1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* AES-XTS for modern x86_64 CPUs
*
* Copyright 2024 Google LLC
*
* Author: Eric Biggers <ebiggers@google.com>
*/
/*
* This file implements AES-XTS for modern x86_64 CPUs. To handle the
* complexities of coding for x86 SIMD, e.g. where every vector length needs
* different code, it uses a macro to generate several implementations that
* share similar source code but are targeted at different CPUs, listed below:
*
* AES-NI + AVX
* - 128-bit vectors (1 AES block per vector)
* - VEX-coded instructions
* - xmm0-xmm15
* - This is for older CPUs that lack VAES but do have AVX.
*
* VAES + VPCLMULQDQ + AVX2
* - 256-bit vectors (2 AES blocks per vector)
* - VEX-coded instructions
* - ymm0-ymm15
* - This is for CPUs that have VAES but lack AVX512 or AVX10,
* e.g. Intel's Alder Lake and AMD's Zen 3.
*
* VAES + VPCLMULQDQ + AVX10/256 + BMI2
* - 256-bit vectors (2 AES blocks per vector)
* - EVEX-coded instructions
* - ymm0-ymm31
* - This is for CPUs that have AVX512 but where using zmm registers causes
* downclocking, and for CPUs that have AVX10/256 but not AVX10/512.
* - By "AVX10/256" we really mean (AVX512BW + AVX512VL) || AVX10/256.
* To avoid confusion with 512-bit, we just write AVX10/256.
*
* VAES + VPCLMULQDQ + AVX10/512 + BMI2
* - Same as the previous one, but upgrades to 512-bit vectors
* (4 AES blocks per vector) in zmm0-zmm31.
* - This is for CPUs that have good AVX512 or AVX10/512 support.
*
* This file doesn't have an implementation for AES-NI alone (without AVX), as
* the lack of VEX would make all the assembly code different.
*
* When we use VAES, we also use VPCLMULQDQ to parallelize the computation of
* the XTS tweaks. This avoids a bottleneck. Currently there don't seem to be
* any CPUs that support VAES but not VPCLMULQDQ. If that changes, we might
* need to start also providing an implementation using VAES alone.
*
* The AES-XTS implementations in this file support everything required by the
* crypto API, including support for arbitrary input lengths and multi-part
* processing. However, they are most heavily optimized for the common case of
* power-of-2 length inputs that are processed in a single part (disk sectors).
*/
#include <linux/linkage.h>
#include <linux/cfi_types.h>
.section .rodata
.p2align 4
.Lgf_poly:
// The low 64 bits of this value represent the polynomial x^7 + x^2 + x
// + 1. It is the value that must be XOR'd into the low 64 bits of the
// tweak each time a 1 is carried out of the high 64 bits.
//
// The high 64 bits of this value is just the internal carry bit that
// exists when there's a carry out of the low 64 bits of the tweak.
.quad 0x87, 1
// This table contains constants for vpshufb and vpblendvb, used to
// handle variable byte shifts and blending during ciphertext stealing
// on CPUs that don't support AVX10-style masking.
.Lcts_permute_table:
.byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
.byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
.byte 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
.byte 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
.byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
.byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
.text
// Function parameters
.set KEY, %rdi // Initially points to crypto_aes_ctx, then is
// advanced to point to 7th-from-last round key
.set SRC, %rsi // Pointer to next source data
.set DST, %rdx // Pointer to next destination data
.set LEN, %ecx // Remaining length in bytes
.set LEN8, %cl
.set LEN64, %rcx
.set TWEAK, %r8 // Pointer to next tweak
// %rax holds the AES key length in bytes.
.set KEYLEN, %eax
.set KEYLEN64, %rax
// %r9-r11 are available as temporaries.
.macro _define_Vi i
.if VL == 16
.set V\i, %xmm\i
.elseif VL == 32
.set V\i, %ymm\i
.elseif VL == 64
.set V\i, %zmm\i
.else
.error "Unsupported Vector Length (VL)"
.endif
.endm
.macro _define_aliases
// Define register aliases V0-V15, or V0-V31 if all 32 SIMD registers
// are available, that map to the xmm, ymm, or zmm registers according
// to the selected Vector Length (VL).
