1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD Address Translation Library
*
* map.c : Functions to read and decode DRAM address maps
*
* Copyright (c) 2023, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
*/
#include "internal.h"
static int df2_get_intlv_mode(struct addr_ctx *ctx)
{
ctx->map.intlv_mode = FIELD_GET(DF2_INTLV_NUM_CHAN, ctx->map.base);
if (ctx->map.intlv_mode == 8)
ctx->map.intlv_mode = DF2_2CHAN_HASH;
if (ctx->map.intlv_mode != NONE &&
ctx->map.intlv_mode != NOHASH_2CHAN &&
ctx->map.intlv_mode != DF2_2CHAN_HASH)
return -EINVAL;
return 0;
}
static int df3_get_intlv_mode(struct addr_ctx *ctx)
{
ctx->map.intlv_mode = FIELD_GET(DF3_INTLV_NUM_CHAN, ctx->map.base);
return 0;
}
static int df3p5_get_intlv_mode(struct addr_ctx *ctx)
{
ctx->map.intlv_mode = FIELD_GET(DF3p5_INTLV_NUM_CHAN, ctx->map.base);
if (ctx->map.intlv_mode == DF3_6CHAN)
return -EINVAL;
return 0;
}
static int df4_get_intlv_mode(struct addr_ctx *ctx)
{
ctx->map.intlv_mode = FIELD_GET(DF4_INTLV_NUM_CHAN, ctx->map.intlv);
if (ctx->map.intlv_mode == DF3_COD4_2CHAN_HASH ||
ctx->map.intlv_mode == DF3_COD2_4CHAN_HASH ||
ctx->map.intlv_mode == DF3_COD1_8CHAN_HASH ||
ctx->map.intlv_mode == DF3_6CHAN)
return -EINVAL;
return 0;
}
static int df4p5_get_intlv_mode(struct addr_ctx *ctx)
{
ctx->map.intlv_mode = FIELD_GET(DF4p5_INTLV_NUM_CHAN, ctx->map.intlv);
if (ctx->map.intlv_mode <= NOHASH_32CHAN)
return 0;
if (ctx->map.intlv_mode >= MI3_HASH_8CHAN &&
ctx->map.intlv_mode <= MI3_HASH_32CHAN)
return 0;
/*
* Modes matching the ranges above are returned as-is.
*
* All other modes are "fixed up" by adding 20h to make a unique value.
*/
ctx->map.intlv_mode += 0x20;
return 0;
}
static int get_intlv_mode(struct addr_ctx *ctx)
{
int ret;
switch (df_cfg.rev) {
case DF2:
ret = df2_get_intlv_mode(ctx);
break;
case DF3:
ret = df3_get_intlv_mode(ctx);
break;
case DF3p5:
ret = df3p5_get_intlv_mode(ctx);
break;
case DF4:
ret = df4_get_intlv_mode(ctx);
break;
case DF4p5:
ret = df4p5_get_intlv_mode(ctx);
break;
default:
ret = -EINVAL;
}
if (ret)
atl_debug_on_bad_df_rev();
return ret;
}
static u64 get_hi_addr_offset(u32 reg_dram_offset)
{
u8 shift = DF_DRAM_BASE_LIMIT_LSB;
u64 hi_addr_offset;
switch (df_cfg.rev) {
case DF2:
hi_addr_offset = FIELD_GET(DF2_HI_ADDR_OFFSET, reg_dram_offset);
break;
case DF3:
case DF3p5:
hi_addr_offset = FIELD_GET(DF3_HI_ADDR_OFFSET, reg_dram_offset);
break;
case DF4:
case DF4p5:
hi_addr_offset = FIELD_GET(DF4_HI_ADDR_OFFSET, reg_dram_offset);
break;
default:
hi_addr_offset = 0;
atl_debug_on_bad_df_rev();
}
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
shift = MI300_DRAM_LIMIT_LSB;
return hi_addr_offset << shift;
}
/*
* Returns: 0 if offset is disabled.
* 1 if offset is enabled.
* -EINVAL on error.
*/
static int get_dram_offset(struct addr_ctx *ctx, u64 *norm_offset)
{
u32 reg_dram_offset;
u8 map_num;
/* Should not be called for map 0. */
if (!ctx->map.num) {
atl_debug(ctx, "Trying to find DRAM offset for map 0");
return -EINVAL;
}
/*
* DramOffset registers don't exist for map 0, so the base register
* actually refers to map 1.
