1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
|
// SPDX-License-Identifier: GPL-2.0 or Linux-OpenIB
/* Copyright (c) 2015 - 2021 Intel Corporation */
#include "osdep.h"
#include "status.h"
#include "hmc.h"
#include "defs.h"
#include "type.h"
#include "protos.h"
/**
* irdma_find_sd_index_limit - finds segment descriptor index limit
* @hmc_info: pointer to the HMC configuration information structure
* @type: type of HMC resources we're searching
* @idx: starting index for the object
* @cnt: number of objects we're trying to create
* @sd_idx: pointer to return index of the segment descriptor in question
* @sd_limit: pointer to return the maximum number of segment descriptors
*
* This function calculates the segment descriptor index and index limit
* for the resource defined by irdma_hmc_rsrc_type.
*/
static void irdma_find_sd_index_limit(struct irdma_hmc_info *hmc_info, u32 type,
u32 idx, u32 cnt, u32 *sd_idx,
u32 *sd_limit)
{
u64 fpm_addr, fpm_limit;
fpm_addr = hmc_info->hmc_obj[(type)].base +
hmc_info->hmc_obj[type].size * idx;
fpm_limit = fpm_addr + hmc_info->hmc_obj[type].size * cnt;
*sd_idx = (u32)(fpm_addr / IRDMA_HMC_DIRECT_BP_SIZE);
*sd_limit = (u32)((fpm_limit - 1) / IRDMA_HMC_DIRECT_BP_SIZE);
*sd_limit += 1;
}
/**
* irdma_find_pd_index_limit - finds page descriptor index limit
* @hmc_info: pointer to the HMC configuration information struct
* @type: HMC resource type we're examining
* @idx: starting index for the object
* @cnt: number of objects we're trying to create
* @pd_idx: pointer to return page descriptor index
* @pd_limit: pointer to return page descriptor index limit
*
* Calculates the page descriptor index and index limit for the resource
* defined by irdma_hmc_rsrc_type.
*/
static void irdma_find_pd_index_limit(struct irdma_hmc_info *hmc_info, u32 type,
u32 idx, u32 cnt, u32 *pd_idx,
u32 *pd_limit)
{
u64 fpm_adr, fpm_limit;
fpm_adr = hmc_info->hmc_obj[type].base +
hmc_info->hmc_obj[type].size * idx;
fpm_limit = fpm_adr + (hmc_info)->hmc_obj[(type)].size * (cnt);
*pd_idx = (u32)(fpm_adr / IRDMA_HMC_PAGED_BP_SIZE);
*pd_limit = (u32)((fpm_limit - 1) / IRDMA_HMC_PAGED_BP_SIZE);
*pd_limit += 1;
}
/**
* irdma_set_sd_entry - setup entry for sd programming
* @pa: physical addr
* @idx: sd index
* @type: paged or direct sd
* @entry: sd entry ptr
*/
static void irdma_set_sd_entry(u64 pa, u32 idx, enum irdma_sd_entry_type type,
struct irdma_update_sd_entry *entry)
{
entry->data = pa |
FIELD_PREP(IRDMA_PFHMC_SDDATALOW_PMSDBPCOUNT, IRDMA_HMC_MAX_BP_COUNT) |
FIELD_PREP(IRDMA_PFHMC_SDDATALOW_PMSDTYPE,