_define_Vi 0
_define_Vi 1
_define_Vi 2
_define_Vi 3
_define_Vi 4
_define_Vi 5
_define_Vi 6
_define_Vi 7
_define_Vi 8
_define_Vi 9
_define_Vi 10
_define_Vi 11
_define_Vi 12
_define_Vi 13
_define_Vi 14
_define_Vi 15
.if USE_AVX10
_define_Vi 16
_define_Vi 17
_define_Vi 18
_define_Vi 19
_define_Vi 20
_define_Vi 21
_define_Vi 22
_define_Vi 23
_define_Vi 24
_define_Vi 25
_define_Vi 26
_define_Vi 27
_define_Vi 28
_define_Vi 29
_define_Vi 30
_define_Vi 31
.endif
// V0-V3 hold the data blocks during the main loop, or temporary values
// otherwise. V4-V5 hold temporary values.
// V6-V9 hold XTS tweaks. Each 128-bit lane holds one tweak.
.set TWEAK0_XMM, %xmm6
.set TWEAK0, V6
.set TWEAK1_XMM, %xmm7
.set TWEAK1, V7
.set TWEAK2, V8
.set TWEAK3, V9
// V10-V13 are used for computing the next values of TWEAK[0-3].
.set NEXT_TWEAK0, V10
.set NEXT_TWEAK1, V11
.set NEXT_TWEAK2, V12
.set NEXT_TWEAK3, V13
// V14 holds the constant from .Lgf_poly, copied to all 128-bit lanes.
.set GF_POLY_XMM, %xmm14
.set GF_POLY, V14
// V15 holds the key for AES "round 0", copied to all 128-bit lanes.
.set KEY0_XMM, %xmm15
.set KEY0, V15
// If 32 SIMD registers are available, then V16-V29 hold the remaining
// AES round keys, copied to all 128-bit lanes.
//
// AES-128, AES-192, and AES-256 use different numbers of round keys.
// To allow handling all three variants efficiently, we align the round
// keys to the *end* of this register range. I.e., AES-128 uses
// KEY5-KEY14, AES-192 uses KEY3-KEY14, and AES-256 uses KEY1-KEY14.
// (All also use KEY0 for the XOR-only "round" at the beginning.)
.if USE_AVX10
.set KEY1_XMM, %xmm16
.set KEY1, V16
.set KEY2_XMM, %xmm17
.set KEY2, V17
.set KEY3_XMM, %xmm18
.set KEY3, V18
.set KEY4_XMM, %xmm19
.set KEY4, V19
.set KEY5_XMM, %xmm20
.set KEY5, V20
.set KEY6_XMM, %xmm21
.set KEY6, V21
.set KEY7_XMM, %xmm22
.set KEY7, V22
.set KEY8_XMM, %xmm23
.set KEY8, V23
.set KEY9_XMM, %xmm24
.set KEY9, V24
.set KEY10_XMM, %xmm25
.set KEY10, V25
.set KEY11_XMM, %xmm26
.set KEY11, V26
.set KEY12_XMM, %xmm27
.set KEY12, V27
.set KEY13_XMM, %xmm28
.set KEY13, V28
.set KEY14_XMM, %xmm29
.set KEY14, V29
.endif
// V30-V31 are currently unused.
.endm
// Move a vector between memory and a register.
.macro _vmovdqu src, dst
.if VL < 64
vmovdqu \src, \dst
.else
vmovdqu8 \src, \dst
.endif
.endm
// Broadcast a 128-bit value into a vector.
.macro _vbroadcast128 src, dst
.if VL == 16 && !USE_AVX10
vmovdqu \src, \dst
.elseif VL == 32 && !USE_AVX10
vbroadcasti128 \src, \dst
.else
vbroadcasti32x4 \src, \dst
.endif
.endm
// XOR two vectors together.
.macro _vpxor src1, src2, dst
.if USE_AVX10
vpxord \src1, \src2, \dst
.else
vpxor \src1, \src2, \dst
.endif
.endm
// XOR three vectors together.
.macro _xor3 src1, src2, src3_and_dst
.if USE_AVX10
// vpternlogd with immediate 0x96 is a three-argument XOR.
vpternlogd $0x96, \src1, \src2, \src3_and_dst
.else
vpxor \src1, \src3_and_dst, \src3_and_dst
vpxor \src2, \src3_and_dst, \src3_and_dst
.endif
.endm
// Given a 128-bit XTS tweak in the xmm register \src, compute the next tweak
// (by multiplying by the polynomial 'x') and write it to \dst.
