1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
|
/* SPDX-License-Identifier: GPL-2.0 */
/*
* linux/boot/head.S
*
* Copyright (C) 1991, 1992, 1993 Linus Torvalds
*/
/*
* head.S contains the 32-bit startup code.
*
* NOTE!!! Startup happens at absolute address 0x00001000, which is also where
* the page directory will exist. The startup code will be overwritten by
* the page directory. [According to comments etc elsewhere on a compressed
* kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
*
* Page 0 is deliberately kept safe, since System Management Mode code in
* laptops may need to access the BIOS data stored there. This is also
* useful for future device drivers that either access the BIOS via VM86
* mode.
*/
/*
* High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
*/
.code32
.text
#include <linux/init.h>
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/boot.h>
#include <asm/msr.h>
#include <asm/processor-flags.h>
#include <asm/asm-offsets.h>
#include <asm/bootparam.h>
#include <asm/desc_defs.h>
#include <asm/trapnr.h>
#include "pgtable.h"
/*
* Locally defined symbols should be marked hidden:
*/
.hidden _bss
.hidden _ebss
.hidden _end
__HEAD
/*
* This macro gives the relative virtual address of X, i.e. the offset of X
* from startup_32. This is the same as the link-time virtual address of X,
* since startup_32 is at 0, but defining it this way tells the
* assembler/linker that we do not want the actual run-time address of X. This
* prevents the linker from trying to create unwanted run-time relocation
* entries for the reference when the compressed kernel is linked as PIE.
*
* A reference X(%reg) will result in the link-time VA of X being stored with
* the instruction, and a run-time R_X86_64_RELATIVE relocation entry that
* adds the 64-bit base address where the kernel is loaded.
*
* Replacing it with (X-startup_32)(%reg) results in the offset being stored,
* and no run-time relocation.
*
* The macro should be used as a displacement with a base register containing
* the run-time address of startup_32 [i.e. rva(X)(%reg)], or as an immediate
* [$ rva(X)].
*
* This macro can only be used from within the .head.text section, since the
* expression requires startup_32 to be in the same section as the code being
* assembled.
*/
#define rva(X) ((X) - startup_32)
.code32
SYM_FUNC_START(startup_32)
/*
* 32bit entry is 0 and it is ABI so immutable!
* If we come here directly from a bootloader,
* kernel(text+data+bss+brk) ramdisk, zero_page, command line
* all need to be under the 4G limit.
*/
cld
cli
/*
* Calculate the delta between where we were compiled to run
* at and where we were actually loaded at. This can only be done
* with a short local call on x86. Nothing else will tell us what
* address we are running at. The reserved chunk of the real-mode
* data at 0x1e4 (defined as a scratch field) are used as the stack
* for this calculation. Only 4 bytes are needed.
*/
leal (BP_scratch+4)(%esi), %esp
call 1f
1: popl %ebp
subl $ rva(1b), %ebp
/* Load new GDT with the 64bit segments using 32bit descriptor */
leal rva(gdt)(%ebp), %eax
movl %eax, 2(%eax)
lgdt (%eax)
/* Load segment registers with our descriptors */
movl $__BOOT_DS, %eax
movl %eax, %ds
movl %eax, %es
movl %eax, %fs
movl %eax, %gs
movl %eax, %ss
/* Setup a stack and load CS from current GDT */
leal rva(boot_stack_end)(%ebp), %esp
pushl $__KERNEL32_CS
leal rva(1f)(%ebp), %eax
pushl %eax
lretl
1:
/* Setup Exception handling for SEV-ES */
call startup32_load_idt
/* Make sure cpu supports long mode. */
call verify_cpu
testl %eax, %eax
jnz .Lno_longmode
/*
* Compute the delta between where we were compiled to run at
* and where the code will actually run at.
*
* %ebp contains the address we are loaded at by the boot loader and %ebx
* contains the address where we should move the kernel image temporarily
* for safe in-place decompression.
