstats_backlog_dec(sch, skb);
deliver:
		qdisc_bstats_update(sch, skb);
		return skb;
	}
	skb = netem_peek(q);
	if (skb) {
		u64 time_to_send;
		u64 now = ktime_get_ns();

		/* if more time remaining? */
		time_to_send = netem_skb_cb(skb)->time_to_send;
		if (q->slot.slot_next && q->slot.slot_next < time_to_send)
			get_slot_next(q, now);

		if (time_to_send <= now && q->slot.slot_next <= now) {
			netem_erase_head(q, skb);
			sch->q.qlen--;
			qdisc_qstats_backlog_dec(sch, skb);
			skb->next = NULL;
			skb->prev = NULL;
			/* skb->dev shares skb->rbnode area,
			 * we need to restore its value.
			 */
			skb->dev = qdisc_dev(sch);

			if (q->slot.slot_next) {
				q->slot.packets_left--;
				q->slot.bytes_left -= qdisc_pkt_len(skb);
				if (q->slot.packets_left <= 0 ||
				    q->slot.bytes_left <= 0)
					get_slot_next(q, now);
			}

			if (q->qdisc) {
				unsigned int pkt_len = qdisc_pkt_len(skb);
				struct sk_buff *to_free = NULL;
				int err;

				err = qdisc_enqueue(skb, q->qdisc, &to_free);
				kfree_skb_list(to_free);
				if (err != NET_XMIT_SUCCESS &&
				    net_xmit_drop_count(err)) {
					qdisc_qstats_drop(sch);
					qdisc_tree_reduce_backlog(sch, 1,
								  pkt_len);
				}
				goto tfifo_dequeue;
			}
			goto deliver;
		}

		if (q->qdisc) {
			skb = q->qdisc->ops->dequeue(q->qdisc);
			if (skb)
				goto deliver;
		}

		qdisc_watchdog_schedule_ns(&q->watchdog,
					   max(time_to_send,
					       q->slot.slot_next));
	}

	if (q->qdisc) {
		skb = q->qdisc->ops->dequeue(q->qdisc);
		if (skb)
			goto deliver;
	}
	return NULL;
}

static void netem_reset(struct Qdisc *sch)
{
	struct netem_sched_data *q = qdisc_priv(sch);

	qdisc_reset_queue(sch);
	tfifo_reset(sch);
	if (q->qdisc)
		qdisc_reset(q->qdisc);
	qdisc_watchdog_cancel(&q->watchdog);
}

static void dist_free(struct disttable *d)
{
	kvfree(d);
}

/*
 * Distribution data is a variable size payload containing
 * signed 16 bit values.
 */

static int get_dist_table(struct Qdisc *sch, struct disttable **tbl,
			  const struct nlattr *attr)
{
	size_t n = nla_len(attr)/sizeof(__s16);
	const __s16 *data = nla_data(attr);
	spinlock_t *root_lock;
	struct disttable *d;
	int i;

	if (!n || n > NETEM_DIST_MAX)
		return -EINVAL;

	d = kvmalloc(struct_size(d, table, n), GFP_KERNEL);
	if (!d)
		return -ENOMEM;

	d->size = n;
	for (i = 0; i < n; i++)
		d->table[i] = data[i];

	root_lock = qdisc_root_sleeping_lock(sch);

	spin_lock_bh(root_lock);
	swap(*tbl, d);
	spin_unlock_bh(root_lock);

	dist_free(d);
	return 0;
}

static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
{
	const struct tc_netem_slot *c = nla_data(attr);

	q->slot_config = *c;
	if (q->slot_config.max_packets == 0)
		q->slot_config.max_packets = INT_MAX;
	if (q->slot_config.max_bytes == 0)
		q->slot_config.max_bytes = INT_MAX;

