summaryrefslogtreecommitdiff
path: root/arch/x86/crypto/aesni-intel_glue.c
blob: cd37de5ec40464fc2714b54b5b27182147824099 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Support for AES-NI and VAES instructions.  This file contains glue code.
 * The real AES implementations are in aesni-intel_asm.S and other .S files.
 *
 * Copyright (C) 2008, Intel Corp.
 *    Author: Huang Ying <ying.huang@intel.com>
 *
 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
 * interface for 64-bit kernels.
 *    Authors: Adrian Hoban <adrian.hoban@intel.com>
 *             Gabriele Paoloni <gabriele.paoloni@intel.com>
 *             Tadeusz Struk (tadeusz.struk@intel.com)
 *             Aidan O'Mahony (aidan.o.mahony@intel.com)
 *    Copyright (c) 2010, Intel Corporation.
 *
 * Copyright 2024 Google LLC
 */

#include <linux/hardirq.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/err.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/ctr.h>
#include <crypto/b128ops.h>
#include <crypto/gcm.h>
#include <crypto/xts.h>
#include <asm/cpu_device_id.h>
#include <asm/simd.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <linux/jump_label.h>
#include <linux/workqueue.h>
#include <linux/spinlock.h>
#include <linux/static_call.h>


#define AESNI_ALIGN	16
#define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
#define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE - 1))
#define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
#define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
#define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)

struct aesni_xts_ctx {
	struct crypto_aes_ctx tweak_ctx AESNI_ALIGN_ATTR;
	struct crypto_aes_ctx crypt_ctx AESNI_ALIGN_ATTR;
};

static inline void *aes_align_addr(void *addr)
{
	if (crypto_tfm_ctx_alignment() >= AESNI_ALIGN)
		return addr;
	return PTR_ALIGN(addr, AESNI_ALIGN);
}

asmlinkage void aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
			      unsigned int key_len);
asmlinkage void aesni_enc(const void *ctx, u8 *out, const u8 *in);
asmlinkage void aesni_dec(const void *ctx, u8 *out, const u8 *in);
asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len);
asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len);
asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_cts_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
				  const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_cts_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
				  const u8 *in, unsigned int len, u8 *iv);

asmlinkage void aesni_xts_enc(const struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv);

asmlinkage void aesni_xts_dec(const struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv);

#ifdef CONFIG_X86_64

asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv);
DEFINE_STATIC_CALL(aesni_ctr_enc_tfm, aesni_ctr_enc);

asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
		void *keys, u8 *out, unsigned int num_bytes);
asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
		void *keys, u8 *out, unsigned int num_bytes);
asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
		void *keys, u8 *out, unsigned int num_bytes);


asmlinkage void aes_xctr_enc_128_avx_by8(const u8 *in, const u8 *iv,
	const void *keys, u8 *out, unsigned int num_bytes,
	unsigned int byte_ctr);

asmlinkage void aes_xctr_enc_192_avx_by8(const u8 *in, const u8 *iv,
	const void *keys, u8 *out, unsigned int num_bytes,
	unsigned int byte_ctr);

asmlinkage void aes_xctr_enc_256_avx_by8(const u8 *in, const u8 *iv,
	const void *keys, u8 *out, unsigned int num_bytes,
	unsigned int byte_ctr);
#endif

static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
{
	return aes_align_addr(raw_ctx);
}

static inline struct aesni_xts_ctx *aes_xts_ctx(struct crypto_skcipher *tfm)
{
	return aes_align_addr(crypto_skcipher_ctx(tfm));
}

static int aes_set_key_common(struct crypto_aes_ctx *ctx,
			      const u8 *in_key, unsigned int key_len)
{
	int err;

	if (!crypto_simd_usable())
		return aes_expandkey(ctx, in_key, key_len);

	err = aes_check_keylen(key_len);
	if (err)
		return err;

	kernel_fpu_begin();
	aesni_set_key(ctx, in_key, key_len);
	kernel_fpu_end();
	return 0;
}

static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
		       unsigned int key_len)
{
	return aes_set_key_common(aes_ctx(crypto_tfm_ctx(tfm)), in_key,
				  key_len);
}

static void aesni_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));

	if (!crypto_simd_usable()) {
		aes_encrypt(ctx, dst, src);
	} else {
		kernel_fpu_begin();
		aesni_enc(ctx, dst, src);
		kernel_fpu_end();
	}
}

static void aesni_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));

	if (!crypto_simd_usable()) {
		aes_decrypt(ctx, dst, src);
	} else {
		kernel_fpu_begin();
		aesni_dec(ctx, dst, src);
		kernel_fpu_end();
	}
}

static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
			         unsigned int len)
{
	return aes_set_key_common(aes_ctx(crypto_skcipher_ctx(tfm)), key, len);
}

static int ecb_encrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
	struct skcipher_walk walk;
	unsigned int nbytes;
	int err;

	err = skcipher_walk_virt(&walk, req, false);

	while ((nbytes = walk.nbytes)) {
		kernel_fpu_begin();
		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK);
		kernel_fpu_end();
		nbytes &= AES_BLOCK_SIZE - 1;
		err = skcipher_walk_done(&walk, nbytes);
	}

	return err;
}

static int ecb_decrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
	struct skcipher_walk walk;
	unsigned int nbytes;
	int err;

	err = skcipher_walk_virt(&walk, req, false);

	while ((nbytes = walk.nbytes)) {
		kernel_fpu_begin();
		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK);
		kernel_fpu_end();
		nbytes &= AES_BLOCK_SIZE - 1;
		err = skcipher_walk_done(&walk, nbytes);
	}

	return err;
}

static int cbc_encrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
	struct skcipher_walk walk;
	unsigned int nbytes;
	int err;

	err = skcipher_walk_virt(&walk, req, false);

	while ((nbytes = walk.nbytes)) {
		kernel_fpu_begin();
		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK, walk.iv);
		kernel_fpu_end();
		nbytes &= AES_BLOCK_SIZE - 1;
		err = skcipher_walk_done(&walk, nbytes);
	}

	return err;
}

static int cbc_decrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
	struct skcipher_walk walk;
	unsigned int nbytes;
	int err;

	err = skcipher_walk_virt(&walk, req, false);

	while ((nbytes = walk.nbytes)) {
		kernel_fpu_begin();
		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK, walk.iv);
		kernel_fpu_end();
		nbytes &= AES_BLOCK_SIZE - 1;
		err = skcipher_walk_done(&walk, nbytes);
	}

	return err;
}

static int cts_cbc_encrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
	struct scatterlist *src = req->src, *dst = req->dst;
	struct scatterlist sg_src[2], sg_dst[2];
	struct skcipher_request subreq;
	struct skcipher_walk walk;
	int err;

	skcipher_request_set_tfm(&subreq, tfm);
	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
				      NULL, NULL);

	if (req->cryptlen <= AES_BLOCK_SIZE) {
		if (req->cryptlen < AES_BLOCK_SIZE)
			return -EINVAL;
		cbc_blocks = 1;
	}

	if (cbc_blocks > 0) {
		skcipher_request_set_crypt(&subreq, req->src, req->dst,
					   cbc_blocks * AES_BLOCK_SIZE,
					   req->iv);

		err = cbc_encrypt(&subreq);
		if (err)
			return err;

		if (req->cryptlen == AES_BLOCK_SIZE)
			return 0;

		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
		if (req->dst != req->src)
			dst = scatterwalk_ffwd(sg_dst, req->dst,
					       subreq.cryptlen);
	}