type == IRDMA_SD_TYPE_PAGED ? 0 : 1) |
FIELD_PREP(IRDMA_PFHMC_SDDATALOW_PMSDVALID, 1);
entry->cmd = idx | FIELD_PREP(IRDMA_PFHMC_SDCMD_PMSDWR, 1) | BIT(15);
}
/**
* irdma_clr_sd_entry - setup entry for sd clear
* @idx: sd index
* @type: paged or direct sd
* @entry: sd entry ptr
*/
static void irdma_clr_sd_entry(u32 idx, enum irdma_sd_entry_type type,
struct irdma_update_sd_entry *entry)
{
entry->data = FIELD_PREP(IRDMA_PFHMC_SDDATALOW_PMSDBPCOUNT, IRDMA_HMC_MAX_BP_COUNT) |
FIELD_PREP(IRDMA_PFHMC_SDDATALOW_PMSDTYPE,
type == IRDMA_SD_TYPE_PAGED ? 0 : 1);
entry->cmd = idx | FIELD_PREP(IRDMA_PFHMC_SDCMD_PMSDWR, 1) | BIT(15);
}
/**
* irdma_invalidate_pf_hmc_pd - Invalidates the pd cache in the hardware for PF
* @dev: pointer to our device struct
* @sd_idx: segment descriptor index
* @pd_idx: page descriptor index
*/
static inline void irdma_invalidate_pf_hmc_pd(struct irdma_sc_dev *dev, u32 sd_idx,
u32 pd_idx)
{
u32 val = FIELD_PREP(IRDMA_PFHMC_PDINV_PMSDIDX, sd_idx) |
FIELD_PREP(IRDMA_PFHMC_PDINV_PMSDPARTSEL, 1) |
FIELD_PREP(IRDMA_PFHMC_PDINV_PMPDIDX, pd_idx);
writel(val, dev->hw_regs[IRDMA_PFHMC_PDINV]);
}
/**
* irdma_hmc_sd_one - setup 1 sd entry for cqp
* @dev: pointer to the device structure
* @hmc_fn_id: hmc's function id
* @pa: physical addr
* @sd_idx: sd index
* @type: paged or direct sd
* @setsd: flag to set or clear sd
*/
enum irdma_status_code irdma_hmc_sd_one(struct irdma_sc_dev *dev, u8 hmc_fn_id,
u64 pa, u32 sd_idx,
enum irdma_sd_entry_type type,
bool setsd)
{
struct irdma_update_sds_info sdinfo;
sdinfo.cnt = 1;
sdinfo.hmc_fn_id = hmc_fn_id;
if (setsd)
irdma_set_sd_entry(pa, sd_idx, type, sdinfo.entry);
else
irdma_clr_sd_entry(sd_idx, type, sdinfo.entry);
return dev->cqp->process_cqp_sds(dev, &sdinfo);
}
/**
* irdma_hmc_sd_grp - setup group of sd entries for cqp
* @dev: pointer to the device structure
* @hmc_info: pointer to the HMC configuration information struct
* @sd_index: sd index
* @sd_cnt: number of sd entries
* @setsd: flag to set or clear sd
*/
static enum irdma_status_code irdma_hmc_sd_grp(struct irdma_sc_dev *dev,
struct irdma_hmc_info *hmc_info,
u32 sd_index, u32 sd_cnt,
bool setsd)
{
struct irdma_hmc_sd_entry *sd_entry;
struct irdma_update_sds_info sdinfo = {};
u64 pa;
u32 i;
enum irdma_status_code ret_code = 0;
sdinfo.hmc_fn_id = hmc_info->hmc_fn_id;
for (i = sd_index; i < sd_index + sd_cnt; i++) {
sd_entry = &hmc_info->sd_table.sd_entry[i];
if (!sd_entry || (!sd_entry->valid && setsd) ||
(sd_entry->valid && !setsd))
continue;
if (setsd) {
pa = (sd_entry->entry_type == IRDMA_SD_TYPE_PAGED) ?