.macro _next_tweak src, tmp, dst
vpshufd $0x13, \src, \tmp
vpaddq \src, \src, \dst
vpsrad $31, \tmp, \tmp
vpand GF_POLY_XMM, \tmp, \tmp
vpxor \tmp, \dst, \dst
.endm
// Given the XTS tweak(s) in the vector \src, compute the next vector of
// tweak(s) (by multiplying by the polynomial 'x^(VL/16)') and write it to \dst.
//
// If VL > 16, then there are multiple tweaks, and we use vpclmulqdq to compute
// all tweaks in the vector in parallel. If VL=16, we just do the regular
// computation without vpclmulqdq, as it's the faster method for a single tweak.
.macro _next_tweakvec src, tmp1, tmp2, dst
.if VL == 16
_next_tweak \src, \tmp1, \dst
.else
vpsrlq $64 - VL/16, \src, \tmp1
vpclmulqdq $0x01, GF_POLY, \tmp1, \tmp2
vpslldq $8, \tmp1, \tmp1
vpsllq $VL/16, \src, \dst
_xor3 \tmp1, \tmp2, \dst
.endif
.endm
// Given the first XTS tweak at (TWEAK), compute the first set of tweaks and
// store them in the vector registers TWEAK0-TWEAK3. Clobbers V0-V5.
.macro _compute_first_set_of_tweaks
vmovdqu (TWEAK), TWEAK0_XMM
_vbroadcast128 .Lgf_poly(%rip), GF_POLY
.if VL == 16
// With VL=16, multiplying by x serially is fastest.
_next_tweak TWEAK0, %xmm0, TWEAK1
_next_tweak TWEAK1, %xmm0, TWEAK2
_next_tweak TWEAK2, %xmm0, TWEAK3
.else
.if VL == 32
// Compute the second block of TWEAK0.
_next_tweak TWEAK0_XMM, %xmm0, %xmm1
vinserti128 $1, %xmm1, TWEAK0, TWEAK0
.elseif VL == 64
// Compute the remaining blocks of TWEAK0.
_next_tweak TWEAK0_XMM, %xmm0, %xmm1
_next_tweak %xmm1, %xmm0, %xmm2
_next_tweak %xmm2, %xmm0, %xmm3
vinserti32x4 $1, %xmm1, TWEAK0, TWEAK0
vinserti32x4 $2, %xmm2, TWEAK0, TWEAK0
vinserti32x4 $3, %xmm3, TWEAK0, TWEAK0
.endif
// Compute TWEAK[1-3] from TWEAK0.
vpsrlq $64 - 1*VL/16, TWEAK0, V0
vpsrlq $64 - 2*VL/16, TWEAK0, V2
vpsrlq $64 - 3*VL/16, TWEAK0, V4
vpclmulqdq $0x01, GF_POLY, V0, V1
vpclmulqdq $0x01, GF_POLY, V2, V3
vpclmulqdq $0x01, GF_POLY, V4, V5
vpslldq $8, V0, V0
vpslldq $8, V2, V2
vpslldq $8, V4, V4
vpsllq $1*VL/16, TWEAK0, TWEAK1
vpsllq $2*VL/16, TWEAK0, TWEAK2
vpsllq $3*VL/16, TWEAK0, TWEAK3
.if USE_AVX10
vpternlogd $0x96, V0, V1, TWEAK1
vpternlogd $0x96, V2, V3, TWEAK2
vpternlogd $0x96, V4, V5, TWEAK3
.else
vpxor V0, TWEAK1, TWEAK1
vpxor V2, TWEAK2, TWEAK2
vpxor V4, TWEAK3, TWEAK3
vpxor V1, TWEAK1, TWEAK1
vpxor V3, TWEAK2, TWEAK2
vpxor V5, TWEAK3, TWEAK3
.endif
.endif
.endm
// Do one step in computing the next set of tweaks using the method of just
// multiplying by x repeatedly (the same method _next_tweak uses).