	/* handle ciphertext stealing */
	skcipher_request_set_crypt(&subreq, src, dst,
				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
				   req->iv);

	err = skcipher_walk_virt(&walk, &subreq, false);
	if (err)
		return err;

	kernel_fpu_begin();
	aesni_cts_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			  walk.nbytes, walk.iv);
	kernel_fpu_end();

	return skcipher_walk_done(&walk, 0);
}

static int cts_cbc_decrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
	struct scatterlist *src = req->src, *dst = req->dst;
	struct scatterlist sg_src[2], sg_dst[2];
	struct skcipher_request subreq;
	struct skcipher_walk walk;
	int err;

	skcipher_request_set_tfm(&subreq, tfm);
	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
				      NULL, NULL);

	if (req->cryptlen <= AES_BLOCK_SIZE) {
		if (req->cryptlen < AES_BLOCK_SIZE)
			return -EINVAL;
		cbc_blocks = 1;
	}

	if (cbc_blocks > 0) {
		skcipher_request_set_crypt(&subreq, req->src, req->dst,
					   cbc_blocks * AES_BLOCK_SIZE,
					   req->iv);

		err = cbc_decrypt(&subreq);
		if (err)
			return err;

		if (req->cryptlen == AES_BLOCK_SIZE)
			return 0;

		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
		if (req->dst != req->src)
			dst = scatterwalk_ffwd(sg_dst, req->dst,
					       subreq.cryptlen);
	}

	/* handle ciphertext stealing */
	skcipher_request_set_crypt(&subreq, src, dst,
				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
				   req->iv);

	err = skcipher_walk_virt(&walk, &subreq, false);
	if (err)
		return err;

	kernel_fpu_begin();
	aesni_cts_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			  walk.nbytes, walk.iv);
	kernel_fpu_end();

	return skcipher_walk_done(&walk, 0);
}

#ifdef CONFIG_X86_64
static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv)
{
	/*
	 * based on key length, override with the by8 version
	 * of ctr mode encryption/decryption for improved performance
	 * aes_set_key_common() ensures that key length is one of
	 * {128,192,256}
	 */
	if (ctx->key_length == AES_KEYSIZE_128)
		aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
	else if (ctx->key_length == AES_KEYSIZE_192)
		aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
	else
		aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
}

static int ctr_crypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
	u8 keystream[AES_BLOCK_SIZE];
	struct skcipher_walk walk;
	unsigned int nbytes;
	int err;

	err = skcipher_walk_virt(&walk, req, false);

	while ((nbytes = walk.nbytes) > 0) {
		kernel_fpu_begin();
		if (nbytes & AES_BLOCK_MASK)
			static_call(aesni_ctr_enc_tfm)(ctx, walk.dst.virt.addr,
						       walk.src.virt.addr,
						       nbytes & AES_BLOCK_MASK,
						       walk.iv);
		nbytes &= ~AES_BLOCK_MASK;

		if (walk.nbytes == walk.total && nbytes > 0) {
			aesni_enc(ctx, keystream, walk.iv);
			crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes - nbytes,
				       walk.src.virt.addr + walk.nbytes - nbytes,
				       keystream, nbytes);
			crypto_inc(walk.iv, AES_BLOCK_SIZE);
			nbytes = 0;
		}
		kernel_fpu_end();
		err = skcipher_walk_done(&walk, nbytes);
	}
	return err;
}

static void aesni_xctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
				   const u8 *in, unsigned int len, u8 *iv,
				   unsigned int byte_ctr)
{
	if (ctx->key_length == AES_KEYSIZE_128)
		aes_xctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len,
					 byte_ctr);
	else if (ctx->key_length == AES_KEYSIZE_192)
		aes_xctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len,
					 byte_ctr);
	else
		aes_xctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len,
					 byte_ctr);
}

static int xctr_crypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
	u8 keystream[AES_BLOCK_SIZE];
	struct skcipher_walk walk;
	unsigned int nbytes;
	unsigned int byte_ctr = 0;
	int err;
	__le32 block[AES_BLOCK_SIZE / sizeof(__le32)];

	err = skcipher_walk_virt(&walk, req, false);

	while ((nbytes = walk.nbytes) > 0) {
		kernel_fpu_begin();
		if (nbytes & AES_BLOCK_MASK)
			aesni_xctr_enc_avx_tfm(ctx, walk.dst.virt.addr,
				walk.src.virt.addr, nbytes & AES_BLOCK_MASK,
				walk.iv, byte_ctr);
		nbytes &= ~AES_BLOCK_MASK;
		byte_ctr += walk.nbytes - nbytes;

		if (walk.nbytes == walk.total && nbytes > 0) {
			memcpy(block, walk.iv, AES_BLOCK_SIZE);
			block[0] ^= cpu_to_le32(1 + byte_ctr / AES_BLOCK_SIZE);
			aesni_enc(ctx, keystream, (u8 *)block);
			crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes -
				       nbytes, walk.src.virt.addr + walk.nbytes
				       - nbytes, keystream, nbytes);
			byte_ctr += nbytes;
			nbytes = 0;
		}
		kernel_fpu_end();
		err = skcipher_walk_done(&walk, nbytes);
	}
	return err;
}
#endif

static int xts_setkey_aesni(struct crypto_skcipher *tfm, const u8 *key,
			    unsigned int keylen)
{
	struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
	int err;

	err = xts_verify_key(tfm, key, keylen);
	if (err)
		return err;

	keylen /= 2;

	/* first half of xts-key is for crypt */
	err = aes_set_key_common(&ctx->crypt_ctx, key, keylen);
	if (err)
		return err;

	/* second half of xts-key is for tweak */
	return aes_set_key_common(&ctx->tweak_ctx, key + keylen, keylen);
}

typedef void (*xts_encrypt_iv_func)(const struct crypto_aes_ctx *tweak_key,
				    u8 iv[AES_BLOCK_SIZE]);
typedef void (*xts_crypt_func)(const struct crypto_aes_ctx *key,
			       const u8 *src, u8 *dst, unsigned int len,
			       u8 tweak[AES_BLOCK_SIZE]);

/* This handles cases where the source and/or destination span pages. */
static noinline int
xts_crypt_slowpath(struct skcipher_request *req, xts_crypt_func crypt_func)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	const struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
	int tail = req->cryptlen % AES_BLOCK_SIZE;
	struct scatterlist sg_src[2], sg_dst[2];
	struct skcipher_request subreq;
	struct skcipher_walk walk;
	struct scatterlist *src, *dst;
	int err;

	/*
	 * If the message length isn't divisible by the AES block size, then
	 * separate off the last full block and the partial block.  This ensures
	 * that they are processed in the same call to the assembly function,
	 * which is required for ciphertext stealing.
	 */
	if (tail) {
		skcipher_request_set_tfm(&subreq, tfm);
		skcipher_request_set_callback(&subreq,
					      skcipher_request_flags(req),
					      NULL, NULL);
		skcipher_request_set_crypt(&subreq, req->src, req->dst,
					   req->cryptlen - tail - AES_BLOCK_SIZE,
					   req->iv);
		req = &subreq;
	}

	err = skcipher_walk_virt(&walk, req, false);

	while (walk.nbytes) {
		kernel_fpu_begin();
		(*crypt_func)(&ctx->crypt_ctx,
			      walk.src.virt.addr, walk.dst.virt.addr,
			      walk.nbytes & ~(AES_BLOCK_SIZE - 1), req->iv);
		kernel_fpu_end();
		err = skcipher_walk_done(&walk,
					 walk.nbytes & (AES_BLOCK_SIZE - 1));
	}

	if (err || !tail)
		return err;

	/* Do ciphertext stealing with the last full block and partial block. */

	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
	if (req->dst != req->src)
		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);

	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
				   req->iv);

	err = skcipher_walk_virt(&walk, req, false);
	if (err)
		return err;

	kernel_fpu_begin();
	(*crypt_func)(&ctx->crypt_ctx, walk.src.virt.addr, walk.dst.virt.addr,
		      walk.nbytes, req->iv);
	kernel_fpu_end();

	return skcipher_walk_done(&walk, 0);
}

/* __always_inline to avoid indirect call in fastpath */
static __always_inline int
xts_crypt(struct skcipher_request *req, xts_encrypt_iv_func encrypt_iv,
	  xts_crypt_func crypt_func)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	const struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
	const unsigned int cryptlen = req->cryptlen;
	struct scatterlist *src = req->src;
	struct scatterlist *dst = req->dst;

	if (unlikely(cryptlen < AES_BLOCK_SIZE))
		return -EINVAL;

	kernel_fpu_begin();
	(*encrypt_iv)(&ctx->tweak_ctx, req->iv);