sd_entry->u.pd_table.pd_page_addr.pa :
sd_entry->u.bp.addr.pa;
irdma_set_sd_entry(pa, i, sd_entry->entry_type,
&sdinfo.entry[sdinfo.cnt]);
} else {
irdma_clr_sd_entry(i, sd_entry->entry_type,
&sdinfo.entry[sdinfo.cnt]);
}
sdinfo.cnt++;
if (sdinfo.cnt == IRDMA_MAX_SD_ENTRIES) {
ret_code = dev->cqp->process_cqp_sds(dev, &sdinfo);
if (ret_code) {
ibdev_dbg(to_ibdev(dev),
"HMC: sd_programming failed err=%d\n",
ret_code);
return ret_code;
}
sdinfo.cnt = 0;
}
}
if (sdinfo.cnt)
ret_code = dev->cqp->process_cqp_sds(dev, &sdinfo);
return ret_code;
}
/**
* irdma_hmc_finish_add_sd_reg - program sd entries for objects
* @dev: pointer to the device structure
* @info: create obj info
*/
static enum irdma_status_code
irdma_hmc_finish_add_sd_reg(struct irdma_sc_dev *dev,
struct irdma_hmc_create_obj_info *info)
{
if (info->start_idx >= info->hmc_info->hmc_obj[info->rsrc_type].cnt)
return IRDMA_ERR_INVALID_HMC_OBJ_INDEX;
if ((info->start_idx + info->count) >
info->hmc_info->hmc_obj[info->rsrc_type].cnt)
return IRDMA_ERR_INVALID_HMC_OBJ_COUNT;
if (!info->add_sd_cnt)
return 0;
return irdma_hmc_sd_grp(dev, info->hmc_info,
info->hmc_info->sd_indexes[0], info->add_sd_cnt,
true);
}
/**
* irdma_sc_create_hmc_obj - allocate backing store for hmc objects
* @dev: pointer to the device structure
* @info: pointer to irdma_hmc_create_obj_info struct
*
* This will allocate memory for PDs and backing pages and populate
* the sd and pd entries.
*/
enum irdma_status_code
irdma_sc_create_hmc_obj(struct irdma_sc_dev *dev,
struct irdma_hmc_create_obj_info *info)
{
struct irdma_hmc_sd_entry *sd_entry;
u32 sd_idx, sd_lmt;
u32 pd_idx = 0, pd_lmt = 0;
u32 pd_idx1 = 0, pd_lmt1 = 0;
u32 i, j;
bool pd_error = false;
enum irdma_status_code ret_code = 0;
if (info->start_idx >= info->hmc_info->hmc_obj[info->rsrc_type].cnt)
return IRDMA_ERR_INVALID_HMC_OBJ_INDEX;
if ((info->start_idx + info->count) >
info->hmc_info->hmc_obj[info->rsrc_type].cnt) {
ibdev_dbg(to_ibdev(dev),
"HMC: error type %u, start = %u, req cnt %u, cnt = %u\n",
info->rsrc_type, info->start_idx, info->count,
info->hmc_info->hmc_obj[info->rsrc_type].cnt);
return IRDMA_ERR_INVALID_HMC_OBJ_COUNT;
}
irdma_find_sd_index_limit(info->hmc_info, info->rsrc_type,
info->start_idx, info->count, &sd_idx,
&sd_lmt);
if (sd_idx >= info->hmc_info->sd_table.sd_cnt ||
sd_lmt > info->hmc_info->sd_table.sd_cnt) {
return IRDMA_ERR_INVALID_SD_INDEX;
}
irdma_find_pd_index_limit(info->hmc_info, info->rsrc_type,
info->start_idx, info->count, &pd_idx,
&pd_lmt);
for (j = sd_idx; j < sd_lmt; j++) {
ret_code = irdma_add_sd_table_entry(dev->hw, info->hmc_info, j,
info->entry_type,
IRDMA_HMC_DIRECT_BP_SIZE);
if (ret_code)
goto exit_sd_error;
sd_entry = &info->hmc_info->sd_table.sd_entry[j];
if (sd_entry->entry_type == IRDMA_SD_TYPE_PAGED &&
(dev->hmc_info == info->hmc_info &&
info->rsrc_type != IRDMA_HMC_IW_PBLE)) {
pd_idx1 = max(pd_idx, (j * IRDMA_HMC_MAX_BP_COUNT));
pd_lmt1 = min(pd_lmt, (j + 1) * IRDMA_HMC_MAX_BP_COUNT);
for (i = pd_idx1; i < pd_lmt1; i++) {
/* update the pd table entry */
ret_code = irdma_add_pd_table_entry(dev,
