summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/cavium/liquidio/cn66xx_device.c
blob: bdec051107a6bff92d3c4b1a0b708cb8f7c44116 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
/**********************************************************************
 * Author: Cavium, Inc.
 *
 * Contact: support@cavium.com
 *          Please include "LiquidIO" in the subject.
 *
 * Copyright (c) 2003-2016 Cavium, Inc.
 *
 * This file is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, Version 2, as
 * published by the Free Software Foundation.
 *
 * This file is distributed in the hope that it will be useful, but
 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
 * NONINFRINGEMENT.  See the GNU General Public License for more details.
 ***********************************************************************/
#include <linux/pci.h>
#include <linux/netdevice.h>
#include "liquidio_common.h"
#include "octeon_droq.h"
#include "octeon_iq.h"
#include "response_manager.h"
#include "octeon_device.h"
#include "octeon_main.h"
#include "cn66xx_regs.h"
#include "cn66xx_device.h"

int lio_cn6xxx_soft_reset(struct octeon_device *oct)
{
	octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);

	dev_dbg(&oct->pci_dev->dev, "BIST enabled for soft reset\n");

	lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_BIST);
	octeon_write_csr64(oct, CN6XXX_SLI_SCRATCH1, 0x1234ULL);

	lio_pci_readq(oct, CN6XXX_CIU_SOFT_RST);
	lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_RST);

	/* make sure that the reset is written before starting timer */
	mmiowb();

	/* Wait for 10ms as Octeon resets. */
	mdelay(100);

	if (octeon_read_csr64(oct, CN6XXX_SLI_SCRATCH1) == 0x1234ULL) {
		dev_err(&oct->pci_dev->dev, "Soft reset failed\n");
		return 1;
	}

	dev_dbg(&oct->pci_dev->dev, "Reset completed\n");
	octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);

	return 0;
}

void lio_cn6xxx_enable_error_reporting(struct octeon_device *oct)
{
	u32 val;

	pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
	if (val & 0x000c0000) {
		dev_err(&oct->pci_dev->dev, "PCI-E Link error detected: 0x%08x\n",
			val & 0x000c0000);
	}

	val |= 0xf;          /* Enable Link error reporting */

	dev_dbg(&oct->pci_dev->dev, "Enabling PCI-E error reporting..\n");
	pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
}

void lio_cn6xxx_setup_pcie_mps(struct octeon_device *oct,
			       enum octeon_pcie_mps mps)
{
	u32 val;
	u64 r64;

	/* Read config register for MPS */
	pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);

	if (mps == PCIE_MPS_DEFAULT) {
		mps = ((val & (0x7 << 5)) >> 5);
	} else {
		val &= ~(0x7 << 5);  /* Turn off any MPS bits */
		val |= (mps << 5);   /* Set MPS */
		pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
	}

	/* Set MPS in DPI_SLI_PRT0_CFG to the same value. */
	r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
	r64 |= (mps << 4);
	lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
}

void lio_cn6xxx_setup_pcie_mrrs(struct octeon_device *oct,
				enum octeon_pcie_mrrs mrrs)
{
	u32 val;
	u64 r64;

	/* Read config register for MRRS */
	pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);

	if (mrrs == PCIE_MRRS_DEFAULT) {
		mrrs = ((val & (0x7 << 12)) >> 12);
	} else {
		val &= ~(0x7 << 12); /* Turn off any MRRS bits */
		val |= (mrrs << 12); /* Set MRRS */
		pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
	}

	/* Set MRRS in SLI_S2M_PORT0_CTL to the same value. */
	r64 = octeon_read_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port));
	r64 |= mrrs;
	octeon_write_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port), r64);

	/* Set MRRS in DPI_SLI_PRT0_CFG to the same value. */
	r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
	r64 |= mrrs;
	lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
}

u32 lio_cn6xxx_coprocessor_clock(struct octeon_device *oct)
{
	/* Bits 29:24 of MIO_RST_BOOT holds the ref. clock multiplier
	 * for SLI.
	 */
	return ((lio_pci_readq(oct, CN6XXX_MIO_RST_BOOT) >> 24) & 0x3f) * 50;
}

u32 lio_cn6xxx_get_oq_ticks(struct octeon_device *oct,
			    u32 time_intr_in_us)
{
	/* This gives the SLI clock per microsec */
	u32 oqticks_per_us = lio_cn6xxx_coprocessor_clock(oct);