	/*
	 * In practice, virtually all XTS plaintexts and ciphertexts are either
	 * 512 or 4096 bytes, aligned such that they don't span page boundaries.
	 * To optimize the performance of these cases, and also any other case
	 * where no page boundary is spanned, the below fast-path handles
	 * single-page sources and destinations as efficiently as possible.
	 */
	if (likely(src->length >= cryptlen && dst->length >= cryptlen &&
		   src->offset + cryptlen <= PAGE_SIZE &&
		   dst->offset + cryptlen <= PAGE_SIZE)) {
		struct page *src_page = sg_page(src);
		struct page *dst_page = sg_page(dst);
		void *src_virt = kmap_local_page(src_page) + src->offset;
		void *dst_virt = kmap_local_page(dst_page) + dst->offset;

		(*crypt_func)(&ctx->crypt_ctx, src_virt, dst_virt, cryptlen,
			      req->iv);
		kunmap_local(dst_virt);
		kunmap_local(src_virt);
		kernel_fpu_end();
		return 0;
	}
	kernel_fpu_end();
	return xts_crypt_slowpath(req, crypt_func);
}

static void aesni_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key,
				 u8 iv[AES_BLOCK_SIZE])
{
	aesni_enc(tweak_key, iv, iv);
}

static void aesni_xts_encrypt(const struct crypto_aes_ctx *key,
			      const u8 *src, u8 *dst, unsigned int len,
			      u8 tweak[AES_BLOCK_SIZE])
{
	aesni_xts_enc(key, dst, src, len, tweak);
}

static void aesni_xts_decrypt(const struct crypto_aes_ctx *key,
			      const u8 *src, u8 *dst, unsigned int len,
			      u8 tweak[AES_BLOCK_SIZE])
{
	aesni_xts_dec(key, dst, src, len, tweak);
}

static int xts_encrypt_aesni(struct skcipher_request *req)
{
	return xts_crypt(req, aesni_xts_encrypt_iv, aesni_xts_encrypt);
}

static int xts_decrypt_aesni(struct skcipher_request *req)
{
	return xts_crypt(req, aesni_xts_encrypt_iv, aesni_xts_decrypt);
}

static struct crypto_alg aesni_cipher_alg = {
	.cra_name		= "aes",
	.cra_driver_name	= "aes-aesni",
	.cra_priority		= 300,
	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
	.cra_module		= THIS_MODULE,
	.cra_u	= {
		.cipher	= {
			.cia_min_keysize	= AES_MIN_KEY_SIZE,
			.cia_max_keysize	= AES_MAX_KEY_SIZE,
			.cia_setkey		= aes_set_key,
			.cia_encrypt		= aesni_encrypt,
			.cia_decrypt		= aesni_decrypt
		}
	}
};

static struct skcipher_alg aesni_skciphers[] = {
	{
		.base = {
			.cra_name		= "__ecb(aes)",
			.cra_driver_name	= "__ecb-aes-aesni",
			.cra_priority		= 400,
			.cra_flags		= CRYPTO_ALG_INTERNAL,
			.cra_blocksize		= AES_BLOCK_SIZE,
			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
			.cra_module		= THIS_MODULE,
		},
		.min_keysize	= AES_MIN_KEY_SIZE,
		.max_keysize	= AES_MAX_KEY_SIZE,
		.setkey		= aesni_skcipher_setkey,
		.encrypt	= ecb_encrypt,
		.decrypt	= ecb_decrypt,
	}, {
		.base = {
			.cra_name		= "__cbc(aes)",
			.cra_driver_name	= "__cbc-aes-aesni",
			.cra_priority		= 400,
			.cra_flags		= CRYPTO_ALG_INTERNAL,
			.cra_blocksize		= AES_BLOCK_SIZE,
			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
			.cra_module		= THIS_MODULE,
		},
		.min_keysize	= AES_MIN_KEY_SIZE,
		.max_keysize	= AES_MAX_KEY_SIZE,
		.ivsize		= AES_BLOCK_SIZE,
		.setkey		= aesni_skcipher_setkey,
		.encrypt	= cbc_encrypt,
		.decrypt	= cbc_decrypt,
	}, {
		.base = {
			.cra_name		= "__cts(cbc(aes))",
			.cra_driver_name	= "__cts-cbc-aes-aesni",
			.cra_priority		= 400,
			.cra_flags		= CRYPTO_ALG_INTERNAL,
			.cra_blocksize		= AES_BLOCK_SIZE,
			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
			.cra_module		= THIS_MODULE,
		},
		.min_keysize	= AES_MIN_KEY_SIZE,
		.max_keysize	= AES_MAX_KEY_SIZE,
		.ivsize		= AES_BLOCK_SIZE,
		.walksize	= 2 * AES_BLOCK_SIZE,
		.setkey		= aesni_skcipher_setkey,
		.encrypt	= cts_cbc_encrypt,
		.decrypt	= cts_cbc_decrypt,
#ifdef CONFIG_X86_64
	}, {
		.base = {
			.cra_name		= "__ctr(aes)",
			.cra_driver_name	= "__ctr-aes-aesni",
			.cra_priority		= 400,
			.cra_flags		= CRYPTO_ALG_INTERNAL,
			.cra_blocksize		= 1,
			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
			.cra_module		= THIS_MODULE,
		},
		.min_keysize	= AES_MIN_KEY_SIZE,
		.max_keysize	= AES_MAX_KEY_SIZE,
		.ivsize		= AES_BLOCK_SIZE,
		.chunksize	= AES_BLOCK_SIZE,
		.setkey		= aesni_skcipher_setkey,
		.encrypt	= ctr_crypt,
		.decrypt	= ctr_crypt,
#endif
	}, {
		.base = {
			.cra_name		= "__xts(aes)",
			.cra_driver_name	= "__xts-aes-aesni",
			.cra_priority		= 401,
			.cra_flags		= CRYPTO_ALG_INTERNAL,
			.cra_blocksize		= AES_BLOCK_SIZE,
			.cra_ctxsize		= XTS_AES_CTX_SIZE,
			.cra_module		= THIS_MODULE,
		},
		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
		.ivsize		= AES_BLOCK_SIZE,
		.walksize	= 2 * AES_BLOCK_SIZE,
		.setkey		= xts_setkey_aesni,
		.encrypt	= xts_encrypt_aesni,
		.decrypt	= xts_decrypt_aesni,
	}
};

static
struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];

#ifdef CONFIG_X86_64
/*
 * XCTR does not have a non-AVX implementation, so it must be enabled
 * conditionally.
 */
static struct skcipher_alg aesni_xctr = {
	.base = {
		.cra_name		= "__xctr(aes)",
		.cra_driver_name	= "__xctr-aes-aesni",
		.cra_priority		= 400,
		.cra_flags		= CRYPTO_ALG_INTERNAL,
		.cra_blocksize		= 1,
		.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
		.cra_module		= THIS_MODULE,
	},
	.min_keysize	= AES_MIN_KEY_SIZE,
	.max_keysize	= AES_MAX_KEY_SIZE,
	.ivsize		= AES_BLOCK_SIZE,
	.chunksize	= AES_BLOCK_SIZE,
	.setkey		= aesni_skcipher_setkey,
	.encrypt	= xctr_crypt,
	.decrypt	= xctr_crypt,
};

static struct simd_skcipher_alg *aesni_simd_xctr;

asmlinkage void aes_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key,
				   u8 iv[AES_BLOCK_SIZE]);