* Adjust the map_num for the register offsets.
*/
map_num = ctx->map.num - 1;
if (df_cfg.rev >= DF4) {
/* Read D18F7x140 (DramOffset) */
if (df_indirect_read_instance(ctx->node_id, 7, 0x140 + (4 * map_num),
ctx->inst_id, ®_dram_offset))
return -EINVAL;
} else {
/* Read D18F0x1B4 (DramOffset) */
if (df_indirect_read_instance(ctx->node_id, 0, 0x1B4 + (4 * map_num),
ctx->inst_id, ®_dram_offset))
return -EINVAL;
}
if (!FIELD_GET(DF_HI_ADDR_OFFSET_EN, reg_dram_offset))
return 0;
*norm_offset = get_hi_addr_offset(reg_dram_offset);
return 1;
}
static int df3_6ch_get_dram_addr_map(struct addr_ctx *ctx)
{
u16 dst_fabric_id = FIELD_GET(DF3_DST_FABRIC_ID, ctx->map.limit);
u8 i, j, shift = 4, mask = 0xF;
u32 reg, offset = 0x60;
u16 dst_node_id;
/* Get Socket 1 register. */
if (dst_fabric_id & df_cfg.socket_id_mask)
offset = 0x68;
/* Read D18F0x06{0,8} (DF::Skt0CsTargetRemap0)/(DF::Skt0CsTargetRemap1) */
if (df_indirect_read_broadcast(ctx->node_id, 0, offset, ®))
return -EINVAL;
/* Save 8 remap entries. */
for (i = 0, j = 0; i < 8; i++, j++)
ctx->map.remap_array[i] = (reg >> (j * shift)) & mask;
dst_node_id = dst_fabric_id & df_cfg.node_id_mask;
dst_node_id >>= df_cfg.node_id_shift;
/* Read D18F2x090 (DF::Np2ChannelConfig) */
if (df_indirect_read_broadcast(dst_node_id, 2, 0x90, ®))
return -EINVAL;
ctx->map.np2_bits = FIELD_GET(DF_LOG2_ADDR_64K_SPACE0, reg);
return 0;
}
static int df2_get_dram_addr_map(struct addr_ctx *ctx)
{
/* Read D18F0x110 (DramBaseAddress). */
if (df_indirect_read_instance(ctx->node_id, 0, 0x110 + (8 * ctx->map.num),
ctx->inst_id, &ctx->map.base))
return -EINVAL;
/* Read D18F0x114 (DramLimitAddress). */
if (df_indirect_read_instance(ctx->node_id, 0, 0x114 + (8 * ctx->map.num),
ctx->inst_id, &ctx->map.limit))
return -EINVAL;
return 0;
}
static int df3_get_dram_addr_map(struct addr_ctx *ctx)
{
if (df2_get_dram_addr_map(ctx))
return -EINVAL;
/* Read D18F0x3F8 (DfGlobalCtl). */
if (df_indirect_read_instance(ctx->node_id, 0, 0x3F8,
ctx->inst_id, &ctx->map.ctl))
return -EINVAL;
return 0;
}
static int df4_get_dram_addr_map(struct addr_ctx *ctx)
{
u8 remap_sel, i, j, shift = 4, mask = 0xF;
u32 remap_reg;
/* Read D18F7xE00 (DramBaseAddress). */
if (df_indirect_read_instance(ctx->node_id, 7, 0xE00 + (16 * ctx->map.num),
ctx->inst_id, &ctx->map.base))
return -EINVAL;
/* Read D18F7xE04 (DramLimitAddress). */
if (df_indirect_read_instance(ctx->node_id, 7, 0xE04 + (16 * ctx->map.num),
ctx->inst_id, &ctx->map.limit))
return -EINVAL;
/* Read D18F7xE08 (DramAddressCtl). */
if (df_indirect_read_instance(ctx->node_id, 7, 0xE08 + (16 * ctx->map.num),
ctx->inst_id, &ctx->map.ctl))
return -EINVAL;
/* Read D18F7xE0C (DramAddressIntlv). */
if (df_indirect_read_instance(ctx->node_id, 7, 0xE0C + (16 * ctx->map.num),
ctx->inst_id, &ctx->map.intlv))
return -EINVAL;
/* Check if Remap Enable bit is valid. */
if (!FIELD_GET(DF4_REMAP_EN, ctx->map.ctl))
return 0;
/* Fill with bogus values, because '0' is a valid value. */
memset(&ctx->map.remap_array, 0xFF, sizeof(ctx->map.remap_array));
/* Get Remap registers. */