.macro _tweak_step_mulx i
.if \i == 0
.set PREV_TWEAK, TWEAK3
.set NEXT_TWEAK, NEXT_TWEAK0
.elseif \i == 5
.set PREV_TWEAK, NEXT_TWEAK0
.set NEXT_TWEAK, NEXT_TWEAK1
.elseif \i == 10
.set PREV_TWEAK, NEXT_TWEAK1
.set NEXT_TWEAK, NEXT_TWEAK2
.elseif \i == 15
.set PREV_TWEAK, NEXT_TWEAK2
.set NEXT_TWEAK, NEXT_TWEAK3
.endif
.if \i >= 0 && \i < 20 && \i % 5 == 0
vpshufd $0x13, PREV_TWEAK, V5
.elseif \i >= 0 && \i < 20 && \i % 5 == 1
vpaddq PREV_TWEAK, PREV_TWEAK, NEXT_TWEAK
.elseif \i >= 0 && \i < 20 && \i % 5 == 2
vpsrad $31, V5, V5
.elseif \i >= 0 && \i < 20 && \i % 5 == 3
vpand GF_POLY, V5, V5
.elseif \i >= 0 && \i < 20 && \i % 5 == 4
vpxor V5, NEXT_TWEAK, NEXT_TWEAK
.elseif \i == 1000
vmovdqa NEXT_TWEAK0, TWEAK0
vmovdqa NEXT_TWEAK1, TWEAK1
vmovdqa NEXT_TWEAK2, TWEAK2
vmovdqa NEXT_TWEAK3, TWEAK3
.endif
.endm
// Do one step in computing the next set of tweaks using the VPCLMULQDQ method
// (the same method _next_tweakvec uses for VL > 16). This means multiplying
// each tweak by x^(4*VL/16) independently. Since 4*VL/16 is a multiple of 8
// when VL > 16 (which it is here), the needed shift amounts are byte-aligned,
// which allows the use of vpsrldq and vpslldq to do 128-bit wide shifts.
.macro _tweak_step_pclmul i
.if \i == 0
vpsrldq $(128 - 4*VL/16) / 8, TWEAK0, NEXT_TWEAK0
.elseif \i == 2
vpsrldq $(128 - 4*VL/16) / 8, TWEAK1, NEXT_TWEAK1
.elseif \i == 4
vpsrldq $(128 - 4*VL/16) / 8, TWEAK2, NEXT_TWEAK2
.elseif \i == 6
vpsrldq $(128 - 4*VL/16) / 8, TWEAK3, NEXT_TWEAK3
.elseif \i == 8
vpclmulqdq $0x00, GF_POLY, NEXT_TWEAK0, NEXT_TWEAK0
.elseif \i == 10
vpclmulqdq $0x00, GF_POLY, NEXT_TWEAK1, NEXT_TWEAK1
.elseif \i == 12
vpclmulqdq $0x00, GF_POLY, NEXT_TWEAK2, NEXT_TWEAK2
.elseif \i == 14
vpclmulqdq $0x00, GF_POLY, NEXT_TWEAK3, NEXT_TWEAK3
.elseif \i == 1000
vpslldq $(4*VL/16) / 8, TWEAK0, TWEAK0
vpslldq $(4*VL/16) / 8, TWEAK1, TWEAK1
vpslldq $(4*VL/16) / 8, TWEAK2, TWEAK2
vpslldq $(4*VL/16) / 8, TWEAK3, TWEAK3
_vpxor NEXT_TWEAK0, TWEAK0, TWEAK0
_vpxor NEXT_TWEAK1, TWEAK1, TWEAK1
_vpxor NEXT_TWEAK2, TWEAK2, TWEAK2
_vpxor NEXT_TWEAK3, TWEAK3, TWEAK3
.endif
.endm
// _tweak_step does one step of the computation of the next set of tweaks from
// TWEAK[0-3]. To complete all steps, this is invoked with increasing values of
// \i that include at least 0 through 19, then 1000 which signals the last step.
//
// This is used to interleave the computation of the next set of tweaks with the
// AES en/decryptions, which increases performance in some cases.
.macro _tweak_step i
.if VL == 16
_tweak_step_mulx \i
.else
_tweak_step_pclmul \i
.endif
.endm
.macro _setup_round_keys enc
// Select either the encryption round keys or the decryption round keys.
.if \enc
.set OFFS, 0
.else
.set OFFS, 240
.endif
// Load the round key for "round 0".
_vbroadcast128 OFFS(KEY), KEY0
// Increment KEY to make it so that 7*16(KEY) is the last round key.
// For AES-128, increment by 3*16, resulting in the 10 round keys (not
// counting the zero-th round key which was just loaded into KEY0) being
// -2*16(KEY) through 7*16(KEY). For AES-192, increment by 5*16 and use
// 12 round keys -4*16(KEY) through 7*16(KEY). For AES-256, increment
// by 7*16 and use 14 round keys -6*16(KEY) through 7*16(KEY).