	/* capping dist_jitter to the range acceptable by tabledist() */
	q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter));

	q->slot.packets_left = q->slot_config.max_packets;
	q->slot.bytes_left = q->slot_config.max_bytes;
	if (q->slot_config.min_delay | q->slot_config.max_delay |
	    q->slot_config.dist_jitter)
		q->slot.slot_next = ktime_get_ns();
	else
		q->slot.slot_next = 0;
}

static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
{
	const struct tc_netem_corr *c = nla_data(attr);

	init_crandom(&q->delay_cor, c->delay_corr);
	init_crandom(&q->loss_cor, c->loss_corr);
	init_crandom(&q->dup_cor, c->dup_corr);
}

static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
{
	const struct tc_netem_reorder *r = nla_data(attr);

	q->reorder = r->probability;
	init_crandom(&q->reorder_cor, r->correlation);
}

static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
{
	const struct tc_netem_corrupt *r = nla_data(attr);

	q->corrupt = r->probability;
	init_crandom(&q->corrupt_cor, r->correlation);
}

static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
{
	const struct tc_netem_rate *r = nla_data(attr);

	q->rate = r->rate;
	q->packet_overhead = r->packet_overhead;
	q->cell_size = r->cell_size;
	q->cell_overhead = r->cell_overhead;
	if (q->cell_size)
		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
	else
		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
}

static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
{
	const struct nlattr *la;
	int rem;

	nla_for_each_nested(la, attr, rem) {
		u16 type = nla_type(la);

		switch (type) {
		case NETEM_LOSS_GI: {
			const struct tc_netem_gimodel *gi = nla_data(la);

			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
				pr_info("netem: incorrect gi model size\n");
				return -EINVAL;
			}

			q->loss_model = CLG_4_STATES;

			q->clg.state = TX_IN_GAP_PERIOD;
			q->clg.a1 = gi->p13;
			q->clg.a2 = gi->p31;
			q->clg.a3 = gi->p32;
			q->clg.a4 = gi->p14;
			q->clg.a5 = gi->p23;
			break;
		}

		case NETEM_LOSS_GE: {
			const struct tc_netem_gemodel *ge = nla_data(la);

			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
				pr_info("netem: incorrect ge model size\n");
				return -EINVAL;
			}

			q->loss_model = CLG_GILB_ELL;
			q->clg.state = GOOD_STATE;
			q->clg.a1 = ge->p;
			q->clg.a2 = ge->r;
			q->clg.a3 = ge->h;
			q->clg.a4 = ge->k1;
			break;
		}

		default:
			pr_info("netem: unknown loss type %u\n", type);
			return -EINVAL;
		}
	}

	return 0;
}

static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
	[TCA_NETEM_LATENCY64]	= { .type = NLA_S64 },
	[TCA_NETEM_JITTER64]	= { .type = NLA_S64 },
	[TCA_NETEM_SLOT]	= { .len = sizeof(struct tc_netem_slot) },
};

static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
		      const struct nla_policy *policy, int len)
{
	int nested_len = nla_len(nla) - NLA_ALIGN(len);

	if (nested_len < 0) {
		pr_info("netem: invalid attributes len %d\n", nested_len);
		return -EINVAL;
	}

	if (nested_len >= nla_attr_size(0))
		return nla_parse_deprecated(tb, maxtype,
					    nla_data(nla) + NLA_ALIGN(len),
					    nested_len, policy, NULL);

	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
	return 0;
}

/* Parse netlink message to set options */
static int netem_change(struct Qdisc *sch, struct nlattr *opt,
			struct netlink_ext_ack *extack)
{
	struct netem_sched_data *q = qdisc_priv(sch);
	struct nlattr *tb[TCA_NETEM_MAX + 1];
	struct tc_netem_qopt *qopt;
	struct clgstate old_clg;
	int old_loss_model = CLG_RANDOM;
	int ret;

	qopt = nla_data(opt);
	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
	if (ret < 0)
		return ret;

	/* backup q->clg and q->loss_model */
	old_clg = q->clg;
	old_loss_model = q->loss_model;

	if (tb[TCA_NETEM_LOSS]) {
		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
		if (ret) {
			q->loss_model = old_loss_model;
			return ret;
		}
	} else {
		q->loss_model = CLG_RANDOM;
	}

	if (tb[TCA_NETEM_DELAY_DIST]) {
		ret = get_dist_table(sch, &q->delay_dist,
				     tb[TCA_NETEM_DELAY_DIST]);
		if (ret)
			goto get_table_failure;
	}

	if (tb[TCA_NETEM_SLOT_DIST]) {
		ret = get_dist_table(sch, &q->slot_dist,
				     tb[TCA_NETEM_SLOT_DIST]);
		if (ret)
			goto get_table_failure;
	}

	sch->limit = qopt->limit;

	q->latency = PSCHED_TICKS2NS(qopt->latency);
	q->jitter = PSCHED_TICKS2NS(qopt->jitter);
	q->limit = qopt->limit;
	q->gap = qopt->gap;
	q->counter = 0;
	q->loss = qopt->loss;
	q->duplicate = qopt->duplicate;