info->hmc_info,
i, NULL);
if (ret_code) {
pd_error = true;
break;
}
}
if (pd_error) {
while (i && (i > pd_idx1)) {
irdma_remove_pd_bp(dev, info->hmc_info,
i - 1);
i--;
}
}
}
if (sd_entry->valid)
continue;
info->hmc_info->sd_indexes[info->add_sd_cnt] = (u16)j;
info->add_sd_cnt++;
sd_entry->valid = true;
}
return irdma_hmc_finish_add_sd_reg(dev, info);
exit_sd_error:
while (j && (j > sd_idx)) {
sd_entry = &info->hmc_info->sd_table.sd_entry[j - 1];
switch (sd_entry->entry_type) {
case IRDMA_SD_TYPE_PAGED:
pd_idx1 = max(pd_idx, (j - 1) * IRDMA_HMC_MAX_BP_COUNT);
pd_lmt1 = min(pd_lmt, (j * IRDMA_HMC_MAX_BP_COUNT));
for (i = pd_idx1; i < pd_lmt1; i++)
irdma_prep_remove_pd_page(info->hmc_info, i);
break;
case IRDMA_SD_TYPE_DIRECT:
irdma_prep_remove_pd_page(info->hmc_info, (j - 1));
break;
default:
ret_code = IRDMA_ERR_INVALID_SD_TYPE;
break;
}
j--;
}
return ret_code;
}
/**
* irdma_finish_del_sd_reg - delete sd entries for objects
* @dev: pointer to the device structure
* @info: dele obj info
* @reset: true if called before reset
*/
static enum irdma_status_code
irdma_finish_del_sd_reg(struct irdma_sc_dev *dev,
struct irdma_hmc_del_obj_info *info, bool reset)
{
struct irdma_hmc_sd_entry *sd_entry;
enum irdma_status_code ret_code = 0;
u32 i, sd_idx;
struct irdma_dma_mem *mem;
if (!reset)
ret_code = irdma_hmc_sd_grp(dev, info->hmc_info,
info->hmc_info->sd_indexes[0],
info->del_sd_cnt, false);
if (ret_code)
ibdev_dbg(to_ibdev(dev), "HMC: error cqp sd sd_grp\n");
for (i = 0; i < info->del_sd_cnt; i++) {
sd_idx = info->hmc_info->sd_indexes[i];
sd_entry = &info->hmc_info->sd_table.sd_entry[sd_idx];
mem = (sd_entry->entry_type == IRDMA_SD_TYPE_PAGED) ?
&sd_entry->u.pd_table.pd_page_addr :
&sd_entry->u.bp.addr;
if (!mem || !mem->va) {
ibdev_dbg(to_ibdev(dev), "HMC: error cqp sd mem\n");
} else {
dma_free_coherent(dev->hw->device, mem->size, mem->va,
mem->pa);
mem->va = NULL;
}
}
return ret_code;
}
/**
* irdma_sc_del_hmc_obj - remove pe hmc objects
* @dev: pointer to the device structure
* @info: pointer to irdma_hmc_del_obj_info struct
* @reset: true if called before reset
*
* This will de-populate the SDs and PDs. It frees
* the memory for PDS and backing storage. After this function is returned,
* caller should deallocate memory allocated previously for
* book-keeping information about PDs and backing storage.
*/
enum irdma_status_code irdma_sc_del_hmc_obj(struct irdma_sc_dev *dev,
struct irdma_hmc_del_obj_info *info,
bool reset)
{
struct irdma_hmc_pd_table *pd_table;
u32 sd_idx, sd_lmt;
u32 pd_idx, pd_lmt, rel_pd_idx;
u32 i, j;
enum irdma_status_code ret_code = 0;
if (info->start_idx >= info->hmc_info->hmc_obj[info->rsrc_type].cnt) {
ibdev_dbg(to_ibdev(dev),
"HMC: error start_idx[%04d] >= [type %04d].cnt[%04d]\n",
info->start_idx, info->rsrc_type,
info->hmc_info->hmc_obj[info->rsrc_type].cnt);
return IRDMA_ERR_INVALID_HMC_OBJ_INDEX;
}
if ((info->start_idx + info->count) >
info->hmc_info->hmc_obj[info->rsrc_type].cnt) {
ibdev_dbg(to_ibdev(dev),
"HMC: error start_idx[%04d] + count %04d >= [type %04d].cnt[%04d]\n",
info->start_idx, info->count, info->rsrc_type,
