summaryrefslogtreecommitdiff
path: root/drivers/clocksource/timer-fttmr010.c
blob: e37ec3d69a7e7fc686d4ca1381d091407e066b5c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/*
 * Faraday Technology FTTMR010 timer driver
 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
 *
 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
 * Copyright (C) 2001-2006 Storlink, Corp.
 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
 */
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/sched_clock.h>

/*
 * Relevant registers in the global syscon
 */
#define GLOBAL_STATUS		0x04
#define CPU_AHB_RATIO_MASK	(0x3 << 18)
#define CPU_AHB_1_1		(0x0 << 18)
#define CPU_AHB_3_2		(0x1 << 18)
#define CPU_AHB_24_13		(0x2 << 18)
#define CPU_AHB_2_1		(0x3 << 18)
#define REG_TO_AHB_SPEED(reg)	((((reg) >> 15) & 0x7) * 10 + 130)

/*
 * Register definitions for the timers
 */
#define TIMER1_COUNT		(0x00)
#define TIMER1_LOAD		(0x04)
#define TIMER1_MATCH1		(0x08)
#define TIMER1_MATCH2		(0x0c)
#define TIMER2_COUNT		(0x10)
#define TIMER2_LOAD		(0x14)
#define TIMER2_MATCH1		(0x18)
#define TIMER2_MATCH2		(0x1c)
#define TIMER3_COUNT		(0x20)
#define TIMER3_LOAD		(0x24)
#define TIMER3_MATCH1		(0x28)
#define TIMER3_MATCH2		(0x2c)
#define TIMER_CR		(0x30)
#define TIMER_INTR_STATE	(0x34)
#define TIMER_INTR_MASK		(0x38)

#define TIMER_1_CR_ENABLE	(1 << 0)
#define TIMER_1_CR_CLOCK	(1 << 1)
#define TIMER_1_CR_INT		(1 << 2)
#define TIMER_2_CR_ENABLE	(1 << 3)
#define TIMER_2_CR_CLOCK	(1 << 4)
#define TIMER_2_CR_INT		(1 << 5)
#define TIMER_3_CR_ENABLE	(1 << 6)
#define TIMER_3_CR_CLOCK	(1 << 7)
#define TIMER_3_CR_INT		(1 << 8)
#define TIMER_1_CR_UPDOWN	(1 << 9)
#define TIMER_2_CR_UPDOWN	(1 << 10)
#define TIMER_3_CR_UPDOWN	(1 << 11)
#define TIMER_DEFAULT_FLAGS	(TIMER_1_CR_UPDOWN | \
				 TIMER_3_CR_ENABLE | \
				 TIMER_3_CR_UPDOWN)

#define TIMER_1_INT_MATCH1	(1 << 0)
#define TIMER_1_INT_MATCH2	(1 << 1)
#define TIMER_1_INT_OVERFLOW	(1 << 2)
#define TIMER_2_INT_MATCH1	(1 << 3)
#define TIMER_2_INT_MATCH2	(1 << 4)
#define TIMER_2_INT_OVERFLOW	(1 << 5)
#define TIMER_3_INT_MATCH1	(1 << 6)
#define TIMER_3_INT_MATCH2	(1 << 7)
#define TIMER_3_INT_OVERFLOW	(1 << 8)
#define TIMER_INT_ALL_MASK	0x1ff

static unsigned int tick_rate;
static void __iomem *base;

static u64 notrace fttmr010_read_sched_clock(void)
{
	return readl(base + TIMER3_COUNT);
}

static int fttmr010_timer_set_next_event(unsigned long cycles,
				       struct clock_event_device *evt)
{
	u32 cr;

	/* Setup the match register */
	cr = readl(base + TIMER1_COUNT);
	writel(cr + cycles, base + TIMER1_MATCH1);
	if (readl(base + TIMER1_COUNT) - cr > cycles)
		return -ETIME;

	return 0;
}

static int fttmr010_timer_shutdown(struct clock_event_device *evt)
{
	u32 cr;

	/*
	 * Disable also for oneshot: the set_next() call will arm the timer
	 * instead.
	 */
	/* Stop timer and interrupt. */
	cr = readl(base + TIMER_CR);
	cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT);
	writel(cr, base + TIMER_CR);

	/* Setup counter start from 0 */
	writel(0, base + TIMER1_COUNT);
	writel(0, base + TIMER1_LOAD);

	/* enable interrupt */
	cr = readl(base + TIMER_INTR_MASK);
	cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
	cr |= TIMER_1_INT_MATCH1;
	writel(cr, base + TIMER_INTR_MASK);

	/* start the timer */
	cr = readl(base + TIMER_CR);
	cr |= TIMER_1_CR_ENABLE;
	writel(cr, base + TIMER_CR);

	return 0;
}

static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
{
	u32 period = DIV_ROUND_CLOSEST(tick_rate, HZ);
	u32 cr;