*/
#ifdef CONFIG_RELOCATABLE
movl %ebp, %ebx
#ifdef CONFIG_EFI_STUB
/*
* If we were loaded via the EFI LoadImage service, startup_32 will be at an
* offset to the start of the space allocated for the image. efi_pe_entry will
* set up image_offset to tell us where the image actually starts, so that we
* can use the full available buffer.
* image_offset = startup_32 - image_base
* Otherwise image_offset will be zero and has no effect on the calculations.
*/
subl rva(image_offset)(%ebp), %ebx
#endif
movl BP_kernel_alignment(%esi), %eax
decl %eax
addl %eax, %ebx
notl %eax
andl %eax, %ebx
cmpl $LOAD_PHYSICAL_ADDR, %ebx
jae 1f
#endif
movl $LOAD_PHYSICAL_ADDR, %ebx
1:
/* Target address to relocate to for decompression */
addl BP_init_size(%esi), %ebx
subl $ rva(_end), %ebx
/*
* Prepare for entering 64 bit mode
*/
/* Enable PAE mode */
movl %cr4, %eax
orl $X86_CR4_PAE, %eax
movl %eax, %cr4
/*
* Build early 4G boot pagetable
*/
/*
* If SEV is active then set the encryption mask in the page tables.
* This will insure that when the kernel is copied and decompressed
* it will be done so encrypted.
*/
call get_sev_encryption_bit
xorl %edx, %edx
#ifdef CONFIG_AMD_MEM_ENCRYPT
testl %eax, %eax
jz 1f
subl $32, %eax /* Encryption bit is always above bit 31 */
bts %eax, %edx /* Set encryption mask for page tables */
/*
* Set MSR_AMD64_SEV_ENABLED_BIT in sev_status so that
* startup32_check_sev_cbit() will do a check. sev_enable() will
* initialize sev_status with all the bits reported by
* MSR_AMD_SEV_STATUS later, but only MSR_AMD64_SEV_ENABLED_BIT
* needs to be set for now.
*/
movl $1, rva(sev_status)(%ebp)
1:
#endif
/* Initialize Page tables to 0 */
leal rva(pgtable)(%ebx), %edi
xorl %eax, %eax
movl $(BOOT_INIT_PGT_SIZE/4), %ecx
rep stosl
/* Build Level 4 */
leal rva(pgtable + 0)(%ebx), %edi
leal 0x1007 (%edi), %eax
movl %eax, 0(%edi)
addl %edx, 4(%edi)
/* Build Level 3 */
leal rva(pgtable + 0x1000)(%ebx), %edi
leal 0x1007(%edi), %eax
movl $4, %ecx
1: movl %eax, 0x00(%edi)
addl %edx, 0x04(%edi)
addl $0x00001000, %eax
addl $8, %edi
decl %ecx
jnz 1b
/* Build Level 2 */
leal rva(pgtable + 0x2000)(%ebx), %edi
movl $0x00000183, %eax
movl $2048, %ecx
1: movl %eax, 0(%edi)
addl %edx, 4(%edi)
addl $0x00200000, %eax
addl $8, %edi
decl %ecx
jnz 1b
/* Enable the boot page tables */
leal rva(pgtable)(%ebx), %eax
movl %eax, %cr3
/* Enable Long mode in EFER (Extended Feature Enable Register) */
movl $MSR_EFER, %ecx
rdmsr
btsl $_EFER_LME, %eax
wrmsr
/* After gdt is loaded */
xorl %eax, %eax
lldt %ax
movl $__BOOT_TSS, %eax
ltr %ax
/*
* Setup for the jump to 64bit mode
*
* When the jump is performed we will be in long mode but
* in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
* (and in turn EFER.LMA = 1). To jump into 64bit mode we use
* the new gdt/idt that has __KERNEL_CS with CS.L = 1.
* We place all of the values on our mini stack so lret can
* used to perform that far jump.