remap_sel = FIELD_GET(DF4_REMAP_SEL, ctx->map.ctl);
/* Read D18F7x180 (CsTargetRemap0A). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x180 + (8 * remap_sel),
ctx->inst_id, &remap_reg))
return -EINVAL;
/* Save first 8 remap entries. */
for (i = 0, j = 0; i < 8; i++, j++)
ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask;
/* Read D18F7x184 (CsTargetRemap0B). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x184 + (8 * remap_sel),
ctx->inst_id, &remap_reg))
return -EINVAL;
/* Save next 8 remap entries. */
for (i = 8, j = 0; i < 16; i++, j++)
ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask;
return 0;
}
static int df4p5_get_dram_addr_map(struct addr_ctx *ctx)
{
u8 remap_sel, i, j, shift = 5, mask = 0x1F;
u32 remap_reg;
/* Read D18F7x200 (DramBaseAddress). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x200 + (16 * ctx->map.num),
ctx->inst_id, &ctx->map.base))
return -EINVAL;
/* Read D18F7x204 (DramLimitAddress). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x204 + (16 * ctx->map.num),
ctx->inst_id, &ctx->map.limit))
return -EINVAL;
/* Read D18F7x208 (DramAddressCtl). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x208 + (16 * ctx->map.num),
ctx->inst_id, &ctx->map.ctl))
return -EINVAL;
/* Read D18F7x20C (DramAddressIntlv). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x20C + (16 * ctx->map.num),
ctx->inst_id, &ctx->map.intlv))
return -EINVAL;
/* Check if Remap Enable bit is valid. */
if (!FIELD_GET(DF4_REMAP_EN, ctx->map.ctl))
return 0;
/* Fill with bogus values, because '0' is a valid value. */
memset(&ctx->map.remap_array, 0xFF, sizeof(ctx->map.remap_array));
/* Get Remap registers. */
remap_sel = FIELD_GET(DF4p5_REMAP_SEL, ctx->map.ctl);
/* Read D18F7x180 (CsTargetRemap0A). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x180 + (24 * remap_sel),
ctx->inst_id, &remap_reg))
return -EINVAL;
/* Save first 6 remap entries. */
for (i = 0, j = 0; i < 6; i++, j++)
ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask;
/* Read D18F7x184 (CsTargetRemap0B). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x184 + (24 * remap_sel),
ctx->inst_id, &remap_reg))
return -EINVAL;
/* Save next 6 remap entries. */
for (i = 6, j = 0; i < 12; i++, j++)
ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask;
/* Read D18F7x188 (CsTargetRemap0C). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x188 + (24 * remap_sel),
ctx->inst_id, &remap_reg))
return -EINVAL;
/* Save next 6 remap entries. */
for (i = 12, j = 0; i < 18; i++, j++)
ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask;
return 0;
}
static int get_dram_addr_map(struct addr_ctx *ctx)
{
switch (df_cfg.rev) {
case DF2: return df2_get_dram_addr_map(ctx);
case DF3:
case DF3p5: return df3_get_dram_addr_map(ctx);
case DF4: return df4_get_dram_addr_map(ctx);
case DF4p5: return df4p5_get_dram_addr_map(ctx);
default:
atl_debug_on_bad_df_rev();
return -EINVAL;
}
}
static int get_coh_st_fabric_id(struct addr_ctx *ctx)
{
u32 reg;
/*
* On MI300 systems, the Coherent Station Fabric ID is derived
* later. And it does not depend on the register value.