	/* for compatibility with earlier versions.
	 * if gap is set, need to assume 100% probability
	 */
	if (q->gap)
		q->reorder = ~0;

	if (tb[TCA_NETEM_CORR])
		get_correlation(q, tb[TCA_NETEM_CORR]);

	if (tb[TCA_NETEM_REORDER])
		get_reorder(q, tb[TCA_NETEM_REORDER]);

	if (tb[TCA_NETEM_CORRUPT])
		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);

	if (tb[TCA_NETEM_RATE])
		get_rate(q, tb[TCA_NETEM_RATE]);

	if (tb[TCA_NETEM_RATE64])
		q->rate = max_t(u64, q->rate,
				nla_get_u64(tb[TCA_NETEM_RATE64]));

	if (tb[TCA_NETEM_LATENCY64])
		q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);

	if (tb[TCA_NETEM_JITTER64])
		q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);

	if (tb[TCA_NETEM_ECN])
		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);

	if (tb[TCA_NETEM_SLOT])
		get_slot(q, tb[TCA_NETEM_SLOT]);

	/* capping jitter to the range acceptable by tabledist() */
	q->jitter = min_t(s64, abs(q->jitter), INT_MAX);

	return ret;

get_table_failure:
	/* recover clg and loss_model, in case of
	 * q->clg and q->loss_model were modified
	 * in get_loss_clg()
	 */
	q->clg = old_clg;
	q->loss_model = old_loss_model;
	return ret;
}

static int netem_init(struct Qdisc *sch, struct nlattr *opt,
		      struct netlink_ext_ack *extack)
{
	struct netem_sched_data *q = qdisc_priv(sch);
	int ret;

	qdisc_watchdog_init(&q->watchdog, sch);

	if (!opt)
		return -EINVAL;

	q->loss_model = CLG_RANDOM;
	ret = netem_change(sch, opt, extack);
	if (ret)
		pr_info("netem: change failed\n");
	return ret;
}

static void netem_destroy(struct Qdisc *sch)
{
	struct netem_sched_data *q = qdisc_priv(sch);

	qdisc_watchdog_cancel(&q->watchdog);
	if (q->qdisc)
		qdisc_put(q->qdisc);
	dist_free(q->delay_dist);
	dist_free(q->slot_dist);
}

static int dump_loss_model(const struct netem_sched_data *q,
			   struct sk_buff *skb)
{
	struct nlattr *nest;

	nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS);
	if (nest == NULL)
		goto nla_put_failure;

	switch (q->loss_model) {
	case CLG_RANDOM:
		/* legacy loss model */
		nla_nest_cancel(skb, nest);
		return 0;	/* no data */

	case CLG_4_STATES: {
		struct tc_netem_gimodel gi = {
			.p13 = q->clg.a1,
			.p31 = q->clg.a2,
			.p32 = q->clg.a3,
			.p14 = q->clg.a4,
			.p23 = q->clg.a5,
		};

		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
			goto nla_put_failure;
		break;
	}
	case CLG_GILB_ELL: {
		struct tc_netem_gemodel ge = {
			.p = q->clg.a1,
			.r = q->clg.a2,
			.h = q->clg.a3,
			.k1 = q->clg.a4,
		};