*/
leal rva(startup_64)(%ebp), %eax
#ifdef CONFIG_EFI_MIXED
cmpb $1, rva(efi_is64)(%ebp)
je 1f
leal rva(startup_64_mixed_mode)(%ebp), %eax
1:
#endif
/* Check if the C-bit position is correct when SEV is active */
call startup32_check_sev_cbit
pushl $__KERNEL_CS
pushl %eax
/* Enter paged protected Mode, activating Long Mode */
movl $CR0_STATE, %eax
movl %eax, %cr0
/* Jump from 32bit compatibility mode into 64bit mode. */
lret
SYM_FUNC_END(startup_32)
#ifdef CONFIG_EFI_MIXED
.org 0x190
SYM_FUNC_START(efi32_stub_entry)
add $0x4, %esp /* Discard return address */
popl %ecx
popl %edx
popl %esi
jmp efi32_entry
SYM_FUNC_END(efi32_stub_entry)
.text
/*
* This is the common EFI stub entry point for mixed mode.
*
* Arguments: %ecx image handle
* %edx EFI system table pointer
* %esi struct bootparams pointer (or NULL when not using
* the EFI handover protocol)
*
* Since this is the point of no return for ordinary execution, no registers
* are considered live except for the function parameters. [Note that the EFI
* stub may still exit and return to the firmware using the Exit() EFI boot
* service.]
*/
SYM_FUNC_START_LOCAL(efi32_entry)
call 1f
1: pop %ebx
/* Save firmware GDTR and code/data selectors */
sgdtl (efi32_boot_gdt - 1b)(%ebx)
movw %cs, (efi32_boot_cs - 1b)(%ebx)
movw %ds, (efi32_boot_ds - 1b)(%ebx)
/* Store firmware IDT descriptor */
sidtl (efi32_boot_idt - 1b)(%ebx)
/* Store boot arguments */
leal (efi32_boot_args - 1b)(%ebx), %ebx
movl %ecx, 0(%ebx)
movl %edx, 4(%ebx)
movl %esi, 8(%ebx)
movb $0x0, 12(%ebx) // efi_is64
/* Disable paging */
movl %cr0, %eax
btrl $X86_CR0_PG_BIT, %eax
movl %eax, %cr0
jmp startup_32
SYM_FUNC_END(efi32_entry)
__HEAD
#endif
.code64
.org 0x200
SYM_CODE_START(startup_64)
/*
* 64bit entry is 0x200 and it is ABI so immutable!
* We come here either from startup_32 or directly from a
* 64bit bootloader.
* If we come here from a bootloader, kernel(text+data+bss+brk),
* ramdisk, zero_page, command line could be above 4G.
* We depend on an identity mapped page table being provided
* that maps our entire kernel(text+data+bss+brk), zero page
* and command line.
*/
cld
cli
/* Setup data segments. */
xorl %eax, %eax
movl %eax, %ds
movl %eax, %es
movl %eax, %ss
movl %eax, %fs
movl %eax, %gs
/*
* Compute the decompressed kernel start address. It is where
* we were loaded at aligned to a 2M boundary. %rbp contains the
* decompressed kernel start address.
*
* If it is a relocatable kernel then decompress and run the kernel
* from load address aligned to 2MB addr, otherwise decompress and
* run the kernel from LOAD_PHYSICAL_ADDR
*
* We cannot rely on the calculation done in 32-bit mode, since we
* may have been invoked via the 64-bit entry point.
*/
/* Start with the delta to where the kernel will run at. */
#ifdef CONFIG_RELOCATABLE
leaq startup_32(%rip) /* - $startup_32 */, %rbp
#ifdef CONFIG_EFI_STUB
/*
* If we were loaded via the EFI LoadImage service, startup_32 will be at an
* offset to the start of the space allocated for the image. efi_pe_entry will
* set up image_offset to tell us where the image actually starts, so that we
* can use the full available buffer.
* image_offset = startup_32 - image_base
* Otherwise image_offset will be zero and has no effect on the calculations.