	/* core clock per us / oq ticks will be fractional. TO avoid that
	 * we use the method below.
	 */

	/* This gives the clock cycles per millisecond */
	oqticks_per_us *= 1000;

	/* This gives the oq ticks (1024 core clock cycles) per millisecond */
	oqticks_per_us /= 1024;

	/* time_intr is in microseconds. The next 2 steps gives the oq ticks
	 * corressponding to time_intr.
	 */
	oqticks_per_us *= time_intr_in_us;
	oqticks_per_us /= 1000;

	return oqticks_per_us;
}

void lio_cn6xxx_setup_global_input_regs(struct octeon_device *oct)
{
	/* Select Round-Robin Arb, ES, RO, NS for Input Queues */
	octeon_write_csr(oct, CN6XXX_SLI_PKT_INPUT_CONTROL,
			 CN6XXX_INPUT_CTL_MASK);

	/* Instruction Read Size - Max 4 instructions per PCIE Read */
	octeon_write_csr64(oct, CN6XXX_SLI_PKT_INSTR_RD_SIZE,
			   0xFFFFFFFFFFFFFFFFULL);

	/* Select PCIE Port for all Input rings. */
	octeon_write_csr64(oct, CN6XXX_SLI_IN_PCIE_PORT,
			   (oct->pcie_port * 0x5555555555555555ULL));
}

static void lio_cn66xx_setup_pkt_ctl_regs(struct octeon_device *oct)
{
	u64 pktctl;

	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;

	pktctl = octeon_read_csr64(oct, CN6XXX_SLI_PKT_CTL);

	/* 66XX SPECIFIC */
	if (CFG_GET_OQ_MAX_Q(cn6xxx->conf) <= 4)
		/* Disable RING_EN if only upto 4 rings are used. */
		pktctl &= ~(1 << 4);
	else
		pktctl |= (1 << 4);

	if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf))
		pktctl |= 0xF;
	else
		/* Disable per-port backpressure. */
		pktctl &= ~0xF;
	octeon_write_csr64(oct, CN6XXX_SLI_PKT_CTL, pktctl);
}

void lio_cn6xxx_setup_global_output_regs(struct octeon_device *oct)
{
	u32 time_threshold;
	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;

	/* / Select PCI-E Port for all Output queues */
	octeon_write_csr64(oct, CN6XXX_SLI_PKT_PCIE_PORT64,
			   (oct->pcie_port * 0x5555555555555555ULL));

	if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf)) {
		octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 32);
	} else {
		/* / Set Output queue watermark to 0 to disable backpressure */
		octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 0);
	}

	/* / Select Info Ptr for length & data */
	octeon_write_csr(oct, CN6XXX_SLI_PKT_IPTR, 0xFFFFFFFF);

	/* / Select Packet count instead of bytes for SLI_PKTi_CNTS[CNT] */
	octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_BMODE, 0);

	/* Select ES, RO, NS setting from register for Output Queue Packet
	 * Address
	 */
	octeon_write_csr(oct, CN6XXX_SLI_PKT_DPADDR, 0xFFFFFFFF);

	/* No Relaxed Ordering, No Snoop, 64-bit swap for Output
	 * Queue ScatterList
	 */
	octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_ROR, 0);
	octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_NS, 0);

	/* / ENDIAN_SPECIFIC CHANGES - 0 works for LE. */
#ifdef __BIG_ENDIAN_BITFIELD
	octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64,
			   0x5555555555555555ULL);
#else
	octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64, 0ULL);
#endif

	/* / No Relaxed Ordering, No Snoop, 64-bit swap for Output Queue Data */
	octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_ROR, 0);
	octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_NS, 0);
	octeon_write_csr64(oct, CN6XXX_SLI_PKT_DATA_OUT_ES64,
			   0x5555555555555555ULL);