//
// This rebasing provides two benefits. First, it makes the offset to
// any round key be in the range [-96, 112], fitting in a signed byte.
// This shortens VEX-encoded instructions that access the later round
// keys which otherwise would need 4-byte offsets. Second, it makes it
// easy to do AES-128 and AES-192 by skipping irrelevant rounds at the
// beginning. Skipping rounds at the end doesn't work as well because
// the last round needs different instructions.
//
// An alternative approach would be to roll up all the round loops. We
// don't do that because it isn't compatible with caching the round keys
// in registers which we do when possible (see below), and also because
// it seems unwise to rely *too* heavily on the CPU's branch predictor.
lea OFFS-16(KEY, KEYLEN64, 4), KEY
// If all 32 SIMD registers are available, cache all the round keys.
.if USE_AVX10
cmp $24, KEYLEN
jl .Laes128\@
je .Laes192\@
_vbroadcast128 -6*16(KEY), KEY1
_vbroadcast128 -5*16(KEY), KEY2
.Laes192\@:
_vbroadcast128 -4*16(KEY), KEY3
_vbroadcast128 -3*16(KEY), KEY4
.Laes128\@:
_vbroadcast128 -2*16(KEY), KEY5
_vbroadcast128 -1*16(KEY), KEY6
_vbroadcast128 0*16(KEY), KEY7
_vbroadcast128 1*16(KEY), KEY8
_vbroadcast128 2*16(KEY), KEY9
_vbroadcast128 3*16(KEY), KEY10
_vbroadcast128 4*16(KEY), KEY11
_vbroadcast128 5*16(KEY), KEY12
_vbroadcast128 6*16(KEY), KEY13
_vbroadcast128 7*16(KEY), KEY14
.endif
.endm
// Do a single round of AES encryption (if \enc==1) or decryption (if \enc==0)
// on the block(s) in \data using the round key(s) in \key. The register length
// determines the number of AES blocks en/decrypted.
.macro _vaes enc, last, key, data
.if \enc
.if \last
vaesenclast \key, \data, \data
.else
vaesenc \key, \data, \data
.endif
.else
.if \last
vaesdeclast \key, \data, \data
.else
vaesdec \key, \data, \data
.endif
.endif
.endm
// Do a single round of AES en/decryption on the block(s) in \data, using the
// same key for all block(s). The round key is loaded from the appropriate
// register or memory location for round \i. May clobber V4.
.macro _vaes_1x enc, last, i, xmm_suffix, data
.if USE_AVX10
_vaes \enc, \last, KEY\i\xmm_suffix, \data
.else
.ifnb \xmm_suffix
_vaes \enc, \last, (\i-7)*16(KEY), \data
.else
_vbroadcast128 (\i-7)*16(KEY), V4
_vaes \enc, \last, V4, \data
.endif
.endif
.endm
// Do a single round of AES en/decryption on the blocks in registers V0-V3,
// using the same key for all blocks. The round key is loaded from the
// appropriate register or memory location for round \i. In addition, does two
// steps of the computation of the next set of tweaks. May clobber V4.
.macro _vaes_4x enc, last, i
.if USE_AVX10
_tweak_step (2*(\i-5))
_vaes \enc, \last, KEY\i, V0
_vaes \enc, \last, KEY\i, V1
_tweak_step (2*(\i-5) + 1)
_vaes \enc, \last, KEY\i, V2
_vaes \enc, \last, KEY\i, V3
.else
_vbroadcast128 (\i-7)*16(KEY), V4
_tweak_step (2*(\i-5))
_vaes \enc, \last, V4, V0
_vaes \enc, \last, V4, V1
_tweak_step (2*(\i-5) + 1)
_vaes \enc, \last, V4, V2
_vaes \enc, \last, V4, V3
.endif
.endm
// Do tweaked AES en/decryption (i.e., XOR with \tweak, then AES en/decrypt,
// then XOR with \tweak again) of the block(s) in \data. To process a single
// block, use xmm registers and set \xmm_suffix=_XMM. To process a vector of
// length VL, use V* registers and leave \xmm_suffix empty. May clobber V4.