#define DEFINE_XTS_ALG(suffix, driver_name, priority)			       \
									       \
asmlinkage void								       \
aes_xts_encrypt_##suffix(const struct crypto_aes_ctx *key, const u8 *src,      \
			 u8 *dst, unsigned int len, u8 tweak[AES_BLOCK_SIZE]); \
asmlinkage void								       \
aes_xts_decrypt_##suffix(const struct crypto_aes_ctx *key, const u8 *src,      \
			 u8 *dst, unsigned int len, u8 tweak[AES_BLOCK_SIZE]); \
									       \
static int xts_encrypt_##suffix(struct skcipher_request *req)		       \
{									       \
	return xts_crypt(req, aes_xts_encrypt_iv, aes_xts_encrypt_##suffix);   \
}									       \
									       \
static int xts_decrypt_##suffix(struct skcipher_request *req)		       \
{									       \
	return xts_crypt(req, aes_xts_encrypt_iv, aes_xts_decrypt_##suffix);   \
}									       \
									       \
static struct skcipher_alg aes_xts_alg_##suffix = {			       \
	.base = {							       \
		.cra_name		= "__xts(aes)",			       \
		.cra_driver_name	= "__" driver_name,		       \
		.cra_priority		= priority,			       \
		.cra_flags		= CRYPTO_ALG_INTERNAL,		       \
		.cra_blocksize		= AES_BLOCK_SIZE,		       \
		.cra_ctxsize		= XTS_AES_CTX_SIZE,		       \
		.cra_module		= THIS_MODULE,			       \
	},								       \
	.min_keysize	= 2 * AES_MIN_KEY_SIZE,				       \
	.max_keysize	= 2 * AES_MAX_KEY_SIZE,				       \
	.ivsize		= AES_BLOCK_SIZE,				       \
	.walksize	= 2 * AES_BLOCK_SIZE,				       \
	.setkey		= xts_setkey_aesni,				       \
	.encrypt	= xts_encrypt_##suffix,				       \
	.decrypt	= xts_decrypt_##suffix,				       \
};									       \
									       \
static struct simd_skcipher_alg *aes_xts_simdalg_##suffix

DEFINE_XTS_ALG(aesni_avx, "xts-aes-aesni-avx", 500);
#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
DEFINE_XTS_ALG(vaes_avx2, "xts-aes-vaes-avx2", 600);
DEFINE_XTS_ALG(vaes_avx10_256, "xts-aes-vaes-avx10_256", 700);
DEFINE_XTS_ALG(vaes_avx10_512, "xts-aes-vaes-avx10_512", 800);
#endif

/* The common part of the x86_64 AES-GCM key struct */
struct aes_gcm_key {
	/* Expanded AES key and the AES key length in bytes */
	struct crypto_aes_ctx aes_key;

	/* RFC4106 nonce (used only by the rfc4106 algorithms) */
	u32 rfc4106_nonce;
};

/* Key struct used by the AES-NI implementations of AES-GCM */
struct aes_gcm_key_aesni {
	/*
	 * Common part of the key.  The assembly code requires 16-byte alignment
	 * for the round keys; we get this by them being located at the start of
	 * the struct and the whole struct being 16-byte aligned.
	 */
	struct aes_gcm_key base;

	/*
	 * Powers of the hash key H^8 through H^1.  These are 128-bit values.
	 * They all have an extra factor of x^-1 and are byte-reversed.  16-byte
	 * alignment is required by the assembly code.
	 */
	u64 h_powers[8][2] __aligned(16);

	/*
	 * h_powers_xored[i] contains the two 64-bit halves of h_powers[i] XOR'd
	 * together.  It's used for Karatsuba multiplication.  16-byte alignment
	 * is required by the assembly code.
	 */
	u64 h_powers_xored[8] __aligned(16);

	/*
	 * H^1 times x^64 (and also the usual extra factor of x^-1).  16-byte
	 * alignment is required by the assembly code.
	 */
	u64 h_times_x64[2] __aligned(16);
};
#define AES_GCM_KEY_AESNI(key)	\
	container_of((key), struct aes_gcm_key_aesni, base)
#define AES_GCM_KEY_AESNI_SIZE	\
	(sizeof(struct aes_gcm_key_aesni) + (15 & ~(CRYPTO_MINALIGN - 1)))

/* Key struct used by the VAES + AVX10 implementations of AES-GCM */
struct aes_gcm_key_avx10 {
	/*
	 * Common part of the key.  The assembly code prefers 16-byte alignment
	 * for the round keys; we get this by them being located at the start of
	 * the struct and the whole struct being 64-byte aligned.
	 */
	struct aes_gcm_key base;

	/*
	 * Powers of the hash key H^16 through H^1.  These are 128-bit values.
	 * They all have an extra factor of x^-1 and are byte-reversed.  This
	 * array is aligned to a 64-byte boundary to make it naturally aligned
	 * for 512-bit loads, which can improve performance.  (The assembly code
	 * doesn't *need* the alignment; this is just an optimization.)
	 */
	u64 h_powers[16][2] __aligned(64);

	/* Three padding blocks required by the assembly code */
	u64 padding[3][2];
};
#define AES_GCM_KEY_AVX10(key)	\
	container_of((key), struct aes_gcm_key_avx10, base)
#define AES_GCM_KEY_AVX10_SIZE	\
	(sizeof(struct aes_gcm_key_avx10) + (63 & ~(CRYPTO_MINALIGN - 1)))

/*
 * These flags are passed to the AES-GCM helper functions to specify the
 * specific version of AES-GCM (RFC4106 or not), whether it's encryption or
 * decryption, and which assembly functions should be called.  Assembly
 * functions are selected using flags instead of function pointers to avoid
 * indirect calls (which are very expensive on x86) regardless of inlining.
 */
#define FLAG_RFC4106	BIT(0)
#define FLAG_ENC	BIT(1)
#define FLAG_AVX	BIT(2)
#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
#  define FLAG_AVX10_256	BIT(3)
#  define FLAG_AVX10_512	BIT(4)
#else
   /*
    * This should cause all calls to the AVX10 assembly functions to be
    * optimized out, avoiding the need to ifdef each call individually.
    */
#  define FLAG_AVX10_256	0
#  define FLAG_AVX10_512	0
#endif

static inline struct aes_gcm_key *
aes_gcm_key_get(struct crypto_aead *tfm, int flags)
{
	if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512))
		return PTR_ALIGN(crypto_aead_ctx(tfm), 64);
	else
		return PTR_ALIGN(crypto_aead_ctx(tfm), 16);
}

asmlinkage void
aes_gcm_precompute_aesni(struct aes_gcm_key_aesni *key);
asmlinkage void
aes_gcm_precompute_aesni_avx(struct aes_gcm_key_aesni *key);
asmlinkage void
aes_gcm_precompute_vaes_avx10_256(struct aes_gcm_key_avx10 *key);
asmlinkage void
aes_gcm_precompute_vaes_avx10_512(struct aes_gcm_key_avx10 *key);

static void aes_gcm_precompute(struct aes_gcm_key *key, int flags)
{
	/*
	 * To make things a bit easier on the assembly side, the AVX10
	 * implementations use the same key format.  Therefore, a single
	 * function using 256-bit vectors would suffice here.  However, it's
	 * straightforward to provide a 512-bit one because of how the assembly
	 * code is structured, and it works nicely because the total size of the
	 * key powers is a multiple of 512 bits.  So we take advantage of that.
	 *
	 * A similar situation applies to the AES-NI implementations.
	 */
	if (flags & FLAG_AVX10_512)
		aes_gcm_precompute_vaes_avx10_512(AES_GCM_KEY_AVX10(key));
	else if (flags & FLAG_AVX10_256)
		aes_gcm_precompute_vaes_avx10_256(AES_GCM_KEY_AVX10(key));
	else if (flags & FLAG_AVX)
		aes_gcm_precompute_aesni_avx(AES_GCM_KEY_AESNI(key));
	else
		aes_gcm_precompute_aesni(AES_GCM_KEY_AESNI(key));
}

asmlinkage void
aes_gcm_aad_update_aesni(const struct aes_gcm_key_aesni *key,
			 u8 ghash_acc[16], const u8 *aad, int aadlen);
asmlinkage void
aes_gcm_aad_update_aesni_avx(const struct aes_gcm_key_aesni *key,
			     u8 ghash_acc[16], const u8 *aad, int aadlen);
asmlinkage void
aes_gcm_aad_update_vaes_avx10(const struct aes_gcm_key_avx10 *key,
			      u8 ghash_acc[16], const u8 *aad, int aadlen);