*/
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
return 0;
/* Read D18F0x50 (FabricBlockInstanceInformation3). */
if (df_indirect_read_instance(ctx->node_id, 0, 0x50, ctx->inst_id, ®))
return -EINVAL;
if (df_cfg.rev < DF4p5)
ctx->coh_st_fabric_id = FIELD_GET(DF2_COH_ST_FABRIC_ID, reg);
else
ctx->coh_st_fabric_id = FIELD_GET(DF4p5_COH_ST_FABRIC_ID, reg);
return 0;
}
static int find_normalized_offset(struct addr_ctx *ctx, u64 *norm_offset)
{
u64 last_offset = 0;
int ret;
for (ctx->map.num = 1; ctx->map.num < df_cfg.num_coh_st_maps; ctx->map.num++) {
ret = get_dram_offset(ctx, norm_offset);
if (ret < 0)
return ret;
/* Continue search if this map's offset is not enabled. */
if (!ret)
continue;
/* Enabled offsets should never be 0. */
if (*norm_offset == 0) {
atl_debug(ctx, "Enabled map %u offset is 0", ctx->map.num);
return -EINVAL;
}
/* Offsets should always increase from one map to the next. */
if (*norm_offset <= last_offset) {
atl_debug(ctx, "Map %u offset (0x%016llx) <= previous (0x%016llx)",
ctx->map.num, *norm_offset, last_offset);
return -EINVAL;
}
/* Match if this map's offset is less than the current calculated address. */
if (ctx->ret_addr >= *norm_offset)
break;
last_offset = *norm_offset;
}
/*
* Finished search without finding a match.
* Reset to map 0 and no offset.
*/
if (ctx->map.num >= df_cfg.num_coh_st_maps) {
ctx->map.num = 0;
*norm_offset = 0;
}
return 0;
}
static bool valid_map(struct addr_ctx *ctx)
{
if (df_cfg.rev >= DF4)
return FIELD_GET(DF_ADDR_RANGE_VAL, ctx->map.ctl);
else
return FIELD_GET(DF_ADDR_RANGE_VAL, ctx->map.base);
}
static int get_address_map_common(struct addr_ctx *ctx)
{
u64 norm_offset = 0;
if (get_coh_st_fabric_id(ctx))
return -EINVAL;
if (find_normalized_offset(ctx, &norm_offset))
return -EINVAL;
if (get_dram_addr_map(ctx))
return -EINVAL;
if (!valid_map(ctx))
return -EINVAL;
ctx->ret_addr -= norm_offset;
return 0;
}
static u8 get_num_intlv_chan(struct addr_ctx *ctx)
{
switch (ctx->map.intlv_mode) {
case NONE:
return 1;
case NOHASH_2CHAN:
case DF2_2CHAN_HASH:
case DF3_COD4_2CHAN_HASH:
case DF4_NPS4_2CHAN_HASH:
case DF4p5_NPS4_2CHAN_1K_HASH:
case DF4p5_NPS4_2CHAN_2K_HASH:
return 2;
case DF4_NPS4_3CHAN_HASH:
case DF4p5_NPS4_3CHAN_1K_HASH:
case DF4p5_NPS4_3CHAN_2K_HASH:
return 3;
case NOHASH_4CHAN:
case DF3_COD2_4CHAN_HASH:
case DF4_NPS2_4CHAN_HASH:
case DF4p5_NPS2_4CHAN_1K_HASH:
case DF4p5_NPS2_4CHAN_2K_HASH:
return 4;
case DF4_NPS2_5CHAN_HASH:
case DF4p5_NPS2_5CHAN_1K_HASH:
case DF4p5_NPS2_5CHAN_2K_HASH:
return 5;
case DF3_6CHAN:
case DF4_NPS2_6CHAN_HASH:
case DF4p5_NPS2_6CHAN_1K_HASH:
case DF4p5_NPS2_6CHAN_2K_HASH:
return 6;
case NOHASH_8CHAN:
case DF3_COD1_8CHAN_HASH:
case DF4_NPS1_8CHAN_HASH:
case MI3_HASH_8CHAN:
case DF4p5_NPS1_8CHAN_1K_HASH:
case DF4p5_NPS1_8CHAN_2K_HASH:
return 8;
case DF4_NPS1_10CHAN_HASH:
case DF4p5_NPS1_10CHAN_1K_HASH:
case DF4p5_NPS1_10CHAN_2K_HASH:
return 10;
case DF4_NPS1_12CHAN_HASH:
case DF4p5_NPS1_12CHAN_1K_HASH:
case DF4p5_NPS1_12CHAN_2K_HASH:
return 12;
case NOHASH_16CHAN:
case MI3_HASH_16CHAN:
case DF4p5_NPS1_16CHAN_1K_HASH:
case DF4p5_NPS1_16CHAN_2K_HASH:
return 16;
case DF4p5_NPS0_24CHAN_1K_HASH:
case DF4p5_NPS0_24CHAN_2K_HASH:
return 24;
case NOHASH_32CHAN:
case MI3_HASH_32CHAN:
return 32;
default:
atl_debug_on_bad_intlv_mode(ctx);
return 0;
}
}
static void calculate_intlv_bits(struct addr_ctx *ctx)
{
ctx->map.num_intlv_chan = get_num_intlv_chan(ctx);
ctx->map.total_intlv_chan = ctx->map.num_intlv_chan;
ctx->map.total_intlv_chan *= ctx->map.num_intlv_dies;
ctx->map.total_intlv_chan *= ctx->map.num_intlv_sockets;
/*
* Get the number of bits needed to cover this many channels.