	/* / Set up interrupt packet and time threshold */
	octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_PKTS,
			 (u32)CFG_GET_OQ_INTR_PKT(cn6xxx->conf));
	time_threshold =
		lio_cn6xxx_get_oq_ticks(oct, (u32)
					CFG_GET_OQ_INTR_TIME(cn6xxx->conf));

	octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_TIME, time_threshold);
}

static int lio_cn6xxx_setup_device_regs(struct octeon_device *oct)
{
	lio_cn6xxx_setup_pcie_mps(oct, PCIE_MPS_DEFAULT);
	lio_cn6xxx_setup_pcie_mrrs(oct, PCIE_MRRS_512B);
	lio_cn6xxx_enable_error_reporting(oct);

	lio_cn6xxx_setup_global_input_regs(oct);
	lio_cn66xx_setup_pkt_ctl_regs(oct);
	lio_cn6xxx_setup_global_output_regs(oct);

	/* Default error timeout value should be 0x200000 to avoid host hang
	 * when reads invalid register
	 */
	octeon_write_csr64(oct, CN6XXX_SLI_WINDOW_CTL, 0x200000ULL);
	return 0;
}

void lio_cn6xxx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
{
	struct octeon_instr_queue *iq = oct->instr_queue[iq_no];

	octeon_write_csr64(oct, CN6XXX_SLI_IQ_PKT_INSTR_HDR64(iq_no), 0);

	/* Write the start of the input queue's ring and its size  */
	octeon_write_csr64(oct, CN6XXX_SLI_IQ_BASE_ADDR64(iq_no),
			   iq->base_addr_dma);
	octeon_write_csr(oct, CN6XXX_SLI_IQ_SIZE(iq_no), iq->max_count);

	/* Remember the doorbell & instruction count register addr for this
	 * queue
	 */
	iq->doorbell_reg = oct->mmio[0].hw_addr + CN6XXX_SLI_IQ_DOORBELL(iq_no);
	iq->inst_cnt_reg = oct->mmio[0].hw_addr
			   + CN6XXX_SLI_IQ_INSTR_COUNT(iq_no);
	dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n",
		iq_no, iq->doorbell_reg, iq->inst_cnt_reg);

	/* Store the current instruction counter
	 * (used in flush_iq calculation)
	 */
	iq->reset_instr_cnt = readl(iq->inst_cnt_reg);
}

static void lio_cn66xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
{
	lio_cn6xxx_setup_iq_regs(oct, iq_no);

	/* Backpressure for this queue - WMARK set to all F's. This effectively
	 * disables the backpressure mechanism.
	 */
	octeon_write_csr64(oct, CN66XX_SLI_IQ_BP64(iq_no),
			   (0xFFFFFFFFULL << 32));
}

void lio_cn6xxx_setup_oq_regs(struct octeon_device *oct, u32 oq_no)
{
	u32 intr;
	struct octeon_droq *droq = oct->droq[oq_no];

	octeon_write_csr64(oct, CN6XXX_SLI_OQ_BASE_ADDR64(oq_no),
			   droq->desc_ring_dma);
	octeon_write_csr(oct, CN6XXX_SLI_OQ_SIZE(oq_no), droq->max_count);

	octeon_write_csr(oct, CN6XXX_SLI_OQ_BUFF_INFO_SIZE(oq_no),
			 (droq->buffer_size | (OCT_RH_SIZE << 16)));

	/* Get the mapped address of the pkt_sent and pkts_credit regs */
	droq->pkts_sent_reg =
		oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_SENT(oq_no);
	droq->pkts_credit_reg =
		oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_CREDIT(oq_no);

	/* Enable this output queue to generate Packet Timer Interrupt */
	intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
	intr |= (1 << oq_no);
	octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB, intr);

	/* Enable this output queue to generate Packet Timer Interrupt */
	intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
	intr |= (1 << oq_no);
	octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB, intr);
}

int lio_cn6xxx_enable_io_queues(struct octeon_device *oct)
{
	u32 mask;

	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE);
	mask |= oct->io_qmask.iq64B;
	octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE, mask);

	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
	mask |= oct->io_qmask.iq;
	octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);

	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
	mask |= oct->io_qmask.oq;
	octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);

	return 0;
}

void lio_cn6xxx_disable_io_queues(struct octeon_device *oct)
{
	int i;
	u32 mask, loop = HZ;
	u32 d32;

	/* Reset the Enable bits for Input Queues. */
	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
	mask ^= oct->io_qmask.iq;
	octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);