static void aes_gcm_aad_update(const struct aes_gcm_key *key, u8 ghash_acc[16],
			       const u8 *aad, int aadlen, int flags)
{
	if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512))
		aes_gcm_aad_update_vaes_avx10(AES_GCM_KEY_AVX10(key), ghash_acc,
					      aad, aadlen);
	else if (flags & FLAG_AVX)
		aes_gcm_aad_update_aesni_avx(AES_GCM_KEY_AESNI(key), ghash_acc,
					     aad, aadlen);
	else
		aes_gcm_aad_update_aesni(AES_GCM_KEY_AESNI(key), ghash_acc,
					 aad, aadlen);
}

asmlinkage void
aes_gcm_enc_update_aesni(const struct aes_gcm_key_aesni *key,
			 const u32 le_ctr[4], u8 ghash_acc[16],
			 const u8 *src, u8 *dst, int datalen);
asmlinkage void
aes_gcm_enc_update_aesni_avx(const struct aes_gcm_key_aesni *key,
			     const u32 le_ctr[4], u8 ghash_acc[16],
			     const u8 *src, u8 *dst, int datalen);
asmlinkage void
aes_gcm_enc_update_vaes_avx10_256(const struct aes_gcm_key_avx10 *key,
				  const u32 le_ctr[4], u8 ghash_acc[16],
				  const u8 *src, u8 *dst, int datalen);
asmlinkage void
aes_gcm_enc_update_vaes_avx10_512(const struct aes_gcm_key_avx10 *key,
				  const u32 le_ctr[4], u8 ghash_acc[16],
				  const u8 *src, u8 *dst, int datalen);

asmlinkage void
aes_gcm_dec_update_aesni(const struct aes_gcm_key_aesni *key,
			 const u32 le_ctr[4], u8 ghash_acc[16],
			 const u8 *src, u8 *dst, int datalen);
asmlinkage void
aes_gcm_dec_update_aesni_avx(const struct aes_gcm_key_aesni *key,
			     const u32 le_ctr[4], u8 ghash_acc[16],
			     const u8 *src, u8 *dst, int datalen);
asmlinkage void
aes_gcm_dec_update_vaes_avx10_256(const struct aes_gcm_key_avx10 *key,
				  const u32 le_ctr[4], u8 ghash_acc[16],
				  const u8 *src, u8 *dst, int datalen);
asmlinkage void
aes_gcm_dec_update_vaes_avx10_512(const struct aes_gcm_key_avx10 *key,
				  const u32 le_ctr[4], u8 ghash_acc[16],
				  const u8 *src, u8 *dst, int datalen);

/* __always_inline to optimize out the branches based on @flags */
static __always_inline void
aes_gcm_update(const struct aes_gcm_key *key,
	       const u32 le_ctr[4], u8 ghash_acc[16],
	       const u8 *src, u8 *dst, int datalen, int flags)
{
	if (flags & FLAG_ENC) {
		if (flags & FLAG_AVX10_512)
			aes_gcm_enc_update_vaes_avx10_512(AES_GCM_KEY_AVX10(key),
							  le_ctr, ghash_acc,
							  src, dst, datalen);
		else if (flags & FLAG_AVX10_256)
			aes_gcm_enc_update_vaes_avx10_256(AES_GCM_KEY_AVX10(key),
							  le_ctr, ghash_acc,
							  src, dst, datalen);
		else if (flags & FLAG_AVX)
			aes_gcm_enc_update_aesni_avx(AES_GCM_KEY_AESNI(key),
						     le_ctr, ghash_acc,
						     src, dst, datalen);
		else
			aes_gcm_enc_update_aesni(AES_GCM_KEY_AESNI(key), le_ctr,
						 ghash_acc, src, dst, datalen);
	} else {
		if (flags & FLAG_AVX10_512)
			aes_gcm_dec_update_vaes_avx10_512(AES_GCM_KEY_AVX10(key),
							  le_ctr, ghash_acc,
							  src, dst, datalen);
		else if (flags & FLAG_AVX10_256)
			aes_gcm_dec_update_vaes_avx10_256(AES_GCM_KEY_AVX10(key),
							  le_ctr, ghash_acc,
							  src, dst, datalen);
		else if (flags & FLAG_AVX)
			aes_gcm_dec_update_aesni_avx(AES_GCM_KEY_AESNI(key),
						     le_ctr, ghash_acc,
						     src, dst, datalen);
		else
			aes_gcm_dec_update_aesni(AES_GCM_KEY_AESNI(key),
						 le_ctr, ghash_acc,
						 src, dst, datalen);
	}
}

asmlinkage void
aes_gcm_enc_final_aesni(const struct aes_gcm_key_aesni *key,
			const u32 le_ctr[4], u8 ghash_acc[16],
			u64 total_aadlen, u64 total_datalen);
asmlinkage void
aes_gcm_enc_final_aesni_avx(const struct aes_gcm_key_aesni *key,
			    const u32 le_ctr[4], u8 ghash_acc[16],
			    u64 total_aadlen, u64 total_datalen);
asmlinkage void
aes_gcm_enc_final_vaes_avx10(const struct aes_gcm_key_avx10 *key,
			     const u32 le_ctr[4], u8 ghash_acc[16],
			     u64 total_aadlen, u64 total_datalen);

/* __always_inline to optimize out the branches based on @flags */
static __always_inline void
aes_gcm_enc_final(const struct aes_gcm_key *key,
		  const u32 le_ctr[4], u8 ghash_acc[16],
		  u64 total_aadlen, u64 total_datalen, int flags)
{
	if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512))
		aes_gcm_enc_final_vaes_avx10(AES_GCM_KEY_AVX10(key),
					     le_ctr, ghash_acc,
					     total_aadlen, total_datalen);
	else if (flags & FLAG_AVX)
		aes_gcm_enc_final_aesni_avx(AES_GCM_KEY_AESNI(key),
					    le_ctr, ghash_acc,
					    total_aadlen, total_datalen);
	else
		aes_gcm_enc_final_aesni(AES_GCM_KEY_AESNI(key),
					le_ctr, ghash_acc,
					total_aadlen, total_datalen);
}

asmlinkage bool __must_check
aes_gcm_dec_final_aesni(const struct aes_gcm_key_aesni *key,
			const u32 le_ctr[4], const u8 ghash_acc[16],
			u64 total_aadlen, u64 total_datalen,
			const u8 tag[16], int taglen);
asmlinkage bool __must_check
aes_gcm_dec_final_aesni_avx(const struct aes_gcm_key_aesni *key,
			    const u32 le_ctr[4], const u8 ghash_acc[16],
			    u64 total_aadlen, u64 total_datalen,
			    const u8 tag[16], int taglen);
asmlinkage bool __must_check
aes_gcm_dec_final_vaes_avx10(const struct aes_gcm_key_avx10 *key,
			     const u32 le_ctr[4], const u8 ghash_acc[16],
			     u64 total_aadlen, u64 total_datalen,
			     const u8 tag[16], int taglen);

/* __always_inline to optimize out the branches based on @flags */
static __always_inline bool __must_check
aes_gcm_dec_final(const struct aes_gcm_key *key, const u32 le_ctr[4],
		  u8 ghash_acc[16], u64 total_aadlen, u64 total_datalen,
		  u8 tag[16], int taglen, int flags)
{
	if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512))
		return aes_gcm_dec_final_vaes_avx10(AES_GCM_KEY_AVX10(key),
						    le_ctr, ghash_acc,
						    total_aadlen, total_datalen,
						    tag, taglen);
	else if (flags & FLAG_AVX)
		return aes_gcm_dec_final_aesni_avx(AES_GCM_KEY_AESNI(key),
						   le_ctr, ghash_acc,
						   total_aadlen, total_datalen,
						   tag, taglen);
	else
		return aes_gcm_dec_final_aesni(AES_GCM_KEY_AESNI(key),
					       le_ctr, ghash_acc,
					       total_aadlen, total_datalen,
					       tag, taglen);
}