* order_base_2() rounds up automatically.
*/
ctx->map.total_intlv_bits = order_base_2(ctx->map.total_intlv_chan);
}
static u8 get_intlv_bit_pos(struct addr_ctx *ctx)
{
u8 addr_sel = 0;
switch (df_cfg.rev) {
case DF2:
addr_sel = FIELD_GET(DF2_INTLV_ADDR_SEL, ctx->map.base);
break;
case DF3:
case DF3p5:
addr_sel = FIELD_GET(DF3_INTLV_ADDR_SEL, ctx->map.base);
break;
case DF4:
case DF4p5:
addr_sel = FIELD_GET(DF4_INTLV_ADDR_SEL, ctx->map.intlv);
break;
default:
atl_debug_on_bad_df_rev();
break;
}
/* Add '8' to get the 'interleave bit position'. */
return addr_sel + 8;
}
static u8 get_num_intlv_dies(struct addr_ctx *ctx)
{
u8 dies = 0;
switch (df_cfg.rev) {
case DF2:
dies = FIELD_GET(DF2_INTLV_NUM_DIES, ctx->map.limit);
break;
case DF3:
dies = FIELD_GET(DF3_INTLV_NUM_DIES, ctx->map.base);
break;
case DF3p5:
dies = FIELD_GET(DF3p5_INTLV_NUM_DIES, ctx->map.base);
break;
case DF4:
case DF4p5:
dies = FIELD_GET(DF4_INTLV_NUM_DIES, ctx->map.intlv);
break;
default:
atl_debug_on_bad_df_rev();
break;
}
/* Register value is log2, e.g. 0 -> 1 die, 1 -> 2 dies, etc. */
return 1 << dies;
}
static u8 get_num_intlv_sockets(struct addr_ctx *ctx)
{
u8 sockets = 0;
switch (df_cfg.rev) {
case DF2:
sockets = FIELD_GET(DF2_INTLV_NUM_SOCKETS, ctx->map.limit);
break;
case DF3:
case DF3p5:
sockets = FIELD_GET(DF2_INTLV_NUM_SOCKETS, ctx->map.base);
break;
case DF4:
case DF4p5:
sockets = FIELD_GET(DF4_INTLV_NUM_SOCKETS, ctx->map.intlv);
break;
default:
atl_debug_on_bad_df_rev();
break;
}
/* Register value is log2, e.g. 0 -> 1 sockets, 1 -> 2 sockets, etc. */
return 1 << sockets;
}
static int get_global_map_data(struct addr_ctx *ctx)
{
if (get_intlv_mode(ctx))
return -EINVAL;
if (ctx->map.intlv_mode == DF3_6CHAN &&
df3_6ch_get_dram_addr_map(ctx))
return -EINVAL;
ctx->map.intlv_bit_pos = get_intlv_bit_pos(ctx);
ctx->map.num_intlv_dies = get_num_intlv_dies(ctx);
ctx->map.num_intlv_sockets = get_num_intlv_sockets(ctx);
calculate_intlv_bits(ctx);
return 0;
}
/*
* Verify the interleave bits are correct in the different interleaving
* settings.
*
* If @num_intlv_dies and/or @num_intlv_sockets are 1, it means the
* respective interleaving is disabled.