*/
movl image_offset(%rip), %eax
subq %rax, %rbp
#endif
movl BP_kernel_alignment(%rsi), %eax
decl %eax
addq %rax, %rbp
notq %rax
andq %rax, %rbp
cmpq $LOAD_PHYSICAL_ADDR, %rbp
jae 1f
#endif
movq $LOAD_PHYSICAL_ADDR, %rbp
1:
/* Target address to relocate to for decompression */
movl BP_init_size(%rsi), %ebx
subl $ rva(_end), %ebx
addq %rbp, %rbx
/* Set up the stack */
leaq rva(boot_stack_end)(%rbx), %rsp
/*
* At this point we are in long mode with 4-level paging enabled,
* but we might want to enable 5-level paging or vice versa.
*
* The problem is that we cannot do it directly. Setting or clearing
* CR4.LA57 in long mode would trigger #GP. So we need to switch off
* long mode and paging first.
*
* We also need a trampoline in lower memory to switch over from
* 4- to 5-level paging for cases when the bootloader puts the kernel
* above 4G, but didn't enable 5-level paging for us.
*
* The same trampoline can be used to switch from 5- to 4-level paging
* mode, like when starting 4-level paging kernel via kexec() when
* original kernel worked in 5-level paging mode.
*
* For the trampoline, we need the top page table to reside in lower
* memory as we don't have a way to load 64-bit values into CR3 in
* 32-bit mode.
*
* We go though the trampoline even if we don't have to: if we're
* already in a desired paging mode. This way the trampoline code gets
* tested on every boot.
*/
/* Make sure we have GDT with 32-bit code segment */
leaq gdt64(%rip), %rax
addq %rax, 2(%rax)
lgdt (%rax)
/* Reload CS so IRET returns to a CS actually in the GDT */
pushq $__KERNEL_CS
leaq .Lon_kernel_cs(%rip), %rax
pushq %rax
lretq
.Lon_kernel_cs:
pushq %rsi
call load_stage1_idt
popq %rsi
#ifdef CONFIG_AMD_MEM_ENCRYPT
/*
* Now that the stage1 interrupt handlers are set up, #VC exceptions from
* CPUID instructions can be properly handled for SEV-ES guests.
*
* For SEV-SNP, the CPUID table also needs to be set up in advance of any
* CPUID instructions being issued, so go ahead and do that now via
* sev_enable(), which will also handle the rest of the SEV-related
* detection/setup to ensure that has been done in advance of any dependent
* code.
*/
pushq %rsi
movq %rsi, %rdi /* real mode address */
call sev_enable
popq %rsi
#endif
/*
* paging_prepare() sets up the trampoline and checks if we need to
* enable 5-level paging.
*
* paging_prepare() returns a two-quadword structure which lands
* into RDX:RAX:
* - Address of the trampoline is returned in RAX.
* - Non zero RDX means trampoline needs to enable 5-level
* paging.
*
* RSI holds real mode data and needs to be preserved across
* this function call.
*/
pushq %rsi
movq %rsi, %rdi /* real mode address */
call paging_prepare
popq %rsi
/* Save the trampoline address in RCX */
movq %rax, %rcx
/*
* Load the address of trampoline_return() into RDI.
* It will be used by the trampoline to return to the main code.
*/
leaq trampoline_return(%rip), %rdi
/* Switch to compatibility mode (CS.L = 0 CS.D = 1) via far return */
pushq $__KERNEL32_CS
leaq TRAMPOLINE_32BIT_CODE_OFFSET(%rax), %rax
pushq %rax
lretq
trampoline_return:
/* Restore the stack, the 32-bit trampoline uses its own stack */
leaq rva(boot_stack_end)(%rbx), %rsp
/*
* cleanup_trampoline() would restore trampoline memory.
*
* RDI is address of the page table to use instead of page table
* in trampoline memory (if required).
*
* RSI holds real mode data and needs to be preserved across
* this function call.
