summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/dumpstack.c
blob: 53de044e565406f5213a105fdefa2a12ebadbd11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
/*
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
 */
#include <linux/kallsyms.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/utsname.h>
#include <linux/hardirq.h>
#include <linux/kdebug.h>
#include <linux/module.h>
#include <linux/ptrace.h>
#include <linux/sched/debug.h>
#include <linux/sched/task_stack.h>
#include <linux/ftrace.h>
#include <linux/kexec.h>
#include <linux/bug.h>
#include <linux/nmi.h>
#include <linux/sysfs.h>
#include <linux/kasan.h>

#include <asm/cpu_entry_area.h>
#include <asm/stacktrace.h>
#include <asm/unwind.h>

int panic_on_unrecovered_nmi;
int panic_on_io_nmi;
static int die_counter;

static struct pt_regs exec_summary_regs;

bool noinstr in_task_stack(unsigned long *stack, struct task_struct *task,
			   struct stack_info *info)
{
	unsigned long *begin = task_stack_page(task);
	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;

	if (stack < begin || stack >= end)
		return false;

	info->type	= STACK_TYPE_TASK;
	info->begin	= begin;
	info->end	= end;
	info->next_sp	= NULL;

	return true;
}

/* Called from get_stack_info_noinstr - so must be noinstr too */
bool noinstr in_entry_stack(unsigned long *stack, struct stack_info *info)
{
	struct entry_stack *ss = cpu_entry_stack(smp_processor_id());

	void *begin = ss;
	void *end = ss + 1;

	if ((void *)stack < begin || (void *)stack >= end)
		return false;

	info->type	= STACK_TYPE_ENTRY;
	info->begin	= begin;
	info->end	= end;
	info->next_sp	= NULL;

	return true;
}

static void printk_stack_address(unsigned long address, int reliable,
				 const char *log_lvl)
{
	touch_nmi_watchdog();
	printk("%s %s%pBb\n", log_lvl, reliable ? "" : "? ", (void *)address);
}

static int copy_code(struct pt_regs *regs, u8 *buf, unsigned long src,
		     unsigned int nbytes)
{
	if (!user_mode(regs))
		return copy_from_kernel_nofault(buf, (u8 *)src, nbytes);

	/* The user space code from other tasks cannot be accessed. */
	if (regs != task_pt_regs(current))
		return -EPERM;
	/*
	 * Make sure userspace isn't trying to trick us into dumping kernel
	 * memory by pointing the userspace instruction pointer at it.
	 */
	if (__chk_range_not_ok(src, nbytes, TASK_SIZE_MAX))
		return -EINVAL;

	/*
	 * Even if named copy_from_user_nmi() this can be invoked from
	 * other contexts and will not try to resolve a pagefault, which is
	 * the correct thing to do here as this code can be called from any
	 * context.
	 */
	return copy_from_user_nmi(buf, (void __user *)src, nbytes);
}

/*
 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
 *
 * In case where we don't have the exact kernel image (which, if we did, we can
 * simply disassemble and navigate to the RIP), the purpose of the bigger
 * prologue is to have more context and to be able to correlate the code from
 * the different toolchains better.
 *
 * In addition, it helps in recreating the register allocation of the failing
 * kernel and thus make sense of the register dump.
 *
 * What is more, the additional complication of a variable length insn arch like
 * x86 warrants having longer byte sequence before rIP so that the disassembler
 * can "sync" up properly and find instruction boundaries when decoding the
 * opcode bytes.
 *
 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
 * guesstimate in attempt to achieve all of the above.
 */
void show_opcodes(struct pt_regs *regs, const char *loglvl)
{
#define PROLOGUE_SIZE 42
#define EPILOGUE_SIZE 21
#define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
	u8 opcodes[OPCODE_BUFSIZE];
	unsigned long prologue = regs->ip - PROLOGUE_SIZE;

	switch (copy_code(regs, opcodes, prologue, sizeof(opcodes))) {
	case 0:
		printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
		       __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
		       opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
		break;
	case -EPERM:
		/* No access to the user space stack of other tasks. Ignore. */
		break;
	default:
		printk("%sCode: Unable to access opcode bytes at RIP 0x%lx.\n",
		       loglvl, prologue);
		break;
	}
}

void show_ip(struct pt_regs *regs, const char *loglvl)
{
#ifdef CONFIG_X86_32
	printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
#else
	printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
#endif
	show_opcodes(regs, loglvl);
}