.macro _aes_crypt enc, xmm_suffix, tweak, data
_xor3 KEY0\xmm_suffix, \tweak, \data
cmp $24, KEYLEN
jl .Laes128\@
je .Laes192\@
_vaes_1x \enc, 0, 1, \xmm_suffix, \data
_vaes_1x \enc, 0, 2, \xmm_suffix, \data
.Laes192\@:
_vaes_1x \enc, 0, 3, \xmm_suffix, \data
_vaes_1x \enc, 0, 4, \xmm_suffix, \data
.Laes128\@:
_vaes_1x \enc, 0, 5, \xmm_suffix, \data
_vaes_1x \enc, 0, 6, \xmm_suffix, \data
_vaes_1x \enc, 0, 7, \xmm_suffix, \data
_vaes_1x \enc, 0, 8, \xmm_suffix, \data
_vaes_1x \enc, 0, 9, \xmm_suffix, \data
_vaes_1x \enc, 0, 10, \xmm_suffix, \data
_vaes_1x \enc, 0, 11, \xmm_suffix, \data
_vaes_1x \enc, 0, 12, \xmm_suffix, \data
_vaes_1x \enc, 0, 13, \xmm_suffix, \data
_vaes_1x \enc, 1, 14, \xmm_suffix, \data
_vpxor \tweak, \data, \data
.endm
.macro _aes_xts_crypt enc
_define_aliases
.if !\enc
// When decrypting a message whose length isn't a multiple of the AES
// block length, exclude the last full block from the main loop by
// subtracting 16 from LEN. This is needed because ciphertext stealing
// decryption uses the last two tweaks in reverse order. We'll handle
// the last full block and the partial block specially at the end.
lea -16(LEN), %eax
test $15, LEN8
cmovnz %eax, LEN
.endif
// Load the AES key length: 16 (AES-128), 24 (AES-192), or 32 (AES-256).
movl 480(KEY), KEYLEN
// Setup the pointer to the round keys and cache as many as possible.
_setup_round_keys \enc
// Compute the first set of tweaks TWEAK[0-3].
_compute_first_set_of_tweaks
sub $4*VL, LEN
jl .Lhandle_remainder\@
.Lmain_loop\@:
// This is the main loop, en/decrypting 4*VL bytes per iteration.
// XOR each source block with its tweak and the zero-th round key.
.if USE_AVX10
vmovdqu8 0*VL(SRC), V0
vmovdqu8 1*VL(SRC), V1
vmovdqu8 2*VL(SRC), V2
vmovdqu8 3*VL(SRC), V3
vpternlogd $0x96, TWEAK0, KEY0, V0
vpternlogd $0x96, TWEAK1, KEY0, V1
vpternlogd $0x96, TWEAK2, KEY0, V2
vpternlogd $0x96, TWEAK3, KEY0, V3
.else
vpxor 0*VL(SRC), KEY0, V0
vpxor 1*VL(SRC), KEY0, V1
vpxor 2*VL(SRC), KEY0, V2
vpxor 3*VL(SRC), KEY0, V3
vpxor TWEAK0, V0, V0
vpxor TWEAK1, V1, V1
vpxor TWEAK2, V2, V2
vpxor TWEAK3, V3, V3
.endif
cmp $24, KEYLEN
jl .Laes128\@
je .Laes192\@
// Do all the AES rounds on the data blocks, interleaved with
// the computation of the next set of tweaks.
_vaes_4x \enc, 0, 1
_vaes_4x \enc, 0, 2
.Laes192\@:
_vaes_4x \enc, 0, 3
_vaes_4x \enc, 0, 4
.Laes128\@:
_vaes_4x \enc, 0, 5
_vaes_4x \enc, 0, 6
_vaes_4x \enc, 0, 7
_vaes_4x \enc, 0, 8
_vaes_4x \enc, 0, 9
_vaes_4x \enc, 0, 10
_vaes_4x \enc, 0, 11
_vaes_4x \enc, 0, 12
_vaes_4x \enc, 0, 13
_vaes_4x \enc, 1, 14
// XOR in the tweaks again.
_vpxor TWEAK0, V0, V0
_vpxor TWEAK1, V1, V1
_vpxor TWEAK2, V2, V2
_vpxor TWEAK3, V3, V3
// Store the destination blocks.
_vmovdqu V0, 0*VL(DST)
_vmovdqu V1, 1*VL(DST)
_vmovdqu V2, 2*VL(DST)
_vmovdqu V3, 3*VL(DST)
// Finish computing the next set of tweaks.