info->hmc_info->hmc_obj[info->rsrc_type].cnt);
return IRDMA_ERR_INVALID_HMC_OBJ_COUNT;
}
irdma_find_pd_index_limit(info->hmc_info, info->rsrc_type,
info->start_idx, info->count, &pd_idx,
&pd_lmt);
for (j = pd_idx; j < pd_lmt; j++) {
sd_idx = j / IRDMA_HMC_PD_CNT_IN_SD;
if (!info->hmc_info->sd_table.sd_entry[sd_idx].valid)
continue;
if (info->hmc_info->sd_table.sd_entry[sd_idx].entry_type !=
IRDMA_SD_TYPE_PAGED)
continue;
rel_pd_idx = j % IRDMA_HMC_PD_CNT_IN_SD;
pd_table = &info->hmc_info->sd_table.sd_entry[sd_idx].u.pd_table;
if (pd_table->pd_entry &&
pd_table->pd_entry[rel_pd_idx].valid) {
ret_code = irdma_remove_pd_bp(dev, info->hmc_info, j);
if (ret_code) {
ibdev_dbg(to_ibdev(dev),
"HMC: remove_pd_bp error\n");
return ret_code;
}
}
}
irdma_find_sd_index_limit(info->hmc_info, info->rsrc_type,
info->start_idx, info->count, &sd_idx,
&sd_lmt);
if (sd_idx >= info->hmc_info->sd_table.sd_cnt ||
sd_lmt > info->hmc_info->sd_table.sd_cnt) {
ibdev_dbg(to_ibdev(dev), "HMC: invalid sd_idx\n");
return IRDMA_ERR_INVALID_SD_INDEX;
}
for (i = sd_idx; i < sd_lmt; i++) {
pd_table = &info->hmc_info->sd_table.sd_entry[i].u.pd_table;
if (!info->hmc_info->sd_table.sd_entry[i].valid)
continue;
switch (info->hmc_info->sd_table.sd_entry[i].entry_type) {
case IRDMA_SD_TYPE_DIRECT:
ret_code = irdma_prep_remove_sd_bp(info->hmc_info, i);
if (!ret_code) {
info->hmc_info->sd_indexes[info->del_sd_cnt] =
(u16)i;
info->del_sd_cnt++;
}
break;
case IRDMA_SD_TYPE_PAGED:
ret_code = irdma_prep_remove_pd_page(info->hmc_info, i);
if (ret_code)
break;
if (dev->hmc_info != info->hmc_info &&
info->rsrc_type == IRDMA_HMC_IW_PBLE &&
pd_table->pd_entry) {
kfree(pd_table->pd_entry_virt_mem.va);
pd_table->pd_entry = NULL;
}
info->hmc_info->sd_indexes[info->del_sd_cnt] = (u16)i;
info->del_sd_cnt++;
break;
default:
break;
}
}
return irdma_finish_del_sd_reg(dev, info, reset);
}
/**
* irdma_add_sd_table_entry - Adds a segment descriptor to the table
* @hw: pointer to our hw struct
* @hmc_info: pointer to the HMC configuration information struct
* @sd_index: segment descriptor index to manipulate
* @type: what type of segment descriptor we're manipulating
* @direct_mode_sz: size to alloc in direct mode
*/
enum irdma_status_code irdma_add_sd_table_entry(struct irdma_hw *hw,
struct irdma_hmc_info *hmc_info,
u32 sd_index,
enum irdma_sd_entry_type type,
u64 direct_mode_sz)
{
struct irdma_hmc_sd_entry *sd_entry;
struct irdma_dma_mem dma_mem;
u64 alloc_len;
sd_entry = &hmc_info->sd_table.sd_entry[sd_index];
if (!sd_entry->valid) {
if (type == IRDMA_SD_TYPE_PAGED)
alloc_len = IRDMA_HMC_PAGED_BP_SIZE;
else
alloc_len = direct_mode_sz;
/* allocate a 4K pd page or 2M backing page */
dma_mem.size = ALIGN(alloc_len, IRDMA_HMC_PD_BP_BUF_ALIGNMENT);
dma_mem.va = dma_alloc_coherent(hw->device, dma_mem.size,
&dma_mem.pa, GFP_KERNEL);
if (!dma_mem.va)
return IRDMA_ERR_NO_MEMORY;
if (type == IRDMA_SD_TYPE_PAGED) {
struct irdma_virt_mem *vmem =
&sd_entry->u.pd_table.pd_entry_virt_mem;
vmem->size = sizeof(struct irdma_hmc_pd_entry) * 512;
vmem->va = kzalloc(vmem->size, GFP_KERNEL);