*/
pushq %rsi
leaq rva(top_pgtable)(%rbx), %rdi
call cleanup_trampoline
popq %rsi
/* Zero EFLAGS */
pushq $0
popfq
/*
* Copy the compressed kernel to the end of our buffer
* where decompression in place becomes safe.
*/
pushq %rsi
leaq (_bss-8)(%rip), %rsi
leaq rva(_bss-8)(%rbx), %rdi
movl $(_bss - startup_32), %ecx
shrl $3, %ecx
std
rep movsq
cld
popq %rsi
/*
* The GDT may get overwritten either during the copy we just did or
* during extract_kernel below. To avoid any issues, repoint the GDTR
* to the new copy of the GDT.
*/
leaq rva(gdt64)(%rbx), %rax
leaq rva(gdt)(%rbx), %rdx
movq %rdx, 2(%rax)
lgdt (%rax)
/*
* Jump to the relocated address.
*/
leaq rva(.Lrelocated)(%rbx), %rax
jmp *%rax
SYM_CODE_END(startup_64)
#ifdef CONFIG_EFI_STUB
.org 0x390
SYM_FUNC_START(efi64_stub_entry)
and $~0xf, %rsp /* realign the stack */
movq %rdx, %rbx /* save boot_params pointer */
call efi_main
movq %rbx,%rsi
leaq rva(startup_64)(%rax), %rax
jmp *%rax
SYM_FUNC_END(efi64_stub_entry)
SYM_FUNC_ALIAS(efi_stub_entry, efi64_stub_entry)
#endif
.text
SYM_FUNC_START_LOCAL_NOALIGN(.Lrelocated)
/*
* Clear BSS (stack is currently empty)
*/
xorl %eax, %eax
leaq _bss(%rip), %rdi
leaq _ebss(%rip), %rcx
subq %rdi, %rcx
shrq $3, %rcx
rep stosq
pushq %rsi
call load_stage2_idt
/* Pass boot_params to initialize_identity_maps() */
movq (%rsp), %rdi
call initialize_identity_maps
popq %rsi
/*
* Do the extraction, and jump to the new kernel..
*/
pushq %rsi /* Save the real mode argument */
movq %rsi, %rdi /* real mode address */
leaq boot_heap(%rip), %rsi /* malloc area for uncompression */
leaq input_data(%rip), %rdx /* input_data */
movl input_len(%rip), %ecx /* input_len */
movq %rbp, %r8 /* output target address */
movl output_len(%rip), %r9d /* decompressed length, end of relocs */
call extract_kernel /* returns kernel location in %rax */
popq %rsi
/*
* Jump to the decompressed kernel.
*/
jmp *%rax
SYM_FUNC_END(.Lrelocated)
.code32
/*
* This is the 32-bit trampoline that will be copied over to low memory.
*
* RDI contains the return address (might be above 4G).
* ECX contains the base address of the trampoline memory.
* Non zero RDX means trampoline needs to enable 5-level paging.
*/
SYM_CODE_START(trampoline_32bit_src)
/* Set up data and stack segments */
movl $__KERNEL_DS, %eax
movl %eax, %ds
movl %eax, %ss
/* Set up new stack */
leal TRAMPOLINE_32BIT_STACK_END(%ecx), %esp
/* Disable paging */
movl %cr0, %eax
btrl $X86_CR0_PG_BIT, %eax
movl %eax, %cr0
/* Check what paging mode we want to be in after the trampoline */
testl %edx, %edx
jz 1f
/* We want 5-level paging: don't touch CR3 if it already points to 5-level page tables */
movl %cr4, %eax
testl $X86_CR4_LA57, %eax
jnz 3f
jmp 2f
1:
/* We want 4-level paging: don't touch CR3 if it already points to 4-level page tables */
movl %cr4, %eax
testl $X86_CR4_LA57, %eax
jz 3f
2:
/* Point CR3 to the trampoline's new top level page table */
leal TRAMPOLINE_32BIT_PGTABLE_OFFSET(%ecx), %eax
movl %eax, %cr3
3:
/* Set EFER.LME=1 as a precaution in case hypervsior pulls the rug */
pushl %ecx
pushl %edx
movl $MSR_EFER, %ecx
rdmsr
btsl $_EFER_LME, %eax
/* Avoid writing EFER if no change was made (for TDX guest) */
jc 1f
wrmsr
1: popl %edx
popl %ecx
#ifdef CONFIG_X86_MCE
/*
* Preserve CR4.MCE if the kernel will enable #MC support.