/*
 * This is the Integrity Check Value (aka the authentication tag) length and can
 * be 8, 12 or 16 bytes long.
 */
static int common_rfc4106_set_authsize(struct crypto_aead *aead,
				       unsigned int authsize)
{
	switch (authsize) {
	case 8:
	case 12:
	case 16:
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
				       unsigned int authsize)
{
	switch (authsize) {
	case 4:
	case 8:
	case 12:
	case 13:
	case 14:
	case 15:
	case 16:
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

/*
 * This is the setkey function for the x86_64 implementations of AES-GCM.  It
 * saves the RFC4106 nonce if applicable, expands the AES key, and precomputes
 * powers of the hash key.
 *
 * To comply with the crypto_aead API, this has to be usable in no-SIMD context.
 * For that reason, this function includes a portable C implementation of the
 * needed logic.  However, the portable C implementation is very slow, taking
 * about the same time as encrypting 37 KB of data.  To be ready for users that
 * may set a key even somewhat frequently, we therefore also include a SIMD
 * assembly implementation, expanding the AES key using AES-NI and precomputing
 * the hash key powers using PCLMULQDQ or VPCLMULQDQ.
 */
static int gcm_setkey(struct crypto_aead *tfm, const u8 *raw_key,
		      unsigned int keylen, int flags)
{
	struct aes_gcm_key *key = aes_gcm_key_get(tfm, flags);
	int err;

	if (flags & FLAG_RFC4106) {
		if (keylen < 4)
			return -EINVAL;
		keylen -= 4;
		key->rfc4106_nonce = get_unaligned_be32(raw_key + keylen);
	}

	/* The assembly code assumes the following offsets. */
	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, base.aes_key.key_enc) != 0);
	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, base.aes_key.key_length) != 480);
	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, h_powers) != 496);
	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, h_powers_xored) != 624);
	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, h_times_x64) != 688);
	BUILD_BUG_ON(offsetof(struct aes_gcm_key_avx10, base.aes_key.key_enc) != 0);
	BUILD_BUG_ON(offsetof(struct aes_gcm_key_avx10, base.aes_key.key_length) != 480);
	BUILD_BUG_ON(offsetof(struct aes_gcm_key_avx10, h_powers) != 512);
	BUILD_BUG_ON(offsetof(struct aes_gcm_key_avx10, padding) != 768);

	if (likely(crypto_simd_usable())) {
		err = aes_check_keylen(keylen);
		if (err)
			return err;
		kernel_fpu_begin();
		aesni_set_key(&key->aes_key, raw_key, keylen);
		aes_gcm_precompute(key, flags);
		kernel_fpu_end();
	} else {
		static const u8 x_to_the_minus1[16] __aligned(__alignof__(be128)) = {
			[0] = 0xc2, [15] = 1
		};
		static const u8 x_to_the_63[16] __aligned(__alignof__(be128)) = {
			[7] = 1,
		};
		be128 h1 = {};
		be128 h;
		int i;

		err = aes_expandkey(&key->aes_key, raw_key, keylen);
		if (err)
			return err;

		/* Encrypt the all-zeroes block to get the hash key H^1 */
		aes_encrypt(&key->aes_key, (u8 *)&h1, (u8 *)&h1);

		/* Compute H^1 * x^-1 */
		h = h1;
		gf128mul_lle(&h, (const be128 *)x_to_the_minus1);

		/* Compute the needed key powers */
		if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512)) {
			struct aes_gcm_key_avx10 *k = AES_GCM_KEY_AVX10(key);

			for (i = ARRAY_SIZE(k->h_powers) - 1; i >= 0; i--) {
				k->h_powers[i][0] = be64_to_cpu(h.b);
				k->h_powers[i][1] = be64_to_cpu(h.a);
				gf128mul_lle(&h, &h1);
			}
			memset(k->padding, 0, sizeof(k->padding));
		} else {
			struct aes_gcm_key_aesni *k = AES_GCM_KEY_AESNI(key);

			for (i = ARRAY_SIZE(k->h_powers) - 1; i >= 0; i--) {
				k->h_powers[i][0] = be64_to_cpu(h.b);
				k->h_powers[i][1] = be64_to_cpu(h.a);
				k->h_powers_xored[i] = k->h_powers[i][0] ^
						       k->h_powers[i][1];
				gf128mul_lle(&h, &h1);
			}
			gf128mul_lle(&h1, (const be128 *)x_to_the_63);
			k->h_times_x64[0] = be64_to_cpu(h1.b);
			k->h_times_x64[1] = be64_to_cpu(h1.a);
		}
	}
	return 0;
}

/*
 * Initialize @ghash_acc, then pass all @assoclen bytes of associated data
 * (a.k.a. additional authenticated data) from @sg_src through the GHASH update
 * assembly function.  kernel_fpu_begin() must have already been called.
 */
static void gcm_process_assoc(const struct aes_gcm_key *key, u8 ghash_acc[16],
			      struct scatterlist *sg_src, unsigned int assoclen,
			      int flags)
{
	struct scatter_walk walk;
	/*
	 * The assembly function requires that the length of any non-last
	 * segment of associated data be a multiple of 16 bytes, so this
	 * function does the buffering needed to achieve that.
	 */
	unsigned int pos = 0;
	u8 buf[16];

	memset(ghash_acc, 0, 16);
	scatterwalk_start(&walk, sg_src);

	while (assoclen) {
		unsigned int len_this_page = scatterwalk_clamp(&walk, assoclen);
		void *mapped = scatterwalk_map(&walk);
		const void *src = mapped;
		unsigned int len;

		assoclen -= len_this_page;
		scatterwalk_advance(&walk, len_this_page);
		if (unlikely(pos)) {
			len = min(len_this_page, 16 - pos);
			memcpy(&buf[pos], src, len);
			pos += len;
			src += len;
			len_this_page -= len;
			if (pos < 16)
				goto next;
			aes_gcm_aad_update(key, ghash_acc, buf, 16, flags);
			pos = 0;
		}
		len = len_this_page;
		if (unlikely(assoclen)) /* Not the last segment yet? */
			len = round_down(len, 16);
		aes_gcm_aad_update(key, ghash_acc, src, len, flags);
		src += len;
		len_this_page -= len;
		if (unlikely(len_this_page)) {
			memcpy(buf, src, len_this_page);
			pos = len_this_page;
		}
next:
		scatterwalk_unmap(mapped);
		scatterwalk_pagedone(&walk, 0, assoclen);
		if (need_resched()) {
			kernel_fpu_end();
			kernel_fpu_begin();
		}
	}
	if (unlikely(pos))
		aes_gcm_aad_update(key, ghash_acc, buf, pos, flags);
}


/* __always_inline to optimize out the branches based on @flags */
static __always_inline int
gcm_crypt(struct aead_request *req, int flags)
{
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	const struct aes_gcm_key *key = aes_gcm_key_get(tfm, flags);
	unsigned int assoclen = req->assoclen;
	struct skcipher_walk walk;
	unsigned int nbytes;
	u8 ghash_acc[16]; /* GHASH accumulator */
	u32 le_ctr[4]; /* Counter in little-endian format */
	int taglen;
	int err;

	/* Initialize the counter and determine the associated data length. */
	le_ctr[0] = 2;
	if (flags & FLAG_RFC4106) {
		if (unlikely(assoclen != 16 && assoclen != 20))
			return -EINVAL;
		assoclen -= 8;
		le_ctr[1] = get_unaligned_be32(req->iv + 4);
		le_ctr[2] = get_unaligned_be32(req->iv + 0);
		le_ctr[3] = key->rfc4106_nonce; /* already byte-swapped */
	} else {
		le_ctr[1] = get_unaligned_be32(req->iv + 8);
		le_ctr[2] = get_unaligned_be32(req->iv + 4);
		le_ctr[3] = get_unaligned_be32(req->iv + 0);
	}

	/* Begin walking through the plaintext or ciphertext. */
	if (flags & FLAG_ENC)
		err = skcipher_walk_aead_encrypt(&walk, req, false);
	else
		err = skcipher_walk_aead_decrypt(&walk, req, false);