	/* Wait until hardware indicates that the queues are out of reset. */
	mask = (u32)oct->io_qmask.iq;
	d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
	while (((d32 & mask) != mask) && loop--) {
		d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
		schedule_timeout_uninterruptible(1);
	}

	/* Reset the doorbell register for each Input queue. */
	for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
		if (!(oct->io_qmask.iq & BIT_ULL(i)))
			continue;
		octeon_write_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i), 0xFFFFFFFF);
		d32 = octeon_read_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i));
	}

	/* Reset the Enable bits for Output Queues. */
	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
	mask ^= oct->io_qmask.oq;
	octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);

	/* Wait until hardware indicates that the queues are out of reset. */
	loop = HZ;
	mask = (u32)oct->io_qmask.oq;
	d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
	while (((d32 & mask) != mask) && loop--) {
		d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
		schedule_timeout_uninterruptible(1);
	}
	;

	/* Reset the doorbell register for each Output queue. */
	for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
		if (!(oct->io_qmask.oq & BIT_ULL(i)))
			continue;
		octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i), 0xFFFFFFFF);
		d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i));

		d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i));
		octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i), d32);
	}

	d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
	if (d32)
		octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, d32);

	d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
	if (d32)
		octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, d32);
}

void
lio_cn6xxx_bar1_idx_setup(struct octeon_device *oct,
			  u64 core_addr,
			  u32 idx,
			  int valid)
{
	u64 bar1;

	if (valid == 0) {
		bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
		lio_pci_writeq(oct, (bar1 & 0xFFFFFFFEULL),
			       CN6XXX_BAR1_REG(idx, oct->pcie_port));
		bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
		return;
	}

	/* Bits 17:4 of the PCI_BAR1_INDEXx stores bits 35:22 of
	 * the Core Addr
	 */
	lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK),
		       CN6XXX_BAR1_REG(idx, oct->pcie_port));

	bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
}

void lio_cn6xxx_bar1_idx_write(struct octeon_device *oct,
			       u32 idx,
			       u32 mask)
{
	lio_pci_writeq(oct, mask, CN6XXX_BAR1_REG(idx, oct->pcie_port));
}

u32 lio_cn6xxx_bar1_idx_read(struct octeon_device *oct, u32 idx)
{
	return (u32)lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
}

u32
lio_cn6xxx_update_read_index(struct octeon_instr_queue *iq)
{
	u32 new_idx = readl(iq->inst_cnt_reg);

	/* The new instr cnt reg is a 32-bit counter that can roll over. We have
	 * noted the counter's initial value at init time into
	 * reset_instr_cnt
	 */
	if (iq->reset_instr_cnt < new_idx)
		new_idx -= iq->reset_instr_cnt;
	else
		new_idx += (0xffffffff - iq->reset_instr_cnt) + 1;

	/* Modulo of the new index with the IQ size will give us
	 * the new index.
	 */
	new_idx %= iq->max_count;

	return new_idx;
}

void lio_cn6xxx_enable_interrupt(struct octeon_device *oct,
				 u8 unused __attribute__((unused)))
{
	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
	u64 mask = cn6xxx->intr_mask64 | CN6XXX_INTR_DMA0_FORCE;

	/* Enable Interrupt */
	writeq(mask, cn6xxx->intr_enb_reg64);
}

void lio_cn6xxx_disable_interrupt(struct octeon_device *oct,
				  u8 unused __attribute__((unused)))
{
	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;

	/* Disable Interrupts */
	writeq(0, cn6xxx->intr_enb_reg64);

	/* make sure interrupts are really disabled */
	mmiowb();
}

static void lio_cn6xxx_get_pcie_qlmport(struct octeon_device *oct)
{
	/* CN63xx Pass2 and newer parts implements the SLI_MAC_NUMBER register
	 * to determine the PCIE port #
	 */
	oct->pcie_port = octeon_read_csr(oct, CN6XXX_SLI_MAC_NUMBER) & 0xff;

	dev_dbg(&oct->pci_dev->dev, "Using PCIE Port %d\n", oct->pcie_port);
}

static void
lio_cn6xxx_process_pcie_error_intr(struct octeon_device *oct, u64 intr64)
{
	dev_err(&oct->pci_dev->dev, "Error Intr: 0x%016llx\n",
		CVM_CAST64(intr64));
}