if (!vmem->va) {
dma_free_coherent(hw->device, dma_mem.size,
dma_mem.va, dma_mem.pa);
dma_mem.va = NULL;
return IRDMA_ERR_NO_MEMORY;
}
sd_entry->u.pd_table.pd_entry = vmem->va;
memcpy(&sd_entry->u.pd_table.pd_page_addr, &dma_mem,
sizeof(sd_entry->u.pd_table.pd_page_addr));
} else {
memcpy(&sd_entry->u.bp.addr, &dma_mem,
sizeof(sd_entry->u.bp.addr));
sd_entry->u.bp.sd_pd_index = sd_index;
}
hmc_info->sd_table.sd_entry[sd_index].entry_type = type;
hmc_info->sd_table.use_cnt++;
}
if (sd_entry->entry_type == IRDMA_SD_TYPE_DIRECT)
sd_entry->u.bp.use_cnt++;
return 0;
}
/**
* irdma_add_pd_table_entry - Adds page descriptor to the specified table
* @dev: pointer to our device structure
* @hmc_info: pointer to the HMC configuration information structure
* @pd_index: which page descriptor index to manipulate
* @rsrc_pg: if not NULL, use preallocated page instead of allocating new one.
*
* This function:
* 1. Initializes the pd entry
* 2. Adds pd_entry in the pd_table
* 3. Mark the entry valid in irdma_hmc_pd_entry structure
* 4. Initializes the pd_entry's ref count to 1
* assumptions:
* 1. The memory for pd should be pinned down, physically contiguous and
* aligned on 4K boundary and zeroed memory.
* 2. It should be 4K in size.
*/
enum irdma_status_code irdma_add_pd_table_entry(struct irdma_sc_dev *dev,
struct irdma_hmc_info *hmc_info,
u32 pd_index,
struct irdma_dma_mem *rsrc_pg)
{
struct irdma_hmc_pd_table *pd_table;
struct irdma_hmc_pd_entry *pd_entry;
struct irdma_dma_mem mem;
struct irdma_dma_mem *page = &mem;
u32 sd_idx, rel_pd_idx;
u64 *pd_addr;
u64 page_desc;
if (pd_index / IRDMA_HMC_PD_CNT_IN_SD >= hmc_info->sd_table.sd_cnt)
return IRDMA_ERR_INVALID_PAGE_DESC_INDEX;
sd_idx = (pd_index / IRDMA_HMC_PD_CNT_IN_SD);
if (hmc_info->sd_table.sd_entry[sd_idx].entry_type !=
IRDMA_SD_TYPE_PAGED)
return 0;
rel_pd_idx = (pd_index % IRDMA_HMC_PD_CNT_IN_SD);
pd_table = &hmc_info->sd_table.sd_entry[sd_idx].u.pd_table;
pd_entry = &pd_table->pd_entry[rel_pd_idx];
if (!pd_entry->valid) {
if (rsrc_pg) {
pd_entry->rsrc_pg = true;
page = rsrc_pg;
} else {
page->size = ALIGN(IRDMA_HMC_PAGED_BP_SIZE,
IRDMA_HMC_PD_BP_BUF_ALIGNMENT);
page->va = dma_alloc_coherent(dev->hw->device,
page->size, &page->pa,
GFP_KERNEL);
if (!page->va)
return IRDMA_ERR_NO_MEMORY;
pd_entry->rsrc_pg = false;
}
memcpy(&pd_entry->bp.addr, page, sizeof(pd_entry->bp.addr));
pd_entry->bp.sd_pd_index = pd_index;
pd_entry->bp.entry_type = IRDMA_SD_TYPE_PAGED;
page_desc = page->pa | 0x1;
pd_addr = pd_table->pd_page_addr.va;
pd_addr += rel_pd_idx;
memcpy(pd_addr, &page_desc, sizeof(*pd_addr));
pd_entry->sd_index = sd_idx;
pd_entry->valid = true;
pd_table->use_cnt++;
irdma_invalidate_pf_hmc_pd(dev, sd_idx, rel_pd_idx);
}
pd_entry->bp.use_cnt++;
return 0;
}
/**
* irdma_remove_pd_bp - remove a backing page from a page descriptor
* @dev: pointer to our HW structure
* @hmc_info: pointer to the HMC configuration information structure
* @idx: the page index
*
* This function:
* 1. Marks the entry in pd table (for paged address mode) or in sd table
* (for direct address mode) invalid.