* Clearing MCE may fault in some environments (that also force #MC
* support). Any machine check that occurs before #MC support is fully
* configured will crash the system regardless of the CR4.MCE value set
* here.
*/
movl %cr4, %eax
andl $X86_CR4_MCE, %eax
#else
movl $0, %eax
#endif
/* Enable PAE and LA57 (if required) paging modes */
orl $X86_CR4_PAE, %eax
testl %edx, %edx
jz 1f
orl $X86_CR4_LA57, %eax
1:
movl %eax, %cr4
/* Calculate address of paging_enabled() once we are executing in the trampoline */
leal .Lpaging_enabled - trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_OFFSET(%ecx), %eax
/* Prepare the stack for far return to Long Mode */
pushl $__KERNEL_CS
pushl %eax
/* Enable paging again. */
movl %cr0, %eax
btsl $X86_CR0_PG_BIT, %eax
movl %eax, %cr0
lret
SYM_CODE_END(trampoline_32bit_src)
.code64
SYM_FUNC_START_LOCAL_NOALIGN(.Lpaging_enabled)
/* Return from the trampoline */
jmp *%rdi
SYM_FUNC_END(.Lpaging_enabled)
/*
* The trampoline code has a size limit.
* Make sure we fail to compile if the trampoline code grows
* beyond TRAMPOLINE_32BIT_CODE_SIZE bytes.
*/
.org trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_SIZE
.code32
SYM_FUNC_START_LOCAL_NOALIGN(.Lno_longmode)
/* This isn't an x86-64 CPU, so hang intentionally, we cannot continue */
1:
hlt
jmp 1b
SYM_FUNC_END(.Lno_longmode)
#include "../../kernel/verify_cpu.S"
.data
SYM_DATA_START_LOCAL(gdt64)
.word gdt_end - gdt - 1
.quad gdt - gdt64
SYM_DATA_END(gdt64)
.balign 8
SYM_DATA_START_LOCAL(gdt)
.word gdt_end - gdt - 1
.long 0
.word 0
.quad 0x00cf9a000000ffff /* __KERNEL32_CS */
.quad 0x00af9a000000ffff /* __KERNEL_CS */
.quad 0x00cf92000000ffff /* __KERNEL_DS */
.quad 0x0080890000000000 /* TS descriptor */
.quad 0x0000000000000000 /* TS continued */
SYM_DATA_END_LABEL(gdt, SYM_L_LOCAL, gdt_end)
SYM_DATA_START(boot_idt_desc)
.word boot_idt_end - boot_idt - 1
.quad 0
SYM_DATA_END(boot_idt_desc)
.balign 8
SYM_DATA_START(boot_idt)
.rept BOOT_IDT_ENTRIES
.quad 0
.quad 0
.endr
SYM_DATA_END_LABEL(boot_idt, SYM_L_GLOBAL, boot_idt_end)
#ifdef CONFIG_AMD_MEM_ENCRYPT
SYM_DATA_START(boot32_idt_desc)
.word boot32_idt_end - boot32_idt - 1
.long 0
SYM_DATA_END(boot32_idt_desc)
.balign 8
SYM_DATA_START(boot32_idt)
.rept 32
.quad 0
.endr
SYM_DATA_END_LABEL(boot32_idt, SYM_L_GLOBAL, boot32_idt_end)
#endif
#ifdef CONFIG_EFI_STUB
SYM_DATA(image_offset, .long 0)
#endif
#ifdef CONFIG_EFI_MIXED
SYM_DATA(efi32_boot_args, .long 0, 0, 0)
SYM_DATA(efi_is64, .byte 1)
#define ST32_boottime 60 // offsetof(efi_system_table_32_t, boottime)
#define BS32_handle_protocol 88 // offsetof(efi_boot_services_32_t, handle_protocol)
#define LI32_image_base 32 // offsetof(efi_loaded_image_32_t, image_base)
.text
.code32
SYM_FUNC_START(efi32_pe_entry)
/*
* efi_status_t efi32_pe_entry(efi_handle_t image_handle,
* efi_system_table_32_t *sys_table)
*/
pushl %ebp
movl %esp, %ebp
pushl %eax // dummy push to allocate loaded_image
pushl %ebx // save callee-save registers
pushl %edi
call verify_cpu // check for long mode support
testl %eax, %eax