static int lio_cn6xxx_process_droq_intr_regs(struct octeon_device *oct)
{
	struct octeon_droq *droq;
	int oq_no;
	u32 pkt_count, droq_time_mask, droq_mask, droq_int_enb;
	u32 droq_cnt_enb, droq_cnt_mask;

	droq_cnt_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
	droq_cnt_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
	droq_mask = droq_cnt_mask & droq_cnt_enb;

	droq_time_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
	droq_int_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
	droq_mask |= (droq_time_mask & droq_int_enb);

	droq_mask &= oct->io_qmask.oq;

	oct->droq_intr = 0;

	for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct); oq_no++) {
		if (!(droq_mask & BIT_ULL(oq_no)))
			continue;

		droq = oct->droq[oq_no];
		pkt_count = octeon_droq_check_hw_for_pkts(droq);
		if (pkt_count) {
			oct->droq_intr |= BIT_ULL(oq_no);
			if (droq->ops.poll_mode) {
				u32 value;
				u32 reg;

				struct octeon_cn6xxx *cn6xxx =
					(struct octeon_cn6xxx *)oct->chip;

				/* disable interrupts for this droq */
				spin_lock
					(&cn6xxx->lock_for_droq_int_enb_reg);
				reg = CN6XXX_SLI_PKT_TIME_INT_ENB;
				value = octeon_read_csr(oct, reg);
				value &= ~(1 << oq_no);
				octeon_write_csr(oct, reg, value);
				reg = CN6XXX_SLI_PKT_CNT_INT_ENB;
				value = octeon_read_csr(oct, reg);
				value &= ~(1 << oq_no);
				octeon_write_csr(oct, reg, value);

				/* Ensure that the enable register is written.
				 */
				mmiowb();

				spin_unlock(&cn6xxx->lock_for_droq_int_enb_reg);
			}
		}
	}

	droq_time_mask &= oct->io_qmask.oq;
	droq_cnt_mask &= oct->io_qmask.oq;

	/* Reset the PKT_CNT/TIME_INT registers. */
	if (droq_time_mask)
		octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, droq_time_mask);

	if (droq_cnt_mask)      /* reset PKT_CNT register:66xx */
		octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, droq_cnt_mask);

	return 0;
}

irqreturn_t lio_cn6xxx_process_interrupt_regs(void *dev)
{
	struct octeon_device *oct = (struct octeon_device *)dev;
	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
	u64 intr64;

	intr64 = readq(cn6xxx->intr_sum_reg64);

	/* If our device has interrupted, then proceed.
	 * Also check for all f's if interrupt was triggered on an error
	 * and the PCI read fails.
	 */
	if (!intr64 || (intr64 == 0xFFFFFFFFFFFFFFFFULL))
		return IRQ_NONE;

	oct->int_status = 0;

	if (intr64 & CN6XXX_INTR_ERR)
		lio_cn6xxx_process_pcie_error_intr(oct, intr64);

	if (intr64 & CN6XXX_INTR_PKT_DATA) {
		lio_cn6xxx_process_droq_intr_regs(oct);
		oct->int_status |= OCT_DEV_INTR_PKT_DATA;
	}

	if (intr64 & CN6XXX_INTR_DMA0_FORCE)
		oct->int_status |= OCT_DEV_INTR_DMA0_FORCE;

	if (intr64 & CN6XXX_INTR_DMA1_FORCE)
		oct->int_status |= OCT_DEV_INTR_DMA1_FORCE;

	/* Clear the current interrupts */
	writeq(intr64, cn6xxx->intr_sum_reg64);

	return IRQ_HANDLED;
}

void lio_cn6xxx_setup_reg_address(struct octeon_device *oct,
				  void *chip,
				  struct octeon_reg_list *reg_list)
{
	u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr;
	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip;

	reg_list->pci_win_wr_addr_hi =
		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_HI);
	reg_list->pci_win_wr_addr_lo =
		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_LO);
	reg_list->pci_win_wr_addr =
		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR64);

	reg_list->pci_win_rd_addr_hi =
		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_HI);
	reg_list->pci_win_rd_addr_lo =
		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_LO);
	reg_list->pci_win_rd_addr =
		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR64);

	reg_list->pci_win_wr_data_hi =
		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_HI);
	reg_list->pci_win_wr_data_lo =
		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_LO);
	reg_list->pci_win_wr_data =
		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA64);