*/
static inline bool map_bits_valid(struct addr_ctx *ctx, u8 bit1, u8 bit2,
u8 num_intlv_dies, u8 num_intlv_sockets)
{
if (!(ctx->map.intlv_bit_pos == bit1 || ctx->map.intlv_bit_pos == bit2)) {
pr_debug("Invalid interleave bit: %u", ctx->map.intlv_bit_pos);
return false;
}
if (ctx->map.num_intlv_dies > num_intlv_dies) {
pr_debug("Invalid number of interleave dies: %u", ctx->map.num_intlv_dies);
return false;
}
if (ctx->map.num_intlv_sockets > num_intlv_sockets) {
pr_debug("Invalid number of interleave sockets: %u", ctx->map.num_intlv_sockets);
return false;
}
return true;
}
static int validate_address_map(struct addr_ctx *ctx)
{
switch (ctx->map.intlv_mode) {
case DF2_2CHAN_HASH:
case DF3_COD4_2CHAN_HASH:
case DF3_COD2_4CHAN_HASH:
case DF3_COD1_8CHAN_HASH:
if (!map_bits_valid(ctx, 8, 9, 1, 1))
goto err;
break;
case DF4_NPS4_2CHAN_HASH:
case DF4_NPS2_4CHAN_HASH:
case DF4_NPS1_8CHAN_HASH:
case DF4p5_NPS4_2CHAN_1K_HASH:
case DF4p5_NPS4_2CHAN_2K_HASH:
case DF4p5_NPS2_4CHAN_1K_HASH:
case DF4p5_NPS2_4CHAN_2K_HASH:
case DF4p5_NPS1_8CHAN_1K_HASH:
case DF4p5_NPS1_8CHAN_2K_HASH:
case DF4p5_NPS1_16CHAN_1K_HASH:
case DF4p5_NPS1_16CHAN_2K_HASH:
if (!map_bits_valid(ctx, 8, 8, 1, 2))
goto err;
break;
case DF4p5_NPS4_3CHAN_1K_HASH:
case DF4p5_NPS4_3CHAN_2K_HASH:
case DF4p5_NPS2_5CHAN_1K_HASH:
case DF4p5_NPS2_5CHAN_2K_HASH:
case DF4p5_NPS2_6CHAN_1K_HASH:
case DF4p5_NPS2_6CHAN_2K_HASH:
case DF4p5_NPS1_10CHAN_1K_HASH:
case DF4p5_NPS1_10CHAN_2K_HASH:
case DF4p5_NPS1_12CHAN_1K_HASH:
case DF4p5_NPS1_12CHAN_2K_HASH:
if (ctx->map.num_intlv_sockets != 1 || !map_bits_valid(ctx, 8, 0, 1, 1))
goto err;
break;
case DF4p5_NPS0_24CHAN_1K_HASH:
case DF4p5_NPS0_24CHAN_2K_HASH:
if (ctx->map.num_intlv_sockets < 2 || !map_bits_valid(ctx, 8, 0, 1, 2))
goto err;
break;
case MI3_HASH_8CHAN:
case MI3_HASH_16CHAN:
case MI3_HASH_32CHAN:
if (!map_bits_valid(ctx, 8, 8, 4, 1))
goto err;
break;
/* Nothing to do for modes that don't need special validation checks. */
default:
break;
}
return 0;
err:
atl_debug(ctx, "Inconsistent address map");
return -EINVAL;
}
static void dump_address_map(struct dram_addr_map *map)
{
u8 i;
pr_debug("intlv_mode=0x%x", map->intlv_mode);
pr_debug("num=0x%x", map->num);
pr_debug("base=0x%x", map->base);
pr_debug("limit=0x%x", map->limit);
pr_debug("ctl=0x%x", map->ctl);
pr_debug("intlv=0x%x", map->intlv);
for (i = 0; i < MAX_COH_ST_CHANNELS; i++)
pr_debug("remap_array[%u]=0x%x", i, map->remap_array[i]);
pr_debug("intlv_bit_pos=%u", map->intlv_bit_pos);
pr_debug("num_intlv_chan=%u", map->num_intlv_chan);
pr_debug("num_intlv_dies=%u", map->num_intlv_dies);
pr_debug("num_intlv_sockets=%u", map->num_intlv_sockets);
pr_debug("total_intlv_chan=%u", map->total_intlv_chan);
pr_debug("total_intlv_bits=%u", map->total_intlv_bits);
}
int get_address_map(struct addr_ctx *ctx)
{
int ret;
ret = get_address_map_common(ctx);
if (ret)
return ret;
ret = get_global_map_data(ctx);
if (ret)
return ret;
dump_address_map(&ctx->map);
ret = validate_address_map(ctx);
if (ret)
return ret;
return ret;
}
|