1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
.. SPDX-License-Identifier: GPL-2.0
.. include:: <isonum.txt>
===================
DPAA2 Switch driver
===================
:Copyright: |copy| 2021 NXP
The DPAA2 Switch driver probes on the Datapath Switch (DPSW) object which can
be instantiated on the following DPAA2 SoCs and their variants: LS2088A and
LX2160A.
The driver uses the switch device driver model and exposes each switch port as
a network interface, which can be included in a bridge or used as a standalone
interface. Traffic switched between ports is offloaded into the hardware.
The DPSW can have ports connected to DPNIs or to DPMACs for external access.
::
[ethA] [ethB] [ethC] [ethD] [ethE] [ethF]
: : : : : :
: : : : : :
[dpaa2-eth] [dpaa2-eth] [ dpaa2-switch ]
: : : : : : kernel
=============================================================================
: : : : : : hardware
[DPNI] [DPNI] [============= DPSW =================]
| | | | | |
| ---------- | [DPMAC] [DPMAC]
------------------------------- | |
| |
[PHY] [PHY]
Creating an Ethernet Switch
===========================
The dpaa2-switch driver probes on DPSW devices found on the fsl-mc bus. These
devices can be either created statically through the boot time configuration
file - DataPath Layout (DPL) - or at runtime using the DPAA2 object APIs
(incorporated already into the restool userspace tool).
At the moment, the dpaa2-switch driver imposes the following restrictions on
the DPSW object that it will probe:
* The minimum number of FDBs should be at least equal to the number of switch
interfaces. This is necessary so that separation of switch ports can be
done, ie when not under a bridge, each switch port will have its own FDB.
::
fsl_dpaa2_switch dpsw.0: The number of FDBs is lower than the number of ports, cannot probe
* Both the broadcast and flooding configuration should be per FDB. This
enables the driver to restrict the broadcast and flooding domains of each
FDB depending on the switch ports that are sharing it (aka are under the
same bridge).
::
fsl_dpaa2_switch dpsw.0: Flooding domain is not per FDB, cannot probe
fsl_dpaa2_switch dpsw.0: Broadcast domain is not per FDB, cannot probe
* The control interface of the switch should not be disabled
(DPSW_OPT_CTRL_IF_DIS not passed as a create time option). Without the
control interface, the driver is not capable to provide proper Rx/Tx traffic
support on the switch port netdevices.
::
fsl_dpaa2_switch dpsw.0: Control Interface is disabled, cannot probe
Besides the configuration of the actual DPSW object, the dpaa2-switch driver
will need the following DPAA2 objects:
* 1 DPMCP - A Management Command Portal object is needed for any interraction
with the MC firmware.
* 1 DPBP - A Buffer Pool is used for seeding buffers intended for the Rx path
on the control interface.
* Access to at least one DPIO object (Software Portal) is needed for any
enqueue/dequeue operation to be performed on the control interface queues.
The DPIO object will be shared, no need for a private one.
Switching features
==================
The driver supports the configuration of L2 forwarding rules in hardware for
port bridging as well as standalone usage of the independent switch interfaces.
The hardware is not configurable with respect to VLAN awareness, thus any DPAA2
switch port should be used only in usecases with a VLAN aware bridge::
$ ip link add dev br0 type bridge vlan_filtering 1
$ ip link add dev br1 type bridge
$ ip link set dev ethX master br1
Error: fsl_dpaa2_switch: Cannot join a VLAN-unaware bridge
Topology and loop detection through STP is supported when ``stp_state 1`` is
used at bridge create ::
$ ip link add dev br0 type bridge vlan_filtering 1 stp_state 1
L2 FDB manipulation (add/delete/dump) is supported.
HW FDB learning can be configured on each switch port independently through
bridge commands. When the HW learning is disabled, a fast age procedure will be
run and any previously learnt addresses will be removed.
::
$ bridge link set dev ethX learning off
$ bridge link set dev ethX learning on
Restricting the unknown unicast and multicast flooding domain is supported, but
not independently of each other::
$ ip link set dev ethX type bridge_slave flood off mcast_flood off
$ ip link set dev ethX type bridge_slave flood off mcast_flood on
Error: fsl_dpaa2_switch: Cannot configure multicast flooding independently of unicast.
Broadcast flooding on a switch port can be disabled/enabled through the brport sysfs::
$ echo 0 > /sys/bus/fsl-mc/devices/dpsw.Y/net/ethX/brport/broadcast_flood
Offloads
========
Routing actions (redirect, trap, drop)
--------------------------------------
The DPAA2 switch is able to offload flow-based redirection of packets making
use of ACL tables. Shared filter blocks are supported by sharing a single ACL
table between multiple ports.
The following flow keys are supported:
* Ethernet: dst_mac/src_mac
* IPv4: dst_ip/src_ip/ip_proto/tos
* VLAN: vlan_id/vlan_prio/vlan_tpid/vlan_dei
* L4: dst_port/src_port
Also, the matchall filter can be used to redirect the entire traffic received
on a port.
As per flow actions, the following are supported:
* drop
* mirred egress redirect
* trap
Each ACL entry (filter) can be setup with only one of the listed
actions.
Example 1: send frames received on eth4 with a SA of 00:01:02:03:04:05 to the
CPU::
$ tc qdisc add dev eth4 clsact
$ tc filter add dev eth4 ingress flower src_mac 00:01:02:03:04:05 skip_sw action trap
Example 2: drop frames received on eth4 with VID 100 and PCP of 3::
$ tc filter add dev eth4 ingress protocol 802.1q flower skip_sw vlan_id 100 vlan_prio 3 action drop
Example 3: redirect all frames received on eth4 to eth1::
$ tc filter add dev eth4 ingress matchall action mirred egress redirect dev eth1
Example 4: Use a single shared filter block on both eth5 and eth6::
$ tc qdisc add dev eth5 ingress_block 1 clsact
$ tc qdisc add dev eth6 ingress_block 1 clsact
$ tc filter add block 1 ingress flower dst_mac 00:01:02:03:04:04 skip_sw \
action trap
$ tc filter add block 1 ingress protocol ipv4 flower src_ip 192.168.1.1 skip_sw \
action mirred egress redirect dev eth3
|