	reg_list->pci_win_rd_data_hi =
		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_HI);
	reg_list->pci_win_rd_data_lo =
		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_LO);
	reg_list->pci_win_rd_data =
		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA64);

	lio_cn6xxx_get_pcie_qlmport(oct);

	cn6xxx->intr_sum_reg64 = bar0_pciaddr + CN6XXX_SLI_INT_SUM64;
	cn6xxx->intr_mask64 = CN6XXX_INTR_MASK;
	cn6xxx->intr_enb_reg64 =
		bar0_pciaddr + CN6XXX_SLI_INT_ENB64(oct->pcie_port);
}

int lio_setup_cn66xx_octeon_device(struct octeon_device *oct)
{
	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;

	if (octeon_map_pci_barx(oct, 0, 0))
		return 1;

	if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) {
		dev_err(&oct->pci_dev->dev, "%s CN66XX BAR1 map failed\n",
			__func__);
		octeon_unmap_pci_barx(oct, 0);
		return 1;
	}

	spin_lock_init(&cn6xxx->lock_for_droq_int_enb_reg);

	oct->fn_list.setup_iq_regs = lio_cn66xx_setup_iq_regs;
	oct->fn_list.setup_oq_regs = lio_cn6xxx_setup_oq_regs;

	oct->fn_list.soft_reset = lio_cn6xxx_soft_reset;
	oct->fn_list.setup_device_regs = lio_cn6xxx_setup_device_regs;
	oct->fn_list.update_iq_read_idx = lio_cn6xxx_update_read_index;

	oct->fn_list.bar1_idx_setup = lio_cn6xxx_bar1_idx_setup;
	oct->fn_list.bar1_idx_write = lio_cn6xxx_bar1_idx_write;
	oct->fn_list.bar1_idx_read = lio_cn6xxx_bar1_idx_read;

	oct->fn_list.process_interrupt_regs = lio_cn6xxx_process_interrupt_regs;
	oct->fn_list.enable_interrupt = lio_cn6xxx_enable_interrupt;
	oct->fn_list.disable_interrupt = lio_cn6xxx_disable_interrupt;

	oct->fn_list.enable_io_queues = lio_cn6xxx_enable_io_queues;
	oct->fn_list.disable_io_queues = lio_cn6xxx_disable_io_queues;

	lio_cn6xxx_setup_reg_address(oct, oct->chip, &oct->reg_list);

	cn6xxx->conf = (struct octeon_config *)
		       oct_get_config_info(oct, LIO_210SV);
	if (!cn6xxx->conf) {
		dev_err(&oct->pci_dev->dev, "%s No Config found for CN66XX\n",
			__func__);
		octeon_unmap_pci_barx(oct, 0);
		octeon_unmap_pci_barx(oct, 1);
		return 1;
	}

	oct->coproc_clock_rate = 1000000ULL * lio_cn6xxx_coprocessor_clock(oct);

	return 0;
}

int lio_validate_cn6xxx_config_info(struct octeon_device *oct,
				    struct octeon_config *conf6xxx)
{
	if (CFG_GET_IQ_MAX_Q(conf6xxx) > CN6XXX_MAX_INPUT_QUEUES) {
		dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n",
			__func__, CFG_GET_IQ_MAX_Q(conf6xxx),
			CN6XXX_MAX_INPUT_QUEUES);
		return 1;
	}

	if (CFG_GET_OQ_MAX_Q(conf6xxx) > CN6XXX_MAX_OUTPUT_QUEUES) {
		dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n",
			__func__, CFG_GET_OQ_MAX_Q(conf6xxx),
			CN6XXX_MAX_OUTPUT_QUEUES);
		return 1;
	}

	if (CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_32BYTE_INSTR &&
	    CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_64BYTE_INSTR) {
		dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n",
			__func__);
		return 1;
	}
	if (!(CFG_GET_OQ_INFO_PTR(conf6xxx)) ||
	    !(CFG_GET_OQ_REFILL_THRESHOLD(conf6xxx))) {
		dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
			__func__);
		return 1;
	}

	if (!(CFG_GET_OQ_INTR_TIME(conf6xxx))) {
		dev_err(&oct->pci_dev->dev, "%s: No Time Interrupt for OQ\n",
			__func__);
		return 1;
	}

	return 0;
}