* 2. Write to register PMPDINV to invalidate the backing page in FV cache
* 3. Decrement the ref count for the pd _entry
* assumptions:
* 1. Caller can deallocate the memory used by backing storage after this
* function returns.
*/
enum irdma_status_code irdma_remove_pd_bp(struct irdma_sc_dev *dev,
struct irdma_hmc_info *hmc_info,
u32 idx)
{
struct irdma_hmc_pd_entry *pd_entry;
struct irdma_hmc_pd_table *pd_table;
struct irdma_hmc_sd_entry *sd_entry;
u32 sd_idx, rel_pd_idx;
struct irdma_dma_mem *mem;
u64 *pd_addr;
sd_idx = idx / IRDMA_HMC_PD_CNT_IN_SD;
rel_pd_idx = idx % IRDMA_HMC_PD_CNT_IN_SD;
if (sd_idx >= hmc_info->sd_table.sd_cnt)
return IRDMA_ERR_INVALID_PAGE_DESC_INDEX;
sd_entry = &hmc_info->sd_table.sd_entry[sd_idx];
if (sd_entry->entry_type != IRDMA_SD_TYPE_PAGED)
return IRDMA_ERR_INVALID_SD_TYPE;
pd_table = &hmc_info->sd_table.sd_entry[sd_idx].u.pd_table;
pd_entry = &pd_table->pd_entry[rel_pd_idx];
if (--pd_entry->bp.use_cnt)
return 0;
pd_entry->valid = false;
pd_table->use_cnt--;
pd_addr = pd_table->pd_page_addr.va;
pd_addr += rel_pd_idx;
memset(pd_addr, 0, sizeof(u64));
irdma_invalidate_pf_hmc_pd(dev, sd_idx, idx);
if (!pd_entry->rsrc_pg) {
mem = &pd_entry->bp.addr;
if (!mem || !mem->va)
return IRDMA_ERR_PARAM;
dma_free_coherent(dev->hw->device, mem->size, mem->va,
mem->pa);
mem->va = NULL;
}
if (!pd_table->use_cnt)
kfree(pd_table->pd_entry_virt_mem.va);
return 0;
}
/**
* irdma_prep_remove_sd_bp - Prepares to remove a backing page from a sd entry
* @hmc_info: pointer to the HMC configuration information structure
* @idx: the page index
*/
enum irdma_status_code irdma_prep_remove_sd_bp(struct irdma_hmc_info *hmc_info,
u32 idx)
{
struct irdma_hmc_sd_entry *sd_entry;
sd_entry = &hmc_info->sd_table.sd_entry[idx];
if (--sd_entry->u.bp.use_cnt)
return IRDMA_ERR_NOT_READY;
hmc_info->sd_table.use_cnt--;
sd_entry->valid = false;
return 0;
}
/**
* irdma_prep_remove_pd_page - Prepares to remove a PD page from sd entry.
* @hmc_info: pointer to the HMC configuration information structure
* @idx: segment descriptor index to find the relevant page descriptor
*/
enum irdma_status_code
irdma_prep_remove_pd_page(struct irdma_hmc_info *hmc_info, u32 idx)
{
struct irdma_hmc_sd_entry *sd_entry;
sd_entry = &hmc_info->sd_table.sd_entry[idx];
if (sd_entry->u.pd_table.use_cnt)
return IRDMA_ERR_NOT_READY;
sd_entry->valid = false;
hmc_info->sd_table.use_cnt--;
return 0;
}
|