	/*
	 * Since the AES-GCM assembly code requires that at least three assembly
	 * functions be called to process any message (this is needed to support
	 * incremental updates cleanly), to reduce overhead we try to do all
	 * three calls in the same kernel FPU section if possible.  We close the
	 * section and start a new one if there are multiple data segments or if
	 * rescheduling is needed while processing the associated data.
	 */
	kernel_fpu_begin();

	/* Pass the associated data through GHASH. */
	gcm_process_assoc(key, ghash_acc, req->src, assoclen, flags);

	/* En/decrypt the data and pass the ciphertext through GHASH. */
	while ((nbytes = walk.nbytes) != 0) {
		if (unlikely(nbytes < walk.total)) {
			/*
			 * Non-last segment.  In this case, the assembly
			 * function requires that the length be a multiple of 16
			 * (AES_BLOCK_SIZE) bytes.  The needed buffering of up
			 * to 16 bytes is handled by the skcipher_walk.  Here we
			 * just need to round down to a multiple of 16.
			 */
			nbytes = round_down(nbytes, AES_BLOCK_SIZE);
			aes_gcm_update(key, le_ctr, ghash_acc,
				       walk.src.virt.addr, walk.dst.virt.addr,
				       nbytes, flags);
			le_ctr[0] += nbytes / AES_BLOCK_SIZE;
			kernel_fpu_end();
			err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
			kernel_fpu_begin();
		} else {
			/* Last segment: process all remaining data. */
			aes_gcm_update(key, le_ctr, ghash_acc,
				       walk.src.virt.addr, walk.dst.virt.addr,
				       nbytes, flags);
			err = skcipher_walk_done(&walk, 0);
			/*
			 * The low word of the counter isn't used by the
			 * finalize, so there's no need to increment it here.
			 */
		}
	}
	if (err)
		goto out;

	/* Finalize */
	taglen = crypto_aead_authsize(tfm);
	if (flags & FLAG_ENC) {
		/* Finish computing the auth tag. */
		aes_gcm_enc_final(key, le_ctr, ghash_acc, assoclen,
				  req->cryptlen, flags);

		/* Store the computed auth tag in the dst scatterlist. */
		scatterwalk_map_and_copy(ghash_acc, req->dst, req->assoclen +
					 req->cryptlen, taglen, 1);
	} else {
		unsigned int datalen = req->cryptlen - taglen;
		u8 tag[16];

		/* Get the transmitted auth tag from the src scatterlist. */
		scatterwalk_map_and_copy(tag, req->src, req->assoclen + datalen,
					 taglen, 0);
		/*
		 * Finish computing the auth tag and compare it to the
		 * transmitted one.  The assembly function does the actual tag
		 * comparison.  Here, just check the boolean result.
		 */
		if (!aes_gcm_dec_final(key, le_ctr, ghash_acc, assoclen,
				       datalen, tag, taglen, flags))
			err = -EBADMSG;
	}
out:
	kernel_fpu_end();
	return err;
}

#define DEFINE_GCM_ALGS(suffix, flags, generic_driver_name, rfc_driver_name,   \
			ctxsize, priority)				       \
									       \
static int gcm_setkey_##suffix(struct crypto_aead *tfm, const u8 *raw_key,     \
			       unsigned int keylen)			       \
{									       \
	return gcm_setkey(tfm, raw_key, keylen, (flags));		       \
}									       \
									       \
static int gcm_encrypt_##suffix(struct aead_request *req)		       \
{									       \
	return gcm_crypt(req, (flags) | FLAG_ENC);			       \
}									       \
									       \
static int gcm_decrypt_##suffix(struct aead_request *req)		       \
{									       \
	return gcm_crypt(req, (flags));					       \
}									       \
									       \
static int rfc4106_setkey_##suffix(struct crypto_aead *tfm, const u8 *raw_key, \
				   unsigned int keylen)			       \
{									       \
	return gcm_setkey(tfm, raw_key, keylen, (flags) | FLAG_RFC4106);       \
}									       \
									       \
static int rfc4106_encrypt_##suffix(struct aead_request *req)		       \
{									       \
	return gcm_crypt(req, (flags) | FLAG_RFC4106 | FLAG_ENC);	       \
}									       \
									       \
static int rfc4106_decrypt_##suffix(struct aead_request *req)		       \
{									       \
	return gcm_crypt(req, (flags) | FLAG_RFC4106);			       \
}									       \
									       \
static struct aead_alg aes_gcm_algs_##suffix[] = { {			       \
	.setkey			= gcm_setkey_##suffix,			       \
	.setauthsize		= generic_gcmaes_set_authsize,		       \
	.encrypt		= gcm_encrypt_##suffix,			       \
	.decrypt		= gcm_decrypt_##suffix,			       \
	.ivsize			= GCM_AES_IV_SIZE,			       \
	.chunksize		= AES_BLOCK_SIZE,			       \
	.maxauthsize		= 16,					       \
	.base = {							       \
		.cra_name		= "__gcm(aes)",			       \
		.cra_driver_name	= "__" generic_driver_name,	       \
		.cra_priority		= (priority),			       \
		.cra_flags		= CRYPTO_ALG_INTERNAL,		       \
		.cra_blocksize		= 1,				       \
		.cra_ctxsize		= (ctxsize),			       \
		.cra_module		= THIS_MODULE,			       \
	},								       \
}, {									       \
	.setkey			= rfc4106_setkey_##suffix,		       \
	.setauthsize		= common_rfc4106_set_authsize,		       \
	.encrypt		= rfc4106_encrypt_##suffix,		       \
	.decrypt		= rfc4106_decrypt_##suffix,		       \
	.ivsize			= GCM_RFC4106_IV_SIZE,			       \
	.chunksize		= AES_BLOCK_SIZE,			       \
	.maxauthsize		= 16,					       \
	.base = {							       \
		.cra_name		= "__rfc4106(gcm(aes))",	       \
		.cra_driver_name	= "__" rfc_driver_name,		       \
		.cra_priority		= (priority),			       \
		.cra_flags		= CRYPTO_ALG_INTERNAL,		       \
		.cra_blocksize		= 1,				       \
		.cra_ctxsize		= (ctxsize),			       \
		.cra_module		= THIS_MODULE,			       \
	},								       \
} };									       \
									       \
static struct simd_aead_alg *aes_gcm_simdalgs_##suffix[2]		       \

/* aes_gcm_algs_aesni */
DEFINE_GCM_ALGS(aesni, /* no flags */ 0,
		"generic-gcm-aesni", "rfc4106-gcm-aesni",
		AES_GCM_KEY_AESNI_SIZE, 400);

/* aes_gcm_algs_aesni_avx */
DEFINE_GCM_ALGS(aesni_avx, FLAG_AVX,
		"generic-gcm-aesni-avx", "rfc4106-gcm-aesni-avx",
		AES_GCM_KEY_AESNI_SIZE, 500);

#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
/* aes_gcm_algs_vaes_avx10_256 */
DEFINE_GCM_ALGS(vaes_avx10_256, FLAG_AVX10_256,
		"generic-gcm-vaes-avx10_256", "rfc4106-gcm-vaes-avx10_256",
		AES_GCM_KEY_AVX10_SIZE, 700);

/* aes_gcm_algs_vaes_avx10_512 */
DEFINE_GCM_ALGS(vaes_avx10_512, FLAG_AVX10_512,
		"generic-gcm-vaes-avx10_512", "rfc4106-gcm-vaes-avx10_512",
		AES_GCM_KEY_AVX10_SIZE, 800);
#endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */

/*
 * This is a list of CPU models that are known to suffer from downclocking when
 * zmm registers (512-bit vectors) are used.  On these CPUs, the AES mode
 * implementations with zmm registers won't be used by default.  Implementations
 * with ymm registers (256-bit vectors) will be used by default instead.
 */
static const struct x86_cpu_id zmm_exclusion_list[] = {
	X86_MATCH_VFM(INTEL_SKYLAKE_X,		0),
	X86_MATCH_VFM(INTEL_ICELAKE_X,		0),
	X86_MATCH_VFM(INTEL_ICELAKE_D,		0),
	X86_MATCH_VFM(INTEL_ICELAKE,		0),
	X86_MATCH_VFM(INTEL_ICELAKE_L,		0),
	X86_MATCH_VFM(INTEL_ICELAKE_NNPI,	0),
	X86_MATCH_VFM(INTEL_TIGERLAKE_L,	0),
	X86_MATCH_VFM(INTEL_TIGERLAKE,		0),
	/* Allow Rocket Lake and later, and Sapphire Rapids and later. */
	/* Also allow AMD CPUs (starting with Zen 4, the first with AVX-512). */
	{},
};

static int __init register_avx_algs(void)
{
	int err;

	if (!boot_cpu_has(X86_FEATURE_AVX))
		return 0;
	err = simd_register_skciphers_compat(&aes_xts_alg_aesni_avx, 1,
					     &aes_xts_simdalg_aesni_avx);
	if (err)
		return err;
	err = simd_register_aeads_compat(aes_gcm_algs_aesni_avx,
					 ARRAY_SIZE(aes_gcm_algs_aesni_avx),
					 aes_gcm_simdalgs_aesni_avx);
	if (err)
		return err;
#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
	if (!boot_cpu_has(X86_FEATURE_AVX2) ||
	    !boot_cpu_has(X86_FEATURE_VAES) ||
	    !boot_cpu_has(X86_FEATURE_VPCLMULQDQ) ||
	    !boot_cpu_has(X86_FEATURE_PCLMULQDQ) ||
	    !cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL))
		return 0;
	err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx2, 1,
					     &aes_xts_simdalg_vaes_avx2);
	if (err)
		return err;

	if (!boot_cpu_has(X86_FEATURE_AVX512BW) ||
	    !boot_cpu_has(X86_FEATURE_AVX512VL) ||
	    !boot_cpu_has(X86_FEATURE_BMI2) ||
	    !cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM |
			       XFEATURE_MASK_AVX512, NULL))
		return 0;

	err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx10_256, 1,
					     &aes_xts_simdalg_vaes_avx10_256);
	if (err)
		return err;
	err = simd_register_aeads_compat(aes_gcm_algs_vaes_avx10_256,
					 ARRAY_SIZE(aes_gcm_algs_vaes_avx10_256),
					 aes_gcm_simdalgs_vaes_avx10_256);
	if (err)
		return err;

	if (x86_match_cpu(zmm_exclusion_list)) {
		int i;

		aes_xts_alg_vaes_avx10_512.base.cra_priority = 1;
		for (i = 0; i < ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512); i++)
			aes_gcm_algs_vaes_avx10_512[i].base.cra_priority = 1;
	}

	err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx10_512, 1,
					     &aes_xts_simdalg_vaes_avx10_512);
	if (err)
		return err;
	err = simd_register_aeads_compat(aes_gcm_algs_vaes_avx10_512,
					 ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512),
					 aes_gcm_simdalgs_vaes_avx10_512);
	if (err)
		return err;
#endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */
	return 0;
}

static void unregister_avx_algs(void)
{
	if (aes_xts_simdalg_aesni_avx)
		simd_unregister_skciphers(&aes_xts_alg_aesni_avx, 1,
					  &aes_xts_simdalg_aesni_avx);
	if (aes_gcm_simdalgs_aesni_avx[0])
		simd_unregister_aeads(aes_gcm_algs_aesni_avx,
				      ARRAY_SIZE(aes_gcm_algs_aesni_avx),
				      aes_gcm_simdalgs_aesni_avx);
#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
	if (aes_xts_simdalg_vaes_avx2)
		simd_unregister_skciphers(&aes_xts_alg_vaes_avx2, 1,
					  &aes_xts_simdalg_vaes_avx2);
	if (aes_xts_simdalg_vaes_avx10_256)
		simd_unregister_skciphers(&aes_xts_alg_vaes_avx10_256, 1,
					  &aes_xts_simdalg_vaes_avx10_256);
	if (aes_gcm_simdalgs_vaes_avx10_256[0])
		simd_unregister_aeads(aes_gcm_algs_vaes_avx10_256,
				      ARRAY_SIZE(aes_gcm_algs_vaes_avx10_256),
				      aes_gcm_simdalgs_vaes_avx10_256);
	if (aes_xts_simdalg_vaes_avx10_512)
		simd_unregister_skciphers(&aes_xts_alg_vaes_avx10_512, 1,
					  &aes_xts_simdalg_vaes_avx10_512);
	if (aes_gcm_simdalgs_vaes_avx10_512[0])
		simd_unregister_aeads(aes_gcm_algs_vaes_avx10_512,
				      ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512),
				      aes_gcm_simdalgs_vaes_avx10_512);
#endif
}
#else /* CONFIG_X86_64 */
static struct aead_alg aes_gcm_algs_aesni[0];
static struct simd_aead_alg *aes_gcm_simdalgs_aesni[0];

static int __init register_avx_algs(void)
{
	return 0;
}

static void unregister_avx_algs(void)
{
}
#endif /* !CONFIG_X86_64 */

static const struct x86_cpu_id aesni_cpu_id[] = {
	X86_MATCH_FEATURE(X86_FEATURE_AES, NULL),
	{}
};
MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);

static int __init aesni_init(void)
{
	int err;

	if (!x86_match_cpu(aesni_cpu_id))
		return -ENODEV;
#ifdef CONFIG_X86_64
	if (boot_cpu_has(X86_FEATURE_AVX)) {
		/* optimize performance of ctr mode encryption transform */
		static_call_update(aesni_ctr_enc_tfm, aesni_ctr_enc_avx_tfm);
		pr_info("AES CTR mode by8 optimization enabled\n");
	}
#endif /* CONFIG_X86_64 */

	err = crypto_register_alg(&aesni_cipher_alg);
	if (err)
		return err;

	err = simd_register_skciphers_compat(aesni_skciphers,
					     ARRAY_SIZE(aesni_skciphers),
					     aesni_simd_skciphers);
	if (err)
		goto unregister_cipher;

	err = simd_register_aeads_compat(aes_gcm_algs_aesni,
					 ARRAY_SIZE(aes_gcm_algs_aesni),
					 aes_gcm_simdalgs_aesni);
	if (err)
		goto unregister_skciphers;

#ifdef CONFIG_X86_64
	if (boot_cpu_has(X86_FEATURE_AVX))
		err = simd_register_skciphers_compat(&aesni_xctr, 1,
						     &aesni_simd_xctr);
	if (err)
		goto unregister_aeads;
#endif /* CONFIG_X86_64 */

	err = register_avx_algs();
	if (err)
		goto unregister_avx;

	return 0;

unregister_avx:
	unregister_avx_algs();
#ifdef CONFIG_X86_64
	if (aesni_simd_xctr)
		simd_unregister_skciphers(&aesni_xctr, 1, &aesni_simd_xctr);
unregister_aeads:
#endif /* CONFIG_X86_64 */
	simd_unregister_aeads(aes_gcm_algs_aesni,
			      ARRAY_SIZE(aes_gcm_algs_aesni),
			      aes_gcm_simdalgs_aesni);
unregister_skciphers:
	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
				  aesni_simd_skciphers);
unregister_cipher:
	crypto_unregister_alg(&aesni_cipher_alg);
	return err;
}

static void __exit aesni_exit(void)
{
	simd_unregister_aeads(aes_gcm_algs_aesni,
			      ARRAY_SIZE(aes_gcm_algs_aesni),
			      aes_gcm_simdalgs_aesni);
	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
				  aesni_simd_skciphers);
	crypto_unregister_alg(&aesni_cipher_alg);
#ifdef CONFIG_X86_64
	if (boot_cpu_has(X86_FEATURE_AVX))
		simd_unregister_skciphers(&aesni_xctr, 1, &aesni_simd_xctr);
#endif /* CONFIG_X86_64 */
	unregister_avx_algs();
}

late_initcall(aesni_init);
module_exit(aesni_exit);

MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CRYPTO("aes");