void show_iret_regs(struct pt_regs *regs, const char *log_lvl)
{
	show_ip(regs, log_lvl);
	printk("%sRSP: %04x:%016lx EFLAGS: %08lx", log_lvl, (int)regs->ss,
		regs->sp, regs->flags);
}

static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
				  bool partial, const char *log_lvl)
{
	/*
	 * These on_stack() checks aren't strictly necessary: the unwind code
	 * has already validated the 'regs' pointer.  The checks are done for
	 * ordering reasons: if the registers are on the next stack, we don't
	 * want to print them out yet.  Otherwise they'll be shown as part of
	 * the wrong stack.  Later, when show_trace_log_lvl() switches to the
	 * next stack, this function will be called again with the same regs so
	 * they can be printed in the right context.
	 */
	if (!partial && on_stack(info, regs, sizeof(*regs))) {
		__show_regs(regs, SHOW_REGS_SHORT, log_lvl);

	} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
				       IRET_FRAME_SIZE)) {
		/*
		 * When an interrupt or exception occurs in entry code, the
		 * full pt_regs might not have been saved yet.  In that case
		 * just print the iret frame.
		 */
		show_iret_regs(regs, log_lvl);
	}
}

static void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
			unsigned long *stack, const char *log_lvl)
{
	struct unwind_state state;
	struct stack_info stack_info = {0};
	unsigned long visit_mask = 0;
	int graph_idx = 0;
	bool partial = false;

	printk("%sCall Trace:\n", log_lvl);

	unwind_start(&state, task, regs, stack);
	stack = stack ? : get_stack_pointer(task, regs);
	regs = unwind_get_entry_regs(&state, &partial);

	/*
	 * Iterate through the stacks, starting with the current stack pointer.
	 * Each stack has a pointer to the next one.
	 *
	 * x86-64 can have several stacks:
	 * - task stack
	 * - interrupt stack
	 * - HW exception stacks (double fault, nmi, debug, mce)
	 * - entry stack
	 *
	 * x86-32 can have up to four stacks:
	 * - task stack
	 * - softirq stack
	 * - hardirq stack
	 * - entry stack
	 */
	for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
		const char *stack_name;

		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
			/*
			 * We weren't on a valid stack.  It's possible that
			 * we overflowed a valid stack into a guard page.
			 * See if the next page up is valid so that we can
			 * generate some kind of backtrace if this happens.
			 */
			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
			if (get_stack_info(stack, task, &stack_info, &visit_mask))
				break;
		}

		stack_name = stack_type_name(stack_info.type);
		if (stack_name)
			printk("%s <%s>\n", log_lvl, stack_name);

		if (regs)
			show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);

		/*
		 * Scan the stack, printing any text addresses we find.  At the
		 * same time, follow proper stack frames with the unwinder.
		 *
		 * Addresses found during the scan which are not reported by
		 * the unwinder are considered to be additional clues which are
		 * sometimes useful for debugging and are prefixed with '?'.
		 * This also serves as a failsafe option in case the unwinder
		 * goes off in the weeds.
		 */
		for (; stack < stack_info.end; stack++) {
			unsigned long real_addr;
			int reliable = 0;
			unsigned long addr = READ_ONCE_NOCHECK(*stack);
			unsigned long *ret_addr_p =
				unwind_get_return_address_ptr(&state);

			if (!__kernel_text_address(addr))
				continue;

			/*
			 * Don't print regs->ip again if it was already printed
			 * by show_regs_if_on_stack().
			 */
			if (regs && stack == &regs->ip)
				goto next;

			if (stack == ret_addr_p)
				reliable = 1;

			/*
			 * When function graph tracing is enabled for a
			 * function, its return address on the stack is
			 * replaced with the address of an ftrace handler
			 * (return_to_handler).  In that case, before printing
			 * the "real" address, we want to print the handler
			 * address as an "unreliable" hint that function graph
			 * tracing was involved.
			 */
			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
							  addr, stack);
			if (real_addr != addr)
				printk_stack_address(addr, 0, log_lvl);
			printk_stack_address(real_addr, reliable, log_lvl);

			if (!reliable)
				continue;

next:
			/*
			 * Get the next frame from the unwinder.  No need to
			 * check for an error: if anything goes wrong, the rest
			 * of the addresses will just be printed as unreliable.
			 */
			unwind_next_frame(&state);