movl $0x80000003, %eax // EFI_UNSUPPORTED
jnz 2f
call 1f
1: pop %ebx
/* Get the loaded image protocol pointer from the image handle */
leal -4(%ebp), %eax
pushl %eax // &loaded_image
leal (loaded_image_proto - 1b)(%ebx), %eax
pushl %eax // pass the GUID address
pushl 8(%ebp) // pass the image handle
/*
* Note the alignment of the stack frame.
* sys_table
* handle <-- 16-byte aligned on entry by ABI
* return address
* frame pointer
* loaded_image <-- local variable
* saved %ebx <-- 16-byte aligned here
* saved %edi
* &loaded_image
* &loaded_image_proto
* handle <-- 16-byte aligned for call to handle_protocol
*/
movl 12(%ebp), %eax // sys_table
movl ST32_boottime(%eax), %eax // sys_table->boottime
call *BS32_handle_protocol(%eax) // sys_table->boottime->handle_protocol
addl $12, %esp // restore argument space
testl %eax, %eax
jnz 2f
movl 8(%ebp), %ecx // image_handle
movl 12(%ebp), %edx // sys_table
movl -4(%ebp), %esi // loaded_image
movl LI32_image_base(%esi), %esi // loaded_image->image_base
leal (startup_32 - 1b)(%ebx), %ebp // runtime address of startup_32
/*
* We need to set the image_offset variable here since startup_32() will
* use it before we get to the 64-bit efi_pe_entry() in C code.
*/
subl %esi, %ebp // calculate image_offset
movl %ebp, (image_offset - 1b)(%ebx) // save image_offset
xorl %esi, %esi
jmp efi32_entry // pass %ecx, %edx, %esi
// no other registers remain live
2: popl %edi // restore callee-save registers
popl %ebx
leave
RET
SYM_FUNC_END(efi32_pe_entry)
.section ".rodata"
/* EFI loaded image protocol GUID */
.balign 4
SYM_DATA_START_LOCAL(loaded_image_proto)
.long 0x5b1b31a1
.word 0x9562, 0x11d2
.byte 0x8e, 0x3f, 0x00, 0xa0, 0xc9, 0x69, 0x72, 0x3b
SYM_DATA_END(loaded_image_proto)
#endif
#ifdef CONFIG_AMD_MEM_ENCRYPT
__HEAD
.code32
/*
* Write an IDT entry into boot32_idt
*
* Parameters:
*
* %eax: Handler address
* %edx: Vector number
*
* Physical offset is expected in %ebp
*/
SYM_FUNC_START(startup32_set_idt_entry)
push %ebx
push %ecx
/* IDT entry address to %ebx */
leal rva(boot32_idt)(%ebp), %ebx
shl $3, %edx
addl %edx, %ebx
/* Build IDT entry, lower 4 bytes */
movl %eax, %edx
andl $0x0000ffff, %edx # Target code segment offset [15:0]
movl $__KERNEL32_CS, %ecx # Target code segment selector
shl $16, %ecx
orl %ecx, %edx
/* Store lower 4 bytes to IDT */
movl %edx, (%ebx)
/* Build IDT entry, upper 4 bytes */
movl %eax, %edx
andl $0xffff0000, %edx # Target code segment offset [31:16]
orl $0x00008e00, %edx # Present, Type 32-bit Interrupt Gate
/* Store upper 4 bytes to IDT */
movl %edx, 4(%ebx)
pop %ecx
pop %ebx
RET
SYM_FUNC_END(startup32_set_idt_entry)
#endif
SYM_FUNC_START(startup32_load_idt)
#ifdef CONFIG_AMD_MEM_ENCRYPT
/* #VC handler */
leal rva(startup32_vc_handler)(%ebp), %eax
movl $X86_TRAP_VC, %edx
call startup32_set_idt_entry
/* Load IDT */
leal rva(boot32_idt)(%ebp), %eax
movl %eax, rva(boot32_idt_desc+2)(%ebp)
lidt rva(boot32_idt_desc)(%ebp)
#endif
RET
SYM_FUNC_END(startup32_load_idt)
/*
* Check for the correct C-bit position when the startup_32 boot-path is used.