	/* Stop timer and interrupt */
	cr = readl(base + TIMER_CR);
	cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT);
	writel(cr, base + TIMER_CR);

	/* Setup timer to fire at 1/HT intervals. */
	cr = 0xffffffff - (period - 1);
	writel(cr, base + TIMER1_COUNT);
	writel(cr, base + TIMER1_LOAD);

	/* enable interrupt on overflow */
	cr = readl(base + TIMER_INTR_MASK);
	cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
	cr |= TIMER_1_INT_OVERFLOW;
	writel(cr, base + TIMER_INTR_MASK);

	/* Start the timer */
	cr = readl(base + TIMER_CR);
	cr |= TIMER_1_CR_ENABLE;
	cr |= TIMER_1_CR_INT;
	writel(cr, base + TIMER_CR);

	return 0;
}

/* Use TIMER1 as clock event */
static struct clock_event_device fttmr010_clockevent = {
	.name			= "TIMER1",
	/* Reasonably fast and accurate clock event */
	.rating			= 300,
	.shift                  = 32,
	.features		= CLOCK_EVT_FEAT_PERIODIC |
				  CLOCK_EVT_FEAT_ONESHOT,
	.set_next_event		= fttmr010_timer_set_next_event,
	.set_state_shutdown	= fttmr010_timer_shutdown,
	.set_state_periodic	= fttmr010_timer_set_periodic,
	.set_state_oneshot	= fttmr010_timer_shutdown,
	.tick_resume		= fttmr010_timer_shutdown,
};

/*
 * IRQ handler for the timer
 */
static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
{
	struct clock_event_device *evt = &fttmr010_clockevent;

	evt->event_handler(evt);
	return IRQ_HANDLED;
}

static struct irqaction fttmr010_timer_irq = {
	.name		= "Faraday FTTMR010 Timer Tick",
	.flags		= IRQF_TIMER,
	.handler	= fttmr010_timer_interrupt,
};

static int __init gemini_timer_of_init(struct device_node *np)
{
	static struct regmap *map;
	int irq;
	int ret;
	u32 val;

	map = syscon_regmap_lookup_by_phandle(np, "syscon");
	if (IS_ERR(map)) {
		pr_err("Can't get regmap for syscon handle");
		return -ENODEV;
	}
	ret = regmap_read(map, GLOBAL_STATUS, &val);
	if (ret) {
		pr_err("Can't read syscon status register");
		return -ENXIO;
	}

	base = of_iomap(np, 0);
	if (!base) {
		pr_err("Can't remap registers");
		return -ENXIO;
	}
	/* IRQ for timer 1 */
	irq = irq_of_parse_and_map(np, 0);
	if (irq <= 0) {
		pr_err("Can't parse IRQ");
		return -EINVAL;
	}

	tick_rate = REG_TO_AHB_SPEED(val) * 1000000;
	printk(KERN_INFO "Bus: %dMHz", tick_rate / 1000000);

	tick_rate /= 6;		/* APB bus run AHB*(1/6) */

	switch (val & CPU_AHB_RATIO_MASK) {
	case CPU_AHB_1_1:
		printk(KERN_CONT "(1/1)\n");
		break;
	case CPU_AHB_3_2:
		printk(KERN_CONT "(3/2)\n");
		break;
	case CPU_AHB_24_13:
		printk(KERN_CONT "(24/13)\n");
		break;
	case CPU_AHB_2_1:
		printk(KERN_CONT "(2/1)\n");
		break;
	}

	/*
	 * Reset the interrupt mask and status
	 */
	writel(TIMER_INT_ALL_MASK, base + TIMER_INTR_MASK);
	writel(0, base + TIMER_INTR_STATE);
	writel(TIMER_DEFAULT_FLAGS, base + TIMER_CR);

	/*
	 * Setup free-running clocksource timer (interrupts
	 * disabled.)
	 */
	writel(0, base + TIMER3_COUNT);
	writel(0, base + TIMER3_LOAD);
	writel(0, base + TIMER3_MATCH1);
	writel(0, base + TIMER3_MATCH2);
	clocksource_mmio_init(base + TIMER3_COUNT,
			      "fttmr010_clocksource", tick_rate,
			      300, 32, clocksource_mmio_readl_up);
	sched_clock_register(fttmr010_read_sched_clock, 32, tick_rate);

	/*
	 * Setup clockevent timer (interrupt-driven.)
	 */
	writel(0, base + TIMER1_COUNT);
	writel(0, base + TIMER1_LOAD);
	writel(0, base + TIMER1_MATCH1);
	writel(0, base + TIMER1_MATCH2);
	setup_irq(irq, &fttmr010_timer_irq);
	fttmr010_clockevent.cpumask = cpumask_of(0);
	clockevents_config_and_register(&fttmr010_clockevent, tick_rate,
					1, 0xffffffff);

	return 0;
}
CLOCKSOURCE_OF_DECLARE(gemini, "cortina,gemini-timer", gemini_timer_of_init);