		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
			goto nla_put_failure;
		break;
	}
	}

	nla_nest_end(skb, nest);
	return 0;

nla_put_failure:
	nla_nest_cancel(skb, nest);
	return -1;
}

static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
{
	const struct netem_sched_data *q = qdisc_priv(sch);
	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
	struct tc_netem_qopt qopt;
	struct tc_netem_corr cor;
	struct tc_netem_reorder reorder;
	struct tc_netem_corrupt corrupt;
	struct tc_netem_rate rate;
	struct tc_netem_slot slot;

	qopt.latency = min_t(psched_time_t, PSCHED_NS2TICKS(q->latency),
			     UINT_MAX);
	qopt.jitter = min_t(psched_time_t, PSCHED_NS2TICKS(q->jitter),
			    UINT_MAX);
	qopt.limit = q->limit;
	qopt.loss = q->loss;
	qopt.gap = q->gap;
	qopt.duplicate = q->duplicate;
	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
		goto nla_put_failure;

	if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
		goto nla_put_failure;

	if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
		goto nla_put_failure;

	cor.delay_corr = q->delay_cor.rho;
	cor.loss_corr = q->loss_cor.rho;
	cor.dup_corr = q->dup_cor.rho;
	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
		goto nla_put_failure;

	reorder.probability = q->reorder;
	reorder.correlation = q->reorder_cor.rho;
	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
		goto nla_put_failure;

	corrupt.probability = q->corrupt;
	corrupt.correlation = q->corrupt_cor.rho;
	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
		goto nla_put_failure;

	if (q->rate >= (1ULL << 32)) {
		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
				      TCA_NETEM_PAD))
			goto nla_put_failure;
		rate.rate = ~0U;
	} else {
		rate.rate = q->rate;
	}
	rate.packet_overhead = q->packet_overhead;
	rate.cell_size = q->cell_size;
	rate.cell_overhead = q->cell_overhead;
	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
		goto nla_put_failure;

	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
		goto nla_put_failure;

	if (dump_loss_model(q, skb) != 0)
		goto nla_put_failure;

	if (q->slot_config.min_delay | q->slot_config.max_delay |
	    q->slot_config.dist_jitter) {
		slot = q->slot_config;
		if (slot.max_packets == INT_MAX)
			slot.max_packets = 0;
		if (slot.max_bytes == INT_MAX)
			slot.max_bytes = 0;
		if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
			goto nla_put_failure;
	}

	return nla_nest_end(skb, nla);

nla_put_failure:
	nlmsg_trim(skb, nla);
	return -1;
}

static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
			  struct sk_buff *skb, struct tcmsg *tcm)
{
	struct netem_sched_data *q = qdisc_priv(sch);

	if (cl != 1 || !q->qdisc) 	/* only one class */
		return -ENOENT;

	tcm->tcm_handle |= TC_H_MIN(1);
	tcm->tcm_info = q->qdisc->handle;

	return 0;
}

static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
		     struct Qdisc **old, struct netlink_ext_ack *extack)
{
	struct netem_sched_data *q = qdisc_priv(sch);

	*old = qdisc_replace(sch, new, &q->qdisc);
	return 0;
}

static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
{
	struct netem_sched_data *q = qdisc_priv(sch);
	return q->qdisc;
}

static unsigned long netem_find(struct Qdisc *sch, u32 classid)
{
	return 1;
}

static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
{
	if (!walker->stop) {
		if (!tc_qdisc_stats_dump(sch, 1, walker))
			return;
	}
}

static const struct Qdisc_class_ops netem_class_ops = {
	.graft		=	netem_graft,
	.leaf		=	netem_leaf,
	.find		=	netem_find,
	.walk		=	netem_walk,
	.dump		=	netem_dump_class,
};

static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
	.id		=	"netem",
	.cl_ops		=	&netem_class_ops,
	.priv_size	=	sizeof(struct netem_sched_data),
	.enqueue	=	netem_enqueue,
	.dequeue	=	netem_dequeue,
	.peek		=	qdisc_peek_dequeued,
	.init		=	netem_init,
	.reset		=	netem_reset,
	.destroy	=	netem_destroy,
	.change		=	netem_change,
	.dump		=	netem_dump,
	.owner		=	THIS_MODULE,
};


static int __init netem_module_init(void)
{
	pr_info("netem: version " VERSION "\n");
	return register_qdisc(&netem_qdisc_ops);
}
static void __exit netem_module_exit(void)
{
	unregister_qdisc(&netem_qdisc_ops);
}
module_init(netem_module_init)
module_exit(netem_module_exit)
MODULE_LICENSE("GPL");