*
* The check makes use of the fact that all memory is encrypted when paging is
* disabled. The function creates 64 bits of random data using the RDRAND
* instruction. RDRAND is mandatory for SEV guests, so always available. If the
* hypervisor violates that the kernel will crash right here.
*
* The 64 bits of random data are stored to a memory location and at the same
* time kept in the %eax and %ebx registers. Since encryption is always active
* when paging is off the random data will be stored encrypted in main memory.
*
* Then paging is enabled. When the C-bit position is correct all memory is
* still mapped encrypted and comparing the register values with memory will
* succeed. An incorrect C-bit position will map all memory unencrypted, so that
* the compare will use the encrypted random data and fail.
*/
SYM_FUNC_START(startup32_check_sev_cbit)
#ifdef CONFIG_AMD_MEM_ENCRYPT
pushl %eax
pushl %ebx
pushl %ecx
pushl %edx
/* Check for non-zero sev_status */
movl rva(sev_status)(%ebp), %eax
testl %eax, %eax
jz 4f
/*
* Get two 32-bit random values - Don't bail out if RDRAND fails
* because it is better to prevent forward progress if no random value
* can be gathered.
*/
1: rdrand %eax
jnc 1b
2: rdrand %ebx
jnc 2b
/* Store to memory and keep it in the registers */
movl %eax, rva(sev_check_data)(%ebp)
movl %ebx, rva(sev_check_data+4)(%ebp)
/* Enable paging to see if encryption is active */
movl %cr0, %edx /* Backup %cr0 in %edx */
movl $(X86_CR0_PG | X86_CR0_PE), %ecx /* Enable Paging and Protected mode */
movl %ecx, %cr0
cmpl %eax, rva(sev_check_data)(%ebp)
jne 3f
cmpl %ebx, rva(sev_check_data+4)(%ebp)
jne 3f
movl %edx, %cr0 /* Restore previous %cr0 */
jmp 4f
3: /* Check failed - hlt the machine */
hlt
jmp 3b
4:
popl %edx
popl %ecx
popl %ebx
popl %eax
#endif
RET
SYM_FUNC_END(startup32_check_sev_cbit)
/*
* Stack and heap for uncompression
*/
.bss
.balign 4
SYM_DATA_LOCAL(boot_heap, .fill BOOT_HEAP_SIZE, 1, 0)
SYM_DATA_START_LOCAL(boot_stack)
.fill BOOT_STACK_SIZE, 1, 0
.balign 16
SYM_DATA_END_LABEL(boot_stack, SYM_L_LOCAL, boot_stack_end)
/*
* Space for page tables (not in .bss so not zeroed)
*/
.section ".pgtable","aw",@nobits
.balign 4096
SYM_DATA_LOCAL(pgtable, .fill BOOT_PGT_SIZE, 1, 0)
/*
* The page table is going to be used instead of page table in the trampoline
* memory.
*/
SYM_DATA_LOCAL(top_pgtable, .fill PAGE_SIZE, 1, 0)
|