			/* if the frame has entry regs, print them */
			regs = unwind_get_entry_regs(&state, &partial);
			if (regs)
				show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
		}

		if (stack_name)
			printk("%s </%s>\n", log_lvl, stack_name);
	}
}

void show_stack(struct task_struct *task, unsigned long *sp,
		       const char *loglvl)
{
	task = task ? : current;

	/*
	 * Stack frames below this one aren't interesting.  Don't show them
	 * if we're printing for %current.
	 */
	if (!sp && task == current)
		sp = get_stack_pointer(current, NULL);

	show_trace_log_lvl(task, NULL, sp, loglvl);
}

void show_stack_regs(struct pt_regs *regs)
{
	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
}

static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
static int die_owner = -1;
static unsigned int die_nest_count;

unsigned long oops_begin(void)
{
	int cpu;
	unsigned long flags;

	oops_enter();

	/* racy, but better than risking deadlock. */
	raw_local_irq_save(flags);
	cpu = smp_processor_id();
	if (!arch_spin_trylock(&die_lock)) {
		if (cpu == die_owner)
			/* nested oops. should stop eventually */;
		else
			arch_spin_lock(&die_lock);
	}
	die_nest_count++;
	die_owner = cpu;
	console_verbose();
	bust_spinlocks(1);
	return flags;
}
NOKPROBE_SYMBOL(oops_begin);

void __noreturn rewind_stack_and_make_dead(int signr);

void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
{
	if (regs && kexec_should_crash(current))
		crash_kexec(regs);

	bust_spinlocks(0);
	die_owner = -1;
	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
	die_nest_count--;
	if (!die_nest_count)
		/* Nest count reaches zero, release the lock. */
		arch_spin_unlock(&die_lock);
	raw_local_irq_restore(flags);
	oops_exit();

	/* Executive summary in case the oops scrolled away */
	__show_regs(&exec_summary_regs, SHOW_REGS_ALL, KERN_DEFAULT);

	if (!signr)
		return;
	if (in_interrupt())
		panic("Fatal exception in interrupt");
	if (panic_on_oops)
		panic("Fatal exception");

	/*
	 * We're not going to return, but we might be on an IST stack or
	 * have very little stack space left.  Rewind the stack and kill
	 * the task.
	 * Before we rewind the stack, we have to tell KASAN that we're going to
	 * reuse the task stack and that existing poisons are invalid.
	 */
	kasan_unpoison_task_stack(current);
	rewind_stack_and_make_dead(signr);
}
NOKPROBE_SYMBOL(oops_end);

static void __die_header(const char *str, struct pt_regs *regs, long err)
{
	const char *pr = "";

	/* Save the regs of the first oops for the executive summary later. */
	if (!die_counter)
		exec_summary_regs = *regs;

	if (IS_ENABLED(CONFIG_PREEMPTION))
		pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";

	printk(KERN_DEFAULT
	       "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
	       pr,
	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
	       IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
	       (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
}
NOKPROBE_SYMBOL(__die_header);

static int __die_body(const char *str, struct pt_regs *regs, long err)
{
	show_regs(regs);
	print_modules();

	if (notify_die(DIE_OOPS, str, regs, err,
			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
		return 1;

	return 0;
}
NOKPROBE_SYMBOL(__die_body);

int __die(const char *str, struct pt_regs *regs, long err)
{
	__die_header(str, regs, err);
	return __die_body(str, regs, err);
}
NOKPROBE_SYMBOL(__die);

/*
 * This is gone through when something in the kernel has done something bad
 * and is about to be terminated:
 */
void die(const char *str, struct pt_regs *regs, long err)
{
	unsigned long flags = oops_begin();
	int sig = SIGSEGV;

	if (__die(str, regs, err))
		sig = 0;
	oops_end(flags, regs, sig);
}

void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr)
{
	unsigned long flags = oops_begin();
	int sig = SIGSEGV;

	__die_header(str, regs, err);
	if (gp_addr)
		kasan_non_canonical_hook(gp_addr);
	if (__die_body(str, regs, err))
		sig = 0;
	oops_end(flags, regs, sig);
}

void show_regs(struct pt_regs *regs)
{
	enum show_regs_mode print_kernel_regs;

	show_regs_print_info(KERN_DEFAULT);

	print_kernel_regs = user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL;
	__show_regs(regs, print_kernel_regs, KERN_DEFAULT);

	/*
	 * When in-kernel, we also print out the stack at the time of the fault..
	 */
	if (!user_mode(regs))
		show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
}