_tweak_step 1000
add $4*VL, SRC
add $4*VL, DST
sub $4*VL, LEN
jge .Lmain_loop\@
// Check for the uncommon case where the data length isn't a multiple of
// 4*VL. Handle it out-of-line in order to optimize for the common
// case. In the common case, just fall through to the ret.
test $4*VL-1, LEN8
jnz .Lhandle_remainder\@
.Ldone\@:
// Store the next tweak back to *TWEAK to support continuation calls.
vmovdqu TWEAK0_XMM, (TWEAK)
.if VL > 16
vzeroupper
.endif
RET
.Lhandle_remainder\@:
// En/decrypt any remaining full blocks, one vector at a time.
.if VL > 16
add $3*VL, LEN // Undo extra sub of 4*VL, then sub VL.
jl .Lvec_at_a_time_done\@
.Lvec_at_a_time\@:
_vmovdqu (SRC), V0
_aes_crypt \enc, , TWEAK0, V0
_vmovdqu V0, (DST)
_next_tweakvec TWEAK0, V0, V1, TWEAK0
add $VL, SRC
add $VL, DST
sub $VL, LEN
jge .Lvec_at_a_time\@
.Lvec_at_a_time_done\@:
add $VL-16, LEN // Undo extra sub of VL, then sub 16.
.else
add $4*VL-16, LEN // Undo extra sub of 4*VL, then sub 16.
.endif
// En/decrypt any remaining full blocks, one at a time.
jl .Lblock_at_a_time_done\@
.Lblock_at_a_time\@:
vmovdqu (SRC), %xmm0
_aes_crypt \enc, _XMM, TWEAK0_XMM, %xmm0
vmovdqu %xmm0, (DST)
_next_tweak TWEAK0_XMM, %xmm0, TWEAK0_XMM
add $16, SRC
add $16, DST
sub $16, LEN
jge .Lblock_at_a_time\@
.Lblock_at_a_time_done\@:
add $16, LEN // Undo the extra sub of 16.
// Now 0 <= LEN <= 15. If LEN is zero, we're done.
jz .Ldone\@
// Otherwise 1 <= LEN <= 15, but the real remaining length is 16 + LEN.
// Do ciphertext stealing to process the last 16 + LEN bytes.
.if \enc
// If encrypting, the main loop already encrypted the last full block to
// create the CTS intermediate ciphertext. Prepare for the rest of CTS
// by rewinding the pointers and loading the intermediate ciphertext.
sub $16, SRC
sub $16, DST
vmovdqu (DST), %xmm0
.else
// If decrypting, the main loop didn't decrypt the last full block
// because CTS decryption uses the last two tweaks in reverse order.
// Do it now by advancing the tweak and decrypting the last full block.
_next_tweak TWEAK0_XMM, %xmm0, TWEAK1_XMM
vmovdqu (SRC), %xmm0
_aes_crypt \enc, _XMM, TWEAK1_XMM, %xmm0
.endif
.if USE_AVX10
// Create a mask that has the first LEN bits set.
mov $-1, %r9d
bzhi LEN, %r9d, %r9d
kmovd %r9d, %k1
// Swap the first LEN bytes of the en/decryption of the last full block
// with the partial block. Note that to support in-place en/decryption,
// the load from the src partial block must happen before the store to
// the dst partial block.
vmovdqa %xmm0, %xmm1
vmovdqu8 16(SRC), %xmm0{%k1}
vmovdqu8 %xmm1, 16(DST){%k1}
.else
lea .Lcts_permute_table(%rip), %r9
// Load the src partial block, left-aligned. Note that to support
// in-place en/decryption, this must happen before the store to the dst
// partial block.
vmovdqu (SRC, LEN64, 1), %xmm1
// Shift the first LEN bytes of the en/decryption of the last full block
// to the end of a register, then store it to DST+LEN. This stores the
// dst partial block. It also writes to the second part of the dst last
// full block, but that part is overwritten later.
vpshufb (%r9, LEN64, 1), %xmm0, %xmm2
vmovdqu %xmm2, (DST, LEN64, 1)
// Make xmm3 contain [16-LEN,16-LEN+1,...,14,15,0x80,0x80,...].
sub LEN64, %r9
vmovdqu 32(%r9), %xmm3
// Shift the src partial block to the beginning of its register.
vpshufb %xmm3, %xmm1, %xmm1
// Do a blend to generate the src partial block followed by the second
// part of the en/decryption of the last full block.
vpblendvb %xmm3, %xmm0, %xmm1, %xmm0
.endif
// En/decrypt again and store the last full block.
_aes_crypt \enc, _XMM, TWEAK0_XMM, %xmm0
vmovdqu %xmm0, (DST)
jmp .Ldone\@
.endm
// void aes_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key,
// u8 iv[AES_BLOCK_SIZE]);
SYM_TYPED_FUNC_START(aes_xts_encrypt_iv)
vmovdqu (%rsi), %xmm0
vpxor (%rdi), %xmm0, %xmm0
movl 480(%rdi), %eax // AES key length
lea -16(%rdi, %rax, 4), %rdi
cmp $24, %eax
jl .Lencrypt_iv_aes128
je .Lencrypt_iv_aes192
vaesenc -6*16(%rdi), %xmm0, %xmm0
vaesenc -5*16(%rdi), %xmm0, %xmm0
.Lencrypt_iv_aes192:
vaesenc -4*16(%rdi), %xmm0, %xmm0
vaesenc -3*16(%rdi), %xmm0, %xmm0
.Lencrypt_iv_aes128:
vaesenc -2*16(%rdi), %xmm0, %xmm0
vaesenc -1*16(%rdi), %xmm0, %xmm0
vaesenc 0*16(%rdi), %xmm0, %xmm0
vaesenc 1*16(%rdi), %xmm0, %xmm0
vaesenc 2*16(%rdi), %xmm0, %xmm0
vaesenc 3*16(%rdi), %xmm0, %xmm0
vaesenc 4*16(%rdi), %xmm0, %xmm0
vaesenc 5*16(%rdi), %xmm0, %xmm0
vaesenc 6*16(%rdi), %xmm0, %xmm0
vaesenclast 7*16(%rdi), %xmm0, %xmm0
vmovdqu %xmm0, (%rsi)
RET
SYM_FUNC_END(aes_xts_encrypt_iv)
// Below are the actual AES-XTS encryption and decryption functions,
// instantiated from the above macro. They all have the following prototype:
//
// void (*xts_asm_func)(const struct crypto_aes_ctx *key,
// const u8 *src, u8 *dst, unsigned int len,
// u8 tweak[AES_BLOCK_SIZE]);
//
// |key| is the data key. |tweak| contains the next tweak; the encryption of
// the original IV with the tweak key was already done. This function supports
// incremental computation, but |len| must always be >= 16 (AES_BLOCK_SIZE), and
// |len| must be a multiple of 16 except on the last call. If |len| is a
// multiple of 16, then this function updates |tweak| to contain the next tweak.
.set VL, 16
.set USE_AVX10, 0
SYM_TYPED_FUNC_START(aes_xts_encrypt_aesni_avx)
_aes_xts_crypt 1
SYM_FUNC_END(aes_xts_encrypt_aesni_avx)
SYM_TYPED_FUNC_START(aes_xts_decrypt_aesni_avx)
_aes_xts_crypt 0
SYM_FUNC_END(aes_xts_decrypt_aesni_avx)
#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
.set VL, 32
.set USE_AVX10, 0
SYM_TYPED_FUNC_START(aes_xts_encrypt_vaes_avx2)
_aes_xts_crypt 1
SYM_FUNC_END(aes_xts_encrypt_vaes_avx2)
SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx2)
_aes_xts_crypt 0
SYM_FUNC_END(aes_xts_decrypt_vaes_avx2)
.set VL, 32
.set USE_AVX10, 1
SYM_TYPED_FUNC_START(aes_xts_encrypt_vaes_avx10_256)
_aes_xts_crypt 1
SYM_FUNC_END(aes_xts_encrypt_vaes_avx10_256)
SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx10_256)
_aes_xts_crypt 0
SYM_FUNC_END(aes_xts_decrypt_vaes_avx10_256)
.set VL, 64
.set USE_AVX10, 1
SYM_TYPED_FUNC_START(aes_xts_encrypt_vaes_avx10_512)
_aes_xts_crypt 1
SYM_FUNC_END(aes_xts_encrypt_vaes_avx10_512)
SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx10_512)
_aes_xts_crypt 0
SYM_FUNC_END(aes_xts_decrypt_vaes_avx10_512